
SQL injections

Security
João Paulo Barraca /
André Zúquete 1

Current Web Environment

� Current “Web pages” are really Web applications
� Front-end which may run in browser

� Server provides execution environment

� Back-end which provides services

� Database for persistent storage

� Interfaces connect the different subsystems
� E.g. HTTP, REST, WebSocket, SQL, etc..

� Multiple technologies and languages used
� E.g. Javascript, PHP, HTML, CSS

Security
João Paulo Barraca /
André Zúquete 2

Current Web Environment

� Each subsystem may be vulnerable to attacks

� Entire application may be compromised if single
breach is found

� SQL Injections are just one case

� Focus in applications using SQL servers

� There are many other attacks

Security
João Paulo Barraca /
André Zúquete 3

What?

� Conjunction of several things:
� Specially crafted input

� Lack of sanity checks in code

� Injection of an SQL statement into another
SQL statement
� Changing its original purpose

� Most frequent vector: attacker injects special
SQL statement into text field

Security
João Paulo Barraca /
André Zúquete 4

SQL injection

Typical validation query:

SELECT user FROM users WHERE user='$login' AND password='$password'

For login=admin and password=1234, query becomes:

SELECT user FROM users WHERE user='admin' AND password='1234'

Form provides two values: login and password

Security
João Paulo Barraca /
André Zúquete 5

SQL injection: detection

Form provides two values: login and password

What if password is a single quote? '

For login=admin and password=', query becomes:

SELECT user FROM users WHERE user='admin' AND password='''

Security
João Paulo Barraca /
André Zúquete 6

SQL injection: detection

Security
João Paulo Barraca /
André Zúquete 7

SQL Injection: Detection

http://assets.devx.com/articlefigs/1705
9.jpg

Security
João Paulo Barraca /
André Zúquete 8

SQL injection:
bypass simple password checking

� Form data is used to create an SQL statement

� Without validation!

� SQL code in form can be injected

� What if… password is ' or '1'='1

SELECT user FROM users WHERE user='admin‘
AND password='' or '1'='1'

� SQL statement is valid and always returns a row if the
user exists

Security
João Paulo Barraca /
André Zúquete 9

SQL injection:
bypass simple password checking

Security
João Paulo Barraca /
André Zúquete 10

SQL Injection:
bypass complex password checking

� SQL can store passwords in a ciphered format
� Uses the PASSWORD function
� Password stored in database cannot be obtained

� Typical validation query:
SELECT user FROM users WHERE user='$login'

AND password=PASSWORD('$password')

� For login=admin and password=') OR ('1'='1,
the query becomes:
SELECT user FROM users WHERE user='admin'

AND password=PASSWORD('') OR ('1'='1')

Security
João Paulo Barraca /
André Zúquete 11

Guess single password

� More complex statement can be included in
form fields

� Frequently, the only requirement is that they
start and end with single quote (')
� Because they will be inserted in attribute='injection'

� Does the password starts with 'a'?

' OR EXISTS(SELECT user FROM users
WHERE user='admin' AND
password LIKE 'a%') AND ''='

Security
João Paulo Barraca /
André Zúquete 12

Guess simple password

SELECT user FROM users WHERE user=‘admin’ AND

password='' OR EXISTS(SELECT user FROM users WHERE

user='admin' AND password LIKE 'a%') AND '' =''

Security
João Paulo Barraca /
André Zúquete 13

Guess simple password

SELECT user FROM users WHERE user='admin‘ AND

password='' OR EXISTS(SELECT user FROM users WHERE

user='admin' AND password LIKE 'p%') AND '' =''

� Then we could try: pa% or pa%a%, etc..

Security
João Paulo Barraca /
André Zúquete 14

Other possibilities

� Find table name:
� Is there a users table in the current db?:

’ OR EXISTS(SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE
TABLE_SCHEMA=‘test’ AND TABLE_NAME=‘users’) AND ‘’=‘

� Is there any table starting by “p” in any db? :
’ OR (SELECT COUNT(*) FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA LIKE ‘p%’)>1 AND ‘’=‘

� Find database name
� Starts by t?:

’ OR EXISTS(SELECT 1 FROM users WHERE database() LIKE
‘t%’) AND ‘’=‘

� Find columns, get columns by index, etc…

Security
João Paulo Barraca /
André Zúquete 15

SQL injection: terminate query

� Two characters are particularly important

� ; Terminates current query

• Allows multiple queries in same request

� -- terminates processing of all queries

• Ignores syntax errors which may appear

SELECT user FROM users WHERE user=‘admin’ AND

password=‘

’; DROP TABLE user; --’

Query 1

Query 2 Ignored after --

Security
João Paulo Barraca /
André Zúquete 16

Mitigation: sanitize input data

� Sanitize form input data

� Filter out dangerous characters

• Username can only have letters

• Passwords can only have letters and numbers

• Emails must comply with RFC 2822

� Escape dangerous characters

• Avoid this

� Browser using Javascript

� Can be bypassed doing direct queries or using tampering proxies

• e.g. WebScarab

� Automated tools can easily detect and bypass such methods

• e.g. WebCruiser

� Server

� Higher load in server

� Much more effective!

Security
João Paulo Barraca /
André Zúquete 17

Mitigation: sanitize input data

� Sanitizing input data based on quotes is
insufficient!
� If form is numeric, no quote is required.

� e.g. PIN validation

SELECT user FROM users WHERE

user=‘admin’ AND pin=12 or 1=1

� Validation must take in consideration actual data
� Sanitize as much as possible

Security
João Paulo Barraca /
André Zúquete 18

Mitigation: sanitize input data

� Escaping doesn’t really help in all cases
� e.g. typical escape is ‘ � ‘’

� Providing ‘ OR ‘1’=‘1 results in:

SELECT user FROM users WHERE user=‘admin’ AND
password=‘’’ OR ‘’1’’=‘’1’

� The resulting query is invalid, no harm done
� What about \’; DROP TABLE users; --

� \’ is expanded to \’’, ‘\’’ is a valid string with just one character
(the single quote); the table is dropped!

� MySQL provides own sanitization methods:
mysql_real_escape_string()

Security
João Paulo Barraca /
André Zúquete 19

Mitigation: prepared queries

� Instead of building query string, let SQL
libraries compile the query.

� Separation between Query and Parameters

� Three steps required:

� Preparation

� Bind parameters

� Execution

Security
João Paulo Barraca /
André Zúquete 20

Mitigation: prepared queries

� Query Preparation:
$s = mysql->prepare(“SELECT user FROM

users WHERE user=? AND pin=?”)

� Parameter binding:
$s->bind_param(“s”,$login);

$s->bind_param(“i”,$password);

� Query execution:
$s->execute();

Security
João Paulo Barraca /
André Zúquete 21

Mitigation: other methods

� Limit data permissions according to user needs
� Do not grant DROP, or Write methods for read-only

application

� Use stored procedures

� Configure error reporting appropriately
� Detailed error reporting for developers

� Limited error reporting for users

� Isolate servers to reduce compromise of neighbor
hosts

Security
João Paulo Barraca /
André Zúquete 22

