
MIECT: Security 2019-20

Practical Exercise:
Digital Signatures with the Portuguese Citizen Card

October 23, 2019 Due date: no date

Changelog

� v1.0 - Initial Version.

Introduction

In order to elaborate this laboratory guide it is required to install the Java Development Environment

(JDK) or Python 3.

The examples provided will use both Java and Python. For Python you need to install the

cryptography and the pykcs11 modules.

For practicing with digital signatures we will make use of the capabilities of the Portuguese Citizen

Card (Cartão de Cidadão, CC). The middleware required to use the CC is distributed together with a

support application and is available here.

The interaction between applications and smartcards is mediated by a system daemon. In Windows

systems it is usually running by default. In Linux system it is called pcscd and it may not be present

or running, so you may need to install it.

1 Relevant CC middleware

The CC middleware that is relevant for this work is composed by two main components:

� A PKCS #11 library.

In Linux systems, this �le has as base name libpteidpkcs11 and is located in /usr/local/lib.

There is only a dynamic version of this library (extension .so).

In MacOS systems, the path should be the same, but the �le extension of the shared library is

.dylib.

In Windows systems, this �le has the name pteidpkcs11.dll and is located in the subdirectory

System32 of the Windows root directory (usually C:\Windows);

� A set of public key certi�cates that help to create the topmost certi�cation chain from the

certi�cates contained in a CC up to a particular root CA (MULTICERT Root CertPathValidator

Authority 01);

In Linux and MacOS ,these �les are stored in /usr/local/share/certs.

In Windows system, these �les are stored in eidstore\certs under the directory

C:\Programa Files\Cartão de Cidadão.

� Several root certi�cation authorities:

1

https://www.cartaodecidadao.pt
https://www.cartaodecidadao.pt
https://www.autenticacao.gov.pt/cc-aplicacao

� Baltimore CyberTrust Root (Linux only);

� COMODO RSA Certi�cation Authority (Linux only);

� Global Chambersign Root - 2008 (Linux only); and

� MULTICERT Root Certi�cation Authority 01.

The location of these �les is the same of the other certi�cates above referred.

2 Exploitation of a PKCS #11 device from Java

There are basically two ways to explore a PKCS #11 device from a Java program:

1. Using the native Sun PKCS #11 provider functionalities of Java. We will explore this one in this

guide. With this provider, we can abstract the fact of using a CC as a PKCS #11 token, we can

use its objects (keys) as any other keys that may exist in the program memory (accept having

access to the value of private keys).

2. Using a PKCS #11 wrapper package (e.g. the IAIK wrapper). In this case we can explore the

PKCS #11 interface to explore and interact with the CC.

2.1 PKCS #11 provider

A PKCS #11 provider is a piece of software that provides cryptographic functionalities through a

PKCS #11 API. This is a standard API that was designed to normalize the access to cryptographic

functionalities provided by hardware devices (or tokens) to applications. For each device, one should

have a PKCS #11 library with a subset of the relevant API functions for the device.

The de�nition of a PKCS #11 provider follows the general rules of the de�nition of another security

provider: it has to be added to the list of security providers recognized by the JVM. This can be

done statically, through JVM con�guration �les, or programmatically by an application. To make

it programmatically, one has to associate a con�guration �le for the provider to the ones already

used by providers of the same type. In our case, since we want to explore a PKCS #11 provider, if

CitizenCard.cfg is the name of the con�guration �le for exploring a CC, we would do (in Java 9 and

beyond):

import java.security.Provider;

import java.security.Security;

Provider p = Security.getProvider("SunPKCS11");

p = p.configure("CitizenCard.cfg");

Security.addProvider(p);

For Java versions below 9, the code is slightly di�erent:

import java.security.Provider;

import java.security.Security;

Provider p = new sun.security.pkcs11.SunPKCS11("CitizenCard.cfg");

Security.addProvider(p);

The con�guration �le has to contain enough information to allow the Sun PKCS #11 provider to

explore another provider using the same API. This information is provided in textual key = value

pairs, where the keys name and library are mandatory (see section 2.2 of this Web page for other keys

that can be used) with Java 8.

