
Buffer Overflows

© João Paulo Barraca, 
André Zúquete Security 1

Memory organization topics

� Kernel organizes memory in pages
� Typically 4 kB

� Processes operate in a virtual memory space
� Mapped to real 4k pages

� Could live in RAM, be file-mapped or be swapped out

� Kernel groups pages in several segments
� Increases security

• Segment-based permissions (RO, RW)

� Increases performance
• Some are dynamic: discarded when program terminates

• Some are static: can be retained, speeding up reuses

© João Paulo Barraca, 
André Zúquete Security 2



© João Paulo Barraca, 
André Zúquete Security 3

*Block Started by Symbol

Better Save Space

0

Text
Program code, global constants

Data
Global, initialized variables

RO

RW

RW

Stack
Function parameters, local vars

RW / RO

BSS*
Global, uninitialized variables

Shared libraries
Libraries code and global 

variables

RW
Heap

Dynamic data (no variables)

RW

0xFF….FF

Data segments

mem.c

//CONST

const char cntvar[]="constant";

//BSS

static char bssvar[4];

int main(int argc, void** argv) 

{

void * dynmem = malloc(1);

…

}

&main  = 0804865c -> text  = 08048000

cntvar = 08048920 -> const = 08048000

bssvar = 0804a034 -> bss = 0804a000

&argc = bfeb8590 -> stack = bfeb8000

dynmem = 08435008 -> heap  = 08435000

© João Paulo Barraca, 
André Zúquete Security 4



mem.c

Content of /proc/self/maps

08048000-08049000 r-xp 00000000 08:01 26845750   /home/s/seguranca/mem

08049000-0804a000 r--p 00000000 08:01 26845750   /home/s/seguranca/mem

0804a000-0804b000 rw-p 00001000 08:01 26845750   /home/s/mem

08435000-08456000 rw-p 00000000 00:00 0          [heap]

b7616000-b7617000 rw-p 00000000 00:00 0 

b7617000-b776a000 r-xp 00000000 08:01 1574823    /lib/tls/i686/cmov/libc-2.11.1.so

b776a000-b776b000 ---p 00153000 08:01 1574823    /lib/tls/i686/cmov/libc-2.11.1.so

b776b000-b776d000 r--p 00153000 08:01 1574823    /lib/tls/i686/cmov/libc-2.11.1.so

b776d000-b776e000 rw-p 00155000 08:01 1574823    /lib/tls/i686/cmov/libc-2.11.1.so

b776e000-b7771000 rw-p 00000000 00:00 0 

b777e000-b7782000 rw-p 00000000 00:00 0 

b7782000-b7783000 r-xp 00000000 00:00 0          [vdso]

b7783000-b779e000 r-xp 00000000 08:01 1565567    /lib/ld-2.11.1.so

b779e000-b779f000 r--p 0001a000 08:01 1565567    /lib/ld-2.11.1.so

b779f000-b77a0000 rw-p 0001b000 08:01 1565567    /lib/ld-2.11.1.so

bfe99000-bfeba000 rw-p 00000000 00:00 0          [stack]

© João Paulo Barraca, 
André Zúquete Security 5

mem.c

Stack evolution:

foo [000]: &argc = bfeb8140 -> stack = bfeb8000

foo [001]: &argc = bfdb8110 -> stack = bfdb8000

foo [002]: &argc = bfcb80e0 -> stack = bfcb8000

foo [003]: &argc = bfbb80b0 -> stack = bfbb8000

foo [004]: &argc = bfab8080 -> stack = bfab8000

foo [005]: &argc = bf9b8050 -> stack = bf9b8000

foo [006]: &argc = bf8b8020 -> stack = bf8b8000

foo [007]: &argc = bf7b7ff0 -> stack = bf7b7000

foo [008]: &argc = bf6b7fc0 -> stack = bf6b7000

Segmentation fault

© João Paulo Barraca, 
André Zúquete Security 6



Some x86 CPU registers

� General Purpose: A, B, C, D
� A: 8bits, AX: 16bits, EAX: 32bits, RAX: 64bits

� BP: Base Pointer (EBP if w/ 32 bits)
� Base address of the current function stack frame

� A function stack frame is where we have
• The function parameters

• The local function variables

� SP: Stack Pointer (ESP if w/ 32 bits)
� Points to end of stack (last value pushed)

� IP: Instruction Pointer (EIP if w/ 32 bits)
� Points to current instruction

© João Paulo Barraca, 
André Zúquete Security 7

Stack segment

� Stack is used to
� Pass parameters to functions (eg. arg1)
� Store local variables (eg. var1)

� Values are PUSHed or POPed from stack
� eg: push eax, pop eax

� Allocation of local variables in space
� int var1; � sub esp,4

� Accessing variables in the stack
� A parameter:

• arg1 � ebp + 8
• arg2 � ebp + 12

� A local variable:
• var1 � ebp - 4
• var2 � ebp – 8

© João Paulo Barraca, 
André Zúquete Security 8

function ( int arg1, int arg2 )

