AVEIRO SUMMER SCHOOL

Local Fields

Exercise Sheet 1

Rachel Newton

- 1. Let p be a prime number. Show that the absolute value $|\cdot|_p$ is non-Archimedean.
- 2. Let $(K, |\cdot|)$ be a valued field.
 - (a) Show that if $x \in K$ is a root of unity, then |x| = 1.
 - (b) Show that

$$\left| \frac{x}{y} \right| = \frac{|x|}{|y|},$$

for all $x, y \in K$ with $y \neq 0$.

- (c) If $K = \mathbb{F}_{p^n}$ (a finite field) then any absolute value on K is the trivial one. Deduce the same result for $\overline{\mathbb{F}_p} = \bigcup_n \mathbb{F}_{p^n}$.
- (d) Show that the sequence 1, 11, 111, 1111, 1111, ... converges to $-\frac{1}{9}$ for $|\cdot|_5$ and $|\cdot|_2$, but is not Cauchy for all other absolute values of \mathbb{Q} .