The con�guration presented below associates the name PTeID (an arbitrary name) to the path of the

CC's PKCS #11 shared library path. The name is useful to refer to this particular PKCS #11 provider

2

https://jce.iaik.tugraz.at/sic/Products/Core-Crypto-Toolkits/PKCS_11_Wrapper
https://docs.oracle.com/javase/8/docs/technotes/guides/security/p11guide.html#P11Provider

(there may be many). The library path will loaded and used by the JVM to access the CC through a

PKCS #11 API.

name = PTeID

library = /usr/local/lib/libpteidpkcs11.so

NOTE: on MacOS X systems, use the extension .dylib instead of .so.

NOTE: on Windows systems use \\ as path separator. The library path should be

c:\\Windows\\System32\\pteidpkcs11.dll.

Since cryptographic operations require some kind of key, in Java a PKCS #11 provider is �rst of all

viewed as a java.security.KeyStore, i.e., as a piece of software capable of providing cryptographic

keys. However, this is a special case of KeyStore where its contents are not copied into memory (and

this is why the parameters of the load method below are both null:

import java.security.KeyStore;

KeyStore ks = KeyStore.getInstance("PKCS11", "SunPKCS11 -PTeID");

ks.load(null , null);

Another option is to use the class java.security.KeyStore.Builder. This is almost equivalent to the

former but allows the application to handle callbacks from the PKCS #11 provider (e.g. for asking for

a PIN to authorize a particular signing operation).

import java.security.KeyStore;

import java.security.KeyStore .*;

KeyStore.CallbackHandlerProtection func =

new KeyStore.CallbackHandlerProtection(new MyCallbackHandler ());

KeyStore.Builder builder = KeyStore.Builder.newInstance("PKCS11", "SunPKCS11 -PTeID", func);

KeyStore ks = builder.getKeyStore ();

With Python, and using pykcs11, we create an object to access a PKCS #11 token using a particular

middleware library as shown below (this example lists the available slots, were a slot is a logical reader

that potentially contains a token):

from PyKCS11 import *

lib = '/usr/local/lib/libpteidpkcs11.so'

pkcs11 = PyKCS11.PyKCS11Lib ()

pkcs11.load(lib)

slots = pkcs11.getSlotList ()

for slot in slots:

print(pkcs11.getTokenInfo(slot))

3

http://docs.oracle.com/javase/9/docs/api/java/security/KeyStore.html
http://docs.oracle.com/javase/9/docs/api/java/security/KeyStore.Builder.html

2.2 Provider objects

A PKCS #11 provider manages a set of objects, usually keys and certi�cates. With the following Java

code we can list the names of all the objects inside a CC (note that objects of di�erent type can have

the same name, but only one is displayed):

import java.util.Enumeration;

Enumeration <String > aliases = ks.aliases ();

while (aliases.hasMoreElements ()) {

System.out.println(aliases.nextElement ());

}

For making signatures with the CC the objects of interest are the two private keys with the following

names:

� CITIZEN AUTHENTICATION CERTIFICATE

� CITIZEN SIGNATURE CERTIFICATE

For validating those signatures, the objects of interest are the two public key certi�cates with exactly

the same names.

The following code does the same in Python:

from PyKCS11 import *

lib = '/usr/local/lib/libpteidpkcs11.so'

pkcs11 = PyKCS11.PyKCS11Lib ()

pkcs11.load(lib)

slots = pkcs11.getSlotList ()

classes = {

CKO_PRIVATE_KEY : 'private key',

CKO_PUBLIC_KEY : 'public key',

CKO_CERTIFICATE : 'certificate '

}

for slot in slots:

if 'CARTAO DE CIDADAO ' in pkcs11.getTokenInfo(slot).label:

session = pkcs11.openSession(slot)

objects = session.findObjects ()

for obj in objects:

l = session.getAttributeValue(obj , [CKA_LABEL])[0]

c = session.getAttributeValue(obj , [CKA_CLASS])[0]

print('Object with label ' + l + ', of class ' + classes[c])

3 Digital signatures with the CC

Use the class java.security.Signature to create a digital signature of a data bu�er using the methods

initSign, update and sign. The CC supports SHA1withRSA and SHA256withRSA signatures (this last

one may not be available to older cards).

Try the signatures with both the private keys of the CC. These can be �obtained� with the

java.security.KeyStore method getKey. The PIN will be asked through a graphical interface.

Verify the signature with