load "Mazur42p.mg" =========================================================================================================================================== d=6: Chi:= function(p) f:=order(KroneckerSymbol(-1,p)); if KroneckerSymbol(6,p) eq 1 then f:=2*order(KroneckerSymbol(-1,p)*KroneckerSymbol(p,3)); end if; return f; end function; ------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^8*3); eps:=(Elements(G)[6]); M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > #new; 10 > #CM; 6 > CM; [ 3, 6, 7, 8, 9, 10 ] > for i in [1..#new] do for> print(DiscardPlace(6,eps,Chi,new,i,1,10)); for> end for; {@ 5, 2, 7 @} {@ 5, 2, 7 @} Cannot discard the form with parameter: 3 [] {@ 5, 2, 7 @} {@ 5, 2, 7 @} Cannot discard the form with parameter: 6 [] Cannot discard the form with parameter: 7 [] {@ 7, 2, 3, 5 @} {@ 2, 3 @} {@ 2, 7 @} ------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^9*3); eps:=Elements(G)[6]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > #new; 13 > #CM; 3 > for i in [1..#new] do for> print(DiscardPlace(6,eps,Chi,new,i,1,20)); for> end for; {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2 @} {@ 2 @} {@ 2, 7 @} {@ 2, 17, 7 @} {@ 2, 7 @} {@ 2, 17, 7 @} {@ 2, 3, 5 @} {@ 2, 3, 5 @} {@ 2 @} =========================================================================================================================================== d=10: Chi:= function(p) G:=DirichletGroup(2^8*5^2,CyclotomicField(4)); eps:=Elements(G)[10]; f:=order(KroneckerSymbol(-1,p)*eps(p)*KroneckerSymbol(p,5)); if KroneckerSymbol(10,p) eq 1 then f:=2*order(KroneckerSymbol(-1,p)*eps(p)); end if; return f; end function; ------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^8*5^2,CyclotomicField(4)); eps:=Elements(G)[10]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > #new; 55 > #CM; 24 > CM; [ 1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 17, 18, 21, 22, 23, 24, 29, 30, 31, 32, 33, 34, 44, 45 ] > for i in [1..#new] do for> print(DiscardPlace(10,eps,Chi,new,i,1,30)); for> end for; {@ 2, 17, 7 @} {@ 2, 17, 7 @} {@ 23, 2, 5, 17, 7 @} {@ 23, 2, 5, 17, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 7 @} {@ 11, 2, 3, 7, 17 @} {@ 11, 2, 3, 7, 17 @} {@ 2, 7 @} {@ 2, 7 @} {@ 11, 2, 3, 7, 17 @} {@ 11, 2, 3, 7, 17 @} {@ 2, 7 @} {@ 2, 7 @} Cannot discard the form with parameter: 21 [] Cannot discard the form with parameter: 22 [] {@ 2, 19 @} {@ 2, 19 @} {@ 7 @} {@ 7 @} {@ 7 @} {@ 7 @} {@ 23, 3 @} {@ 23, 3 @} {@ 23, 3 @} {@ 23, 3 @} {@ 2 @} {@ 2 @} {@ 3, 5 @} {@ 3, 5 @} {@ 2, 3, 5 @} {@ 2, 3, 5 @} {@ 3, 7 @} {@ 3, 7 @} {@ @} {@ @} {@ 13, 2, 3, 5 @} {@ 23, 3, 5, 19 @} {@ 23, 3, 5, 19 @} {@ 2, 5 @} {@ 2, 5 @} {@ 11, 2 @} {@ 11, 2 @} {@ @} {@ @} {@ @} {@ @} {@ 2 @} {@ 2 @} > for i in [21,22] do for> print(MazurTrickMultiplicative(new,3,eps,[i])); for> end for; {@ 2, 5 @} {@ 2, 5 @} ------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^9*5^2,CyclotomicField(4)); eps:=Elements(G)[10]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > #new; 40 > #CM; 10 > CM; [ 1, 2, 3, 4, 5, 6, 19, 20, 21, 22 ] > for i in [1..