
MIECT: Security 2019-20

Practical Exercise:
Smartcard-based authentication in HTTPS

November 20, 2019 Due date: no date

Changelog

• v1.0 - Initial Version.

1 Introduction

Smartcards can be used to authenticate users and this has been observed for the purpose of authen-
ticating a user logging in to the local machine (with PAM). However, when using Web technologies
the concept can be easily extended in order to allow authentication of users remotely. By remotely
we consider the case where the server providing a Web service or Web page is not collocated with the
client’s browser, and the smartcard is not directly available to the server.

This laboratory guide will focus in the setup of a secure server, using a custom Certification Authority
(CA). By importing the CA public key (self-signed public key certificate), clients can validate the
authenticity of the server. At the same time, it can be considered that some contents are restricted
to a limited number of individuals, and the access to those contents can be controlled by means of a
smartcard.

For the execution of this guide we will use Linux and the following packages: the Portuguese Citizen
Card tools, apache2, php, xca, and Qt5.

2 Creation of a Certification Authority

Certification Authorities are vital for authentication of services across the Internet. They are considered
to be trusted and this trust is inherited by the certificates they issue (sign). Although CAs commonly
have a global reach and are to be globally trusted, this is not really a requirement and custom CAs
can be created. If clients install the custom CA and trust it, all certificates issued by the CA will also
be trusted, just like any other commercial, widely deployed root CA. This is useful for services which
have a limited number of users accessing it.

In this step we will create a custom CA in order to generate signed certificates for a personal Web
server. For this purpose we will rely on the xca software.

The first step is to launch the xca application and create a new database. Do not forget to specify a
password!

Afterwards, generate a new private key for the CA, named CAKey. Usually, CA keys are considerably
stronger that those of server certificates. Consider 4096 bits if possible.

Then create a CA by selecting Certificates→New Certificate. Do not forget to select the key you just
created, as well as the default CA template (you must select it and then choose Apply all. Also, you
must fill the identification data for the CA, define the key usage extension as critical and define the
validity of the CA (a few years).

1

After having the CA up and running, we can generate a certificate for our server. For that, we need
first to create a Certificate Signing Requests (CSR), and sign that request with the CA just created.
Go to the tab Certificate Signing Requests and click New Request. This time, apply the HTTP Server
template and fill the remaining fields. Use localhost as the common name, generate a new key and
define the key usage extension as critical. You can select the TLS Web Server Authentication extended
key usage.

With the CSR, the certificate can be finally generated by signing the CSR with the CAKey. Right-click
on the CSR and select sign. Please make sure you sign the CSR with the CAKey!

The final step is to export the CA Certificate, and both the Server Certificate and Private Key. Export
everything as PEM. Do not export the CA Private Key! This key is secret and should NEVER be
distributed!

3 Installation of a server certificate

Installation of the certificates and keys requires copying the files to specific places. The CA’s certificate
should go to /etc/ssl/certs. The Server certificate and private key should go to /etc/ssl/private.

Clients should also install the CA certificate in their keystore. For this purpose, import CA certificate
to a browser’s list of root CAs.

For the server we will use apache2, which must also be installed. Afterwards, the SSL module must be
enabled by issuing:

a2enmod ssl

In the folder /etc/apache2/sites-available there is a file named default-ssl.conf. Copy this file
to /etc/apache2/sites-enabled (or do a symlink). This file defines the SSL configuration the server
will use, and must be edited in order to consider the cryptographic material just created. Be sure to
modify the following variables:

• SSLCertificateFile: This should refer the PEM file containing the server certificate.

• SSLCertificateKeyFile: This should refer the PEM file containing the server private key.

• SSLCACertificatePath: This should refer /etc/ssl/certs.

Edit all required variables and restart the server by executing (as administrator):

service apache2 restart

Verify that the browser can access the server by typing the URL https://localhost.

