Security 1st Semester, 2010/11

2nd Exam February 1, 2010

- All questions have the same grade.
- Total duration time of exam is 3 hours.
- 1. Why can we have buffer overflows in C and not in Java?
- Consider the logic circuit known as LFSR (Linear Feedback Shift Register), used to implement stream ciphers. Explain:
 - a. What is the maximum period of the bit sequence it produces?
 - b. What does it means to have a primitive feedback polynomial?
- 3. Show, mathematically, why the RSA cipher would be insecure if it was possible to:
 - a. Factorize easily big numbers.
 - b. Calculate easily discrete logarithms of large numbers.
- 4. Using the Birthday Paradox, show what is, approximately, the maximum collision resistance of a digest function. Justify appropriately your answer.
- 5. Describe the execution model of the HMAC construction, used to compute a MAC (Message Authentication Code) of a message.
- 6. Consider the concept of digital signature. Explain the motive that justifies the inclusion of additional information in its construction (besides the document to sign, or its digest).
- 7. Explain, as completely as possible, why public key certificates are vital for supporting the validation of digital signatures.
- 8. Consider the concept of CRL (Certificate Revocation List). Explain:
 - a. Who manages a CRL?
 - b. Who, and when, should we use its information?
- 9. Explain, giving an example, which risks takes a user when its certificate repository is attacked by a virus introducing false information.
- 10. Explain, in detail, the Linux authentication process.

- 11. GSM uses an authentication process exploring, simultaneously, something a person has and something a person knows. Explain why, complementing your explanation with a diagram.
- 12. Considering that the Cartão de Cidadão (Citizen Card) does not perform decryptions with its private keys, but only signatures, how could you use it to perform a remote challenge-response authentication?
- 13. Consider the concept of mandatory access control. Show:
 - a. How does it work?
 - b. Give two practical examples of its use.
- 14. What are the practical advantages of the separation of duties principle for the security of a system?
- 15. Explain the principles of the Bell-LaPadula flow control model.
- 16. Consider the Clark-Wilson integrity model. Explain what is:
 - a. A CDI (Constrained Data Item) and an UDI (Unconstrained Data Item)
 - b. An IVP (Integrity Verification Procedure) and a TP (Transformation Procedure).
- 17. Explain why inference represents a problem for the security of a database management system.
- 18. Consider a multilevel database, where data is encrypted according to a security level. Explain:
 - a. What is the consequence of this fact for the users of the database?
 - b. Which particular good practices should be followed in the data encryption?
- 19. In the Internet there are sensors that evaluate the network risk level. Explain:
 - a. What are those sensors?
 - b. How do they evaluate the risk?
- 20. Explain why Java Virtual Machines (or Java Run-time Environments) impose restrictions to the places from where they load classes for the running applications?