#new] do for> print(DiscardPlace(10,eps,Chi,new,i,1,20)); for> end for; {@ 2, 17, 7 @} {@ 2, 17, 7 @} {@ 2, 17, 7 @} {@ 2, 17, 7 @} {@ 2, 3 @} {@ 2, 3 @} {@ 2, 3, 7 @} {@ 2, 3, 7 @} {@ @} {@ @} {@ @} {@ @} {@ 2, 3, 7 @} {@ 2, 3, 7 @} {@ 3, 5 @} {@ 3, 5 @} {@ 3, 5 @} {@ 3, 5 @} {@ 23, 5 @} {@ 23, 5 @} {@ 23, 5 @} {@ 23, 5 @} {@ 2 @} {@ 2 @} {@ 13 @} {@ 13 @} {@ 11, 2 @} {@ 11, 2 @} {@ 2, 5 @} {@ 2, 7 @} {@ 2, 7 @} {@ 2, 3 @} {@ 2, 3 @} {@ 2, 3, 5 @} {@ 2, 7 @} {@ 2, 7 @} {@ 3 @} {@ 3 @} {@ 13 @} {@ 13 @} =========================================================================================================================================== d=11: Chi:= function(p) f:=order(KroneckerSymbol(-1,p)*KroneckerSymbol(p,2)); if KroneckerSymbol(11,p) eq 1 then f:=2*order(KroneckerSymbol(-1,p)*KroneckerSymbol(p,11)); end if; return f; end function; ------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^7*11); eps:=Elements(G)[6]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > #new; 4 > #CM; 0 > for i in [1..#new] do for> print(DiscardPlace(11,eps,Chi,new,i,1,10)); for> end for; {@ 2, 3, 5, 7 @} {@ 2, 3, 5, 7 @} {@ 2, 3, 5, 7 @} {@ 2, 3, 5, 7 @} ------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^8*11); eps:=Elements(G)[6]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > #new; 15 > #CM; 7 for i in [1..#new] do if i eq 6 then print(DiscardPlace(11,eps,Chi,new,i,1,43)); else print(DiscardPlace(11,eps,Chi,new,i,1,30)); end if; end for; Cannot discard the form with parameter: 1 [] Cannot discard the form with parameter: 2 [] {@ 11, 2, 5, 7, 19 @} {@ 11, 2, 5, 7, 19 @} {@ 11, 7 @} {@ 2, 3, 17, 7 @} {@ 2, 5 @} {@ 2, 5 @} {@ 2, 5 @} {@ 2, 5 @} {@ @} {@ 3, 5 @} {@ 7 @} {@ 2 @} {@ 7 @} =========================================================================================================================================== d=19: Chi:= function(p) f:=order(KroneckerSymbol(-1,p)*KroneckerSymbol(p,2)); if KroneckerSymbol(19,p) eq 1 then f:=2*order(KroneckerSymbol(-1,p)*KroneckerSymbol(p,19)); end if; return f; end function; ------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^7*19); eps:=Elements(G)[6]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > #new; 4 > #CM; 0 > for i in [1..#new] do for> print(DiscardPlace(19,eps,Chi,new,i,1,20)); for> end for; {@ 2 @} {@ 2 @} {@ 2 @} {@ 2 @} ------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^8*19); eps:=Elements(G)[6]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > #new; 18 > #CM; 7 > CM; [ 1, 2, 3, 4, 10, 15, 16 ] > for i in [1..#new] do for> print(DiscardPlace(19,eps,Chi,new,i,1,20)); for> end for; Cannot discard the form with parameter: 1 [] Cannot discard the form with parameter: 2 [] {@ 11, 2, 3, 7, 17 @} {@ 17 @} {@ 3 @} {@ 3 @} {@ 7 @} {@ @} {@ 3, 5 @} {@ 2 @} {@ 2, 5, 17 @} {@ 2, 5, 17 @} {@ 2, 5, 17 @} {@ 2, 5, 17 @} {@ 2, 3, 19 @} {@ 2, 3, 19 @} {@ 3 @} {@ @} > for i in [1,2] do for> print(MazurTrickMultiplicative(new,3,eps,[i])); for> end for; {@ 2, 3 @} {@ 2, 3 @} =========================================================================================================================================== d=129: Chi:= function(p) f:=order(KroneckerSymbol(-1,p)*KroneckerSymbol(p,2)); if KroneckerSymbol(129,p) eq 1 then f:=2*order(KroneckerSymbol(p,3)*KroneckerSymbol(p,43)); end if; return f; end function; ------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2*129); eps:=Elements(G)[4]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); > #new; 4 > #CM; 0 > for i in [1..