load "mazur42p.mg" ============================================================================================================================================================== 🔸️d=5: Chi:= function(p) G:=DirichletGroup(2^7*5^2,CyclotomicField(4)); eps:=(Elements(G)[26]); f:=order(eps(p)*KroneckerSymbol(p,5)*KroneckerSymbol(p,2)); if KroneckerSymbol(-5,p) eq 1 then f:=2*order(eps(p)); end if; return f; end function; -------------------------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^7*5^2,CyclotomicField(4)); eps:=(Elements(G)[26]); M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > #new; 12 > #CM; 0 > for i in [1..#new] do for> if i notin CM then for|if> print(DiscardPlace(5,eps,Chi,new,i,1,30)); for|if> end if; for> end for; {@ 2 @} {@ 2 @} {@ 2 @} {@ 2 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 13 @} {@ 13 @} {@ 13 @} {@ 13 @} -------------------------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^8*5^2,CyclotomicField(4)); eps:=(Elements(G)[26]); M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > #new; 55 > #CM; 24 > for i in [1..#new] do for> if i notin CM then for|if> print(DiscardPlace(5,eps,Chi,new,i,1,20)); for|if> end if; for> end for; {@ 11, 2, 7 @} {@ 11, 2, 7 @} {@ 11, 2, 7 @} {@ 11, 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 7 @} {@ 7 @} {@ 7 @} {@ 7 @} {@ 3 @} {@ 3 @} {@ 2, 3 @} {@ 2, 3 @} {@ 3, 7 @} {@ 3, 7 @} {@ @} {@ @} {@ 2, 3, 5, 7 @} {@ 2 @} {@ 2 @} {@ 2 @} {@ 2 @} {@ 3 @} {@ 3 @} {@ 3 @} {@ 3 @} {@ 2, 5 @} {@ 2, 5 @} > for i in CM do for> print(MazurTrickMultiplicative(new,3,eps,[i])); for> end for; {@ 2 @} {@ 2 @} {@ 2 @} {@ 2 @} {@ 2 @} {@ 2 @} {@ 2 @} {@ 2 @} {@ 2, 3 @} {@ 2, 3 @} {@ 2, 3 @} {@ 2, 3 @} {@ 2, 5 @} {@ 2, 5 @} {@ 2 @} {@ 2 @} {@ 3, 139 @} {@ 3, 139 @} {@ 3, 139 @} {@ 3, 139 @} {@ 2, 29 @} {@ 2, 29 @} {@ 5, 101 @} {@ 5, 101 @} ============================================================================================================================================================== 🔸️d=6: Chi:= function(p) f:=1; if KroneckerSymbol(-6,p) eq 1 then f:=2*order(KroneckerSymbol(-1,p)*KroneckerSymbol(p,3)); end if; return f; end function; -------------------------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^8*3); eps:=Elements(G)[6]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > #new; 10 > #CM; 6 > for i in [1..#new] do for> if i notin CM then for|if> print(DiscardPlace(6,eps,Chi,new,i,1,10)); for|if> end if; for> end for; {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} -------------------------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^9*3); eps:=Elements(G)[6]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > #new; 13 > #CM; 3 > for i in [1..#new] do for> if i notin CM then for|if> print(DiscardPlace(6,eps,Chi,new,i,1,20)); for|if> end if; for> end for; {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 5 @} {@ 2, 5 @} {@ 2, 5, 7 @} {@ 2, 5, 7 @} {@ 2 @} ============================================================================================================================================================== 🔸️d=7: Chi:= function(p) f:=order(KroneckerSymbol(-1,p)*KroneckerSymbol(p,2)*KroneckerSymbol(p,7)); if KroneckerSymbol(-5,p) eq 1 then f:=2; end if; return f; end function; -------------------------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2*7^2); eps:=Elements(G)[1]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > #new; 2 > #CM; 0 > for i in [1..#new] do for> if i notin CM then for|if> print(DiscardPlace(7,eps,Chi,new,i,1,50)); for|if> end if; for> end for; {@ 2, 17, 7 @} Cannot discard the form with parameter: 2 [] -------------------------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^8*7^2); eps:=Elements(G)[1]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > #new; 98 > #CM; 30 > CM; [ 1, 2, 3, 4, 9, 10, 11, 15, 17, 18, 24, 25, 26, 28, 36, 37, 39, 40, 41, 42, 43, 44, 45, 49, 50, 56, 58, 65, 78, 92 ] > for i in [1..#new] do for> if i notin CM then for|if> print(DiscardPlace(7,eps,Chi,new,i,1,20)); for|if> end if; for> end for; {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 5, 7 @} {@ 11, 2, 7, 17 @} {@ 5, 7 @} {@ 23, 2 @} {@ 2, 31 @} {@ 23, 2 @} {@ 2, 31 @} {@ 11, 2, 7 @} {@ 11, 2, 7 @} {@ 5, 7 @} {@ 2, 17, 7 @} {@ 2, 17, 7 @} {@ 11, 2, 7, 17 @} {@ 2, 31 @} {@ 5, 7 @} {@ 23, 2 @} {@ 23, 2 @} {@ 2, 31 @} {@ 11, 2, 7 @} {@ 11, 2, 7 @} {@ 11, 2, 3 @} {@ 11, 2, 3 @} {@ 7 @} {@ 17, 7 @} {@ 2, 3 @} {@ 2 @} {@ 2 @} {@ 2 @} {@ 7 @} {@ 17, 7 @} {@ 11, 2, 3 @} {@ 11, 2, 3 @} {@ 7 @} {@ 17, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 3 @} {@ 2 @} {@ 7 @} {@ 17, 7 @} {@ 7 @} {@ 3 @} {@ 7 @} {@ 3 @} {@ 7 @} {@ 3 @} {@ 7 @} {@ 3 @} {@ 5, 7 @} {@ 11, 2 @} {@ 5, 7 @} {@ 7 @} {@ 11, 2 @} {@ 7 @} {@ 2 @} {@ 2 @}