{

int var1 = arg1;

int var2;

}

arg2
arg1

var1
var2

BP stack
frame

SP



Initialization of a stack frame

� This is done in the prologue of a function

� And is undone at its epilogue

� The prologue consists in:

� Saving the base address of the previous stack frame and setting the new 
one
• push ebp

• mov ebp, esp

� Allocate space for local variables
• sub esp, Imm

� The epilogue is
• mov esp, ebp

• pop ebp

© João Paulo Barraca, 
André Zúquete Security 9

arg2
arg1

prev BP
var1
var2

BP (after prologue)
stack
frame

SP (after prologue)

leave

SP (before prologue)

BP (before prologue)

Function call and return

� Call steps

� Put arguments in stack

• Usually with PUSH

� Call the function address

• Pushes the IP to the stack (return address)

• IP has the next instruction address

� Release stack space

• Usually increasing ESP

� Returning from a function

� The RET instruction pops the saved IP (return address)
© João Paulo Barraca, 
André Zúquete Security 10

arg2
arg1

ret address
prev EBP

var1
var2

BP stack
frame

SP



Function foo()

void foo ( int arg1, int arg2 )

{

int var1 = arg1;

int var2;

}

foo:

push ebp

mov ebp, esp

sub esp, 8

mov eax, DWORD PTR [ebp+8]

mov DWORD PTR [ebp-4], eax

leave

ret

© João Paulo Barraca, 
André Zúquete Security 11

arg2
arg1

ret address
prev BP

var1
var2

BP stack
frame

SP

Buffer overflow

� Write beyond the boundaries of a buffer

� Consequences

� Write over other values located next to the buffer

� Write over special values co-located (saved registers)

• Saved BP

• Damages the base address of the previous stack frame

• Saved IP (return address)

• Jump to any address on return!

© João Paulo Barraca, 
André Zúquete Security 12



ret address
prev EBP

var1
var2

varN

Stack smashing attack

� Roadmap

� Overflow a local variable

� Extend the overflow to the return address

� Change the return address in order to jump to the injected data

• Which should be executable code

� Wait for the return of the function

� Difficulty

� A return using a saved address is an absolute jump

� The attacker needs to know the absolute address of the vulnerable 
variable

• Given the source code, knowing the machine and the initial stack address, this is 
feasible

© João Paulo Barraca, 
André Zúquete Security 13

arg2
arg1

bo.c

int foo()

{

char a[4];

scanf("%s", a);

}

.LC0:

.string "%s"

.text

foo:

push  ebp

mov ebp, esp

sub esp, 40

mov eax, OFFSET FLAT:.LC0

lea edx, [ebp-12]

mov DWORD PTR [esp+4], edx

mov DWORD PTR [esp], eax

call  __isoc99_scanf

leave

ret

© João Paulo Barraca, 
André Zúquete Security 14

Pre-allocation of space for function call parameters in 
advance (and excess)

Allows function calls without pushing/poping values 
to/from the stack



bo.s

.LC0:

.string "%s"

.text

foo:

push  ebp

mov ebp, esp

sub esp, 40

mov eax, OFFSET FLAT:.LC0

lea edx, [ebp-12]

mov DWORD PTR [esp+4], edx

mov DWORD PTR [esp], eax

call  __isoc99_scanf

leave

ret

© João Paulo Barraca, 
André Zúquete Security 15

ret address to foo caller
BP of main

bar

a

address of a
address of “%s”

BP

SP
ret address to foo

BP of foo

Buffer overflow

© João Paulo Barraca, 
André Zúquete Security 16

Write outside a

Write inside a

Write over stored BP

Write inside a



Mitigation:
Prevention mechanisms

� Avoid execution of injected instructions

� In segments/pages that usually have no code

� Prevents the execution of code injected as data

� Randomize the address space

� ADLR (Address Space Layout Randomization)

� Segments do not start in fixed positions on each run of 
the same application

• But segments keep their relative position

� Prevents jumps to well-known code locations

© João Paulo Barraca, 
André Zúquete Security 17

� Variable reordering

� Usually the vulnerable variables are arrays

� To protect other kinds of local variables (in the same 
stack frame), arrays are moved closer to the saved 
registers

� This reduces the set of variables that may be affected 
by a buffer overrun

Mitigation:
Prevention mechanisms

© João Paulo Barraca, 
André Zúquete Security 18

var1 (no array)

varN (array)

var2 (no array)
varN

var2

var1



Mitigation:
Detection mechanisms

� Stack canaries
� A value unknown to attackers (canary) is

stored next to saved registers

• Saved BP and return address

� Stack smashing attacks usually cannot affect saved 
registers with running over a canary

• Because they are usually based on string overruns

� The canary is checked before the function’s epilogue

• If different from the original value, an exception is raised

© João Paulo Barraca, 
André Zúquete Security 19

ret address
prev EBP

var1
var2

varN

arg2
arg1

canary