#new] do for> print(DiscardPlace(129,eps,Chi,new,i,1,20)); for> end for; {@ 3, 5 @} {@ 3, 5 @} {@ 2, 3 @} {@ 2, 3 @} ------------------------------------------------------------------------------------------------------------------------------------------- G:=DirichletGroup(2^8*129); eps:=Elements(G)[13]; M:=ModularSymbols(eps,2,1); S:=NewSubspace(CuspidalSubspace(M)); new:=NewformDecomposition(S); CM:=FormsWithCM(new); >new; 36 > #CM; 18 > CM; [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 17, 18, 19, 22, 23, 24 ] for i in [1..#new-3] do print(DiscardPlace(129,eps,Chi,new,i,1,20)); end for; Cannot discard the form with parameter: 1 [] Cannot discard the form with parameter: 2 [] Cannot discard the form with parameter: 3 [] Cannot discard the form with parameter: 4 [] {@ 2, 17, 7 @} {@ 2, 17, 7 @} {@ 2, 3 @} {@ 2, 3 @} {@ 7, 2, 3, 13, 17 @} {@ 7, 2, 3, 13, 17 @} {@ @} {@ @} {@ 7 @} {@ 7 @} {@ 2, 5 @} {@ 2, 5 @} {@ 2, 5 @} {@ 2, 5 @} {@ 7, 2, 3, 5, 43 @} {@ 5 @} {@ 3 @} {@ 2, 17, 7 @} {@ 2, 17, 7 @} {@ 2, 7, 43 @} {@ 7 @} {@ 11, 23, 2, 7 @} {@ 11, 23, 2, 7 @} {@ 11, 2, 5 @} {@ 11, 2, 5 @} {@ 11, 2, 5 @} {@ 11, 2, 5 @} {@ 2, 3 @} {@ 2, 3 @} > ApCand(129,5); { -4, -2, 0, 2, 4 } > ApCand(129,7); { -14, -12, -6, 4 } /* Magma */ /* new[34] */ f:=PowerSeries(new[34],8); Write("Form34Coef5.txt",Coefficient(f,5)); Write("Form34Coef7.txt",Coefficient(f,7)); Write("Form34Pol.txt",Parent(Coefficient(f,5))); /* new[35] */ f:=PowerSeries(new[35],8); Write("Form35Coef5.txt",Coefficient(f,5)); Write("Form35Coef7.txt",Coefficient(f,7)); Write("Form35Pol.txt",Parent(Coefficient(f,5))); /* new[36] */ f:=PowerSeries(new[36],8); Write("Form36Coef5.txt",Coefficient(f,5)); Write("Form36Coef7.txt",Coefficient(f,7)); Write("Form36Pol.txt",Parent(Coefficient(f,5))); /* PARI/GP */ /* new[34] */ P=read("form34Pol.txt"); a5=read("form34Coef5.txt"); a7=read("form34Coef7.txt"); P=subst(P,x,a); v5=[-4, -2, 0, 2, 4] w5=vector(length(v5),k,norm(-Mod(a5,P)-v5[k])); w5=concat(w5,norm(Mod(a5,P)^2-36)); v7=[-14,-12,-6,4] w7=vector(length(v7),k,norm(Mod(a7,P)^2-v7[k]*(-1)-2*7*(-1))); Primes=[];for(i=1,length(w5),for(j=1,length(w7),Primes=concat(Primes,factor(gcd(w5[i],w7[j]))[,1]~))) Set(Primes) %16 = [2, 5, 37] /* new[35] */ P=read("form35Pol.txt"); a5=read("form35Coef5.txt"); a7=read("form35Coef7.txt"); P=subst(P,x,a); v5=[-4, -2, 0, 2, 4] w5=vector(length(v5),k,norm(-Mod(a5,P)-v5[k])); w5=concat(w5,norm(Mod(a5,P)^2-36)); v7=[-14,-12,-6,4] w7=vector(length(v7),k,norm(Mod(a7,P)^2-v7[k]*(-1)-2*7*(-1))); Primes=[];for(i=1,length(w5),for(j=1,length(w7),Primes=concat(Primes,factor(gcd(w5[i],w7[j]))[,1]~))) Set(Primes) %27 = [2, 5, 37] /* new[36] */ P=read("form36Pol.txt"); a5=read("form36Coef5.txt"); a7=read("form36Coef7.txt"); P=subst(P,x,a); v5=[-4, -2, 0, 2, 4] w5=vector(length(v5),k,norm(-Mod(a5,P)-v5[k])); w5=concat(w5,norm(Mod(a5,P)^2-36)); v7=[-14,-12,-6,4] w7=vector(length(v7),k,norm(Mod(a7,P)^2-v7[k]*(-1)-2*7*(-1))); Primes=[];for(i=1,length(w5),for(j=1,length(w7),Primes=concat(Primes,factor(gcd(w5[i],w7[j]))[,1]~))) Set(Primes) %38 = [2, 7]