ARP Address Resolution Protocol

Security

1

Networking Basics

- ▷ Communication in packet networks rely on several layers, with different identifiers
 - Applications use transport (TCP/UDP) ports
 - · Hosts use network (IP) addresses
 - Interface Cards use MAC addresses
- Communication is typically made between applications using tuples
 - <IP_Address:Port> and a protocol (TCP, UDP, etc.)

Security

Networking Basics

- When a packet is to be routed, two situations may occur:
 - The destination host is in the same IP network
 - The packet is sent directly to the destination host
 - The destination host is in another IP network
 - The packet is forwarded to a next hop (gateway)
- ▷ In both cases, the packet is transmitted between physical interfaces
 - Destination host or gateway

Security

Networking Basics

- ▶ IP addresses do not change between source and destination
 - End-to-end addressing
- MAC addresses are valid for a single network segment
 - When a packet is routed, the MAC address of the next hop must be found

Security

5

IP to MAC mapping

- > Static configuration
 - MAC entries of all hosts configured statically
 - All hosts "know" the MAC address of all interfaces of all other hosts
 - Doesn't scale!
 - · Changing a single interface requires updating all other hosts
- > Dynamic configuration
 - ARP (Address Resolution Protocol)

Security

- - Source Address is known
 - Destination Address must be determined
- > ARP Cache increases performance
 - Caches both known and unknown entries
 - Avoids repeating the discovery process per packet
 - Entries have a large lifetime
 - · 2 minutes

Security

ARP Cache

```
$ arp -a
fog.av.it.pt (193.136.92.154) at 00:1e:8c:3e:6a:a6 [ether] on eth0
atnog.av.it.pt (193.136.92.123) at 00:15:17:e6:6f:67 [ether] on eth0
guarani.av.it.pt (193.136.92.134) at 00:0c:6e:da:19:87 [ether] on eth0
aeolus.av.it.pt (193.136.92.136) at bc:ae:c5:1d:c6:53 [ether] on eth0
```

© João Paulo Barraca / André Zúquete

Security

11

ARP Spoofing

- ▶ MAC addresses can be modified ifconfig eth0 hw ether 00:11:22:33:44:55
- □ Using a colliding MAC address will allow the reception of network traffic for other hosts
 - Some switches limit MAC addresses to single ports
- Sending ARP packets with spoofed addresses may poison the cache of other stations
 - ARP Poisoning

© João Paulo Barraca / André Zúquete

Security

ARP Poisoning

- received
 - Besides ARP packets
 - No other verification is done
- New information will replace existing entries
 - · Great for allowing network dynamism
 - Very bad for security
- ▷ It is possible to send specially crafted packets to create specific entries in remote hosts

Security

13

ARP Poisoning

> When receiving an ARP Request:

```
Protocol type: IP (0x0800)
Hardware size: 6
Protocol size: 4
      Protocol size: 4
Opcode: request (1)
Sender MAC address: Apple_1b:1f:42 (e0:f8:47:1b:1f:42)
Sender IP address: 10.0.0.3 (10.0.0.3)
Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)
Target IP address: 10.0.0.2 (10.0.0.2)
```

- ▶ But... 10.0.0.2 will also "learn" that 10.0.0.3 is at e0:f8:47:1b:1f:42

Security

ARP Poisoning

- - P Frame 123: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0

 ▶ Ethernet II, Src: Tp-LinkT_f2:77:62 (90:f6:52:f2:77:62), Dst: Apple_lb:lf:42 (e0:f8:47:lb:lf:42)

 ▼ Address Resolution Protocol (reply)

 Hardware type: Ethernet (1)

 Protocol type: IP (0x0800)

 Hardware size: 6

 Protocol size: 4

 Occode: reply (2)

Opcode: reply (2) Sender MAC address: Tp-LinkT_f2:77:62 (90:f6:52:f2:77:62)
Sender IP address: 10.0.0.246 (10.0.0.246)
Target MAC address: Apple_1b:1f:42 (e0:f8:47:lb:1f:42)

Target IP address: 10.0.0.3 (10.0.0.3)

- 90:f6:52:f2:77:62
- ▷ even if no matching request has been made...
 - Gratuitous ARP

Security

15

ARP Poisoning: Consequences

- - · Create fake entries for all other hosts

▶ Alice will use 44:44:44:44 when talking to Bob

© Ioão Paulo Barraca / André Zúquete

Security

ARP Poisoning: Avoidance

- > Static entries
 - · No resolution process is triggered
 - Colliding information from ARP packets is discarded
- > Port-based packet filtering at switch ingress
 - · Spoofed ARP packets are dropped
 - · Only possible in static scenarios
- > Network segregation
 - VLANs, WiFi client segregation

Security

19

ARP Poisoning: Avoidance

- ▷ Behavior detection w/ monitoring software
 - Detect ARP Responses without Request
 - · Detect repeated Requests from same host
 - Detect MAC changes
 - Network administrator is notified
 - · But ARP poisoning is not actually avoided!
 - · And it may be difficult to find the attacker's host

Security