
1

PAM
(Pluggable Authentication Modules)

© André Zúquete /
João Paulo Barraca Security 1

Motivation

� Users

� Unification of authentication mechanisms for different
applications

� Manufacturers

� Authenticated access to services independently of the
authentication mechanism

� Administrators

� Simple management and matching of N authentication
mechanisms for M services requiring client authentication

� Flexibility to configure specific authentication mechanisms for
each host

� Manufacturers and Administrators

� Flexible and modular approach for integrating novel
authentication mechanisms

© André Zúquete /
João Paulo Barraca Security 2

2

Existing problems (1/2)

� Services requiring client authentication use
hardcoded mechanisms

� The services that implement authentication
mechanisms use hardcoded options

� It is not easy to integrate several
authentication mechanisms

© André Zúquete /
João Paulo Barraca Security 3

Existing problems (2/2)

� Different services may require different
authentication mechanisms
� rlogin can use information about trustworthy hosts

� Login without repeated passwords
• One-time keys

� Login with biometrics

� Different approaches for graphical and non-
graphical (text) interfaces

© André Zúquete /
João Paulo Barraca Security 4

3

PAM: goals (1/2)

� Default mechanism per host
� The administrator should be able to choose and configure the default

authentication mechanism
• Username/password, biometrics, smart-cards, etc.

� Application-specific mechanisms
� Each application should be able to exploit different authentication

mechanisms
• Login with S/Key for remote sessions

• Ordinary username/password login for local sessions

� Several interface approaches
� Input from text consoles of graphical windows

� Access to special devices (smart-cards, biometric readers, etc.)

� Several authentication protocols
� Ex. Linux authentication + S/Key authentication + smartcards + bio

© André Zúquete /
João Paulo Barraca Security 5

PAM: goals (2/2)

� Simplicity
� Stacking of mechanisms
� Minimal user perception

• Ex. single password input request

� Increased security
� Multi-factor authentication
� Different keys/secrets/PINs/passcodes/passwords/passphrases

� Services don’t need to be changed
� The update of authentication mechanisms for a particular service

does not imply a modification of the service code/configuration

� Modular architecture
� Dynamic loading of required modules
� Handling of several actions besides authentication

• Password management,
• Accounting management
• Session management

© André Zúquete /
João Paulo Barraca Security 6

4

Classic Unix authentication

� Requested information: username + password

� Validation
� Existence of an active account

• Entry with the username in the /etc/passwd file

� Ciphered password

� Comparison of the provided password with the content of
the ciphered password (salted)

� Obtained credentials
� UID + GID [+ list of secondary GIDs]

� Allowance to create new process descriptor (login shell)
© André Zúquete /
João Paulo Barraca Security 7

PAM: Architecture

© André Zúquete /
João Paulo Barraca Security 8

PAM

Modules

Aplicação

PAM

API

AplicaçãoAplicaçãoApplication
Authentication

Mechanisms

Authorization

Credentials

+

PAM

Configuration

Files

5

PAM: Actions (Management Group)

� Authentication (auth)

� Identity verification

� Account Management (account)

� Enforcement of access policies based on account properties

� Password Management (password)

� Control of the password modification process

� Session Management (session)

� Verification of operational parameters
� Enforcement of session parameters

• max memory, max file descriptions, graphical interface
configuration, ...

© André Zúquete /
João Paulo Barraca Security 9

PAM: Modules

� Standard API

� Functions provided by modules are invoked
• Functions have well known prototypes (name, parameters, return value)

� Decision based on the status code
• PAM_SUCCESS, PAM_AUTH_ERR, PAM_AUTHINFO_UNAVAIL, etc…

� Dynamically loaded (shared libraries)

� /lib/security/pam_*.so

� /lib/x86_64-linux-gnu/security/pam_*.so

� Modules can be used for one or more actions

� According to the functions implemented

© André Zúquete /
João Paulo Barraca Security 10

6

PAM: Configuration files

� Typically, one per PAM client application
� E.g: /etc/pam.d/ftp or /etc/pam.d/ssh
� Can have shared files: /etc/pam.d/common-auth

� Specify how the actions should be applied
� Which mechanisms to use

• Which dynamic library (module) to load
� Which parameters to use
� When is the action completed

� Each module uses a particular set of resources
� Information in local files

• /etc/passwd, /etc/shadow, /etc/groups, etc.
� Distributed information or located in remote servers

• NIS, Kerberos, LDAP, etc.

© André Zúquete /
João Paulo Barraca Security 11

PAM: Detailed Architecture

© André Zúquete /
João Paulo Barraca Security 12

auth

account

passwd

session

Authorization

Credentials

Local

Information

Distributed

or Remote

Information

PAM

API+

PAM

Configuration

Files

ftp login

samba sshd

etc.