If everything is correct, there should be no warning or error, and the page should be secure. The
practical result is that the server is authenticated and the connection is secure. The browser accepts
the server’s certificate because it was issued by a trusted CA. If the common-name field of the certificate
is different from localhost, the browser will show a warning message.

4 Using smartcards for authenticating users

The next step is to authenticate the client, and in this particular case, identify the individual user by
means of the Portuguese Citizen Card.

The first step is to download the complete certification chains of the Portuguese CC (only for au-
thentication), and install their certificates into the /etc/apache2/certs/PTEIDCC directory. The files
cannot be used directly, as they are in DER format. You can use the following command to convert
each file to PEM:

openssl x509 -in infile.cer -out outfile.pem -inform DER -outform PEM

2

You can download all the certificate files from the course Web page.

The name of those files is not very convenient, since they contain spaces. The following shell script
corrects that, creates the corresponding PEM file and also creates an hash (as a symbolic link) that is
required by Apache.

#!/bin/sh

correct ()
{

find . -name *\ *.cer |
awk '{printf "mv \"%s\" %s", $0, $1; for (i = 2; i <= NF; i++) printf "_%s",

$i; print ""}' > .mv
sh .mv
rm .mv

}

certopem ()
{

for i in *.cer; do
name=`basename $i .cer `

openssl x509 -in $i -out $name.pem -inform der -outform pem
done

}

correct
certopem

Then, concatenate all PEM files into a single PEM file (e.g. PT.pem). If using the Portuguese
root certified by Baltimore instead of the self-certified one, add together the required root certificate
(/etc/ssl//certs/Baltimore_CyberTrust_Root.pem to that file.

Note: test CCs need to use an alternative certification chain, see the course Web page for getting it.

Next proceed to configure the server by editing the file default-ssl.conf. In this file, inside the
VirtualHost *:443 section, add the following content:

SSLCACertificateFile /etc/apache2/certs/PTEIDCC/PT.pem

<Location /secure>
SSLVerifyClient require
SSLVerifyDepth 10
SSLOptions +OptRenegotiate +StdEnvVars +ExportCertData

</Location>

Create the directory /var/www/html/secure and put a file named index.php with an HTML success
message.

Now try to access the URL https://localhost/secure. Without a smartcard installed, the browser
should present and error as it is unable to provide a valid certificate for the server. In this case, the
server will only allow certificates signed by a certificate present in the PT.pem file.

Using Wireshark, examine the packets exchanged between the browser and the server.

In order to successfully access the page you must go to Firefox preferences and choose:

Advanced→Security Devices→Load

Provide any name and specify the value /usr/local/lib/libpteidpkcs11.so as the filename. The
smartcard should be available, and if the smartcard is inserted in the reader, your certificates should
be listed when choosing the option Advanced→View Certificates.

3

Retry accessing the secure address. Access should be granted.

Using Wireshark inspect the messages that are exchanged between the browser and the server.

An important aspect of authenticating users through a smartcard is to clearly identify the individual
(Portuguese Citizen) at the application layer (e.g., PHP application). For this purpose, edit the
index.php file that you previously created and add the following content:

<html>
<head><meta charset="UTF -8"></head>
<body>

<pre>
<?php print_r($_SERVER); ?>

</pre>
</body>

</html>

Access the secure Web page again and verify the variables that are exposed to the PHP application.
It should be noticed that the application can further restrict access to the service by verifying any of
these fields. However, it will have the assurance that the user was successfully authenticated by the
server.

5 References

• Portuguese Citizen Card web site: http://www.cartaodecidadao.pt

• Apache2 ModSSL, http://httpd.apache.org/docs/2.2/mod/mod_ssl.html

• XCA, http://sourceforge.net/projects/xca

4

http://www.cartaodecidadao.pt
http://httpd.apache.org/docs/2.2/mod/mod_ssl.html
http://sourceforge.net/projects/xca

	Introduction
	Creation of a Certification Authority
	Installation of a server certificate
	Using smartcards for authenticating users
	References