Hardware

7

PAM APIs: PAM lib (1/2)

� Start/end of the PAM lib
pam_start(service, user name, callback, &pam_handle)

pam_end(pam_handle, status)

� Execution of PAM actions

� Defined a stack of modules per action

• All modules in stack are executed from top to bottom

• Each module has its own parameters and calling semantic

• Required, requisite, sufficient, optional

• […]

� Execution proceeds until the end, or failure

• To better hide the source of a failure, module execution can either abort
immediately or force a failure after the stack is executed.

� Applications can recover from failures

© André Zúquete /
João Paulo Barraca Security 13

PAM APIs: PAM lib (2/2)

� “auth” action
pam_authenticate(pam_handle, flags)
pam_setcred(pam_handle, flags)

� “account” action
pam_acct_mgmt(pam_handle, flags)

� “passwd” action
pam_chauthtok(pam_handle, flags)

� “session” action
pam_open_session(pam_handle, flags)
pam_close_session(pam_handle, flags)

� Module specific data
pam_get_data(), pam_set_data()
pam_get_item(), pam_set_item()

© André Zúquete /
João Paulo Barraca Security 14

8

PAM APIs: PAM modules

� “auth” action
pam_sm_authenticate(pam_handle, flags)
pam_sm_setcred(pam_handle, flags)

� “account” action
pam_sm_acct_mgmt(pam_handle, flags)

� “passwd” action
pam_sm_chauthtok(pam_handle, flags)

� “session” action
pam_sm_open_session(pam_handle, flags)
pam_sm_close_session(pam_handle, flags)

© André Zúquete /
João Paulo Barraca Security 15

PAM: Success control

� Syntax: action control module [parameters]

� Control is specified for each action and module

requisite
• If the module fails, the result is returned immediately

required
• If the module fails, the result is set but following modules are called

sufficient
• If module is successful

• Returns success if all previous “required” modules also were successful

• If module fails the result is ignored

optional
• Result is ignored

• EXCEPT: if this is the only module in the action

[success=ok/number default=ignore/die/bad …]

© André Zúquete /
João Paulo Barraca Security 16

9

Configuration files: /etc/pam.d/login

auth optional pam_faildelay.so delay=3000000

auth [success=ok new_authtok_reqd=ok ignore=ignore user_unknown=bad default=die] pam_securetty.so

auth requisite pam_nologin.so

session [success=ok ignore=ignore module_unknown=ignore default=bad] pam_selinux.so close

Session required pam_loginuid.so

session [success=ok ignore=ignore module_unknown=ignore default=bad] pam_selinux.so open

session required pam_env.so readenv=1

session required pam_env.so readenv=1 envfile=/etc/default/locale

@include common-auth

auth optional pam_group.so

session required pam_limits.so

session optional pam_lastlog.so

session optional pam_motd.so motd=/run/motd.dynamic

session optional pam_motd.so noupdate

session optional pam_mail.so standard

session optional pam_keyinit.so force revoke

@include common-account

@include common-session

@include common-password

© André Zúquete /
João Paulo Barraca Security 17

PAM configuration files:
Advanced decision syntax

� [value=action value=action …]

� Actions:

� ignore: take no decision

� bad: continue, but the final decision will be a failure

� die: terminate immediately with failure

� ok: continue, so far the decision is success

� done: terminate immediately with success

� reset: clear the entire state and continue

� N (unsigned integer): same as ok + jump over N lines

© André Zúquete /
João Paulo Barraca Security 18

10

PAM configuration files:
Advanced decision syntax

� Values (return codes)

� success

� open_err

� symbol_err

� service_err

� system_err

� buf_err

� perm_denied

� auth_err

� cred_insufficient

� authinfo_unavail

� user_unknown

� maxtries

� new_authtok_reqd

� acct_expired

� session_err

� cred_unavail

� cred_expired

� cred_err

� no_module_data

� conv_err

� authtok_err

� authtok_recover_err

© André Zúquete /
João Paulo Barraca Security 19

� authtok_lock_busy

� authtok_disable_aging

� try_again

� ignore

� abort

� authtok_expired

� module_unknown

� bad_item

� conv_again

� incomplete

� default
• Any not specified

PAM configuration files:
Simplified decision syntax

� High-level decisions definitions

� requisite
• [success=ok new_authtok_reqd=ok ignore=ignore default=die]

� required
• [success=ok new_authtok_reqd=ok ignore=ignore default=bad]

� sufficient
• [success=done new_authtok_reqd=ok default=ignore]

� optional
• [success=ok new_authtok_reqd=ok default=ignore]

© André Zúquete /
João Paulo Barraca Security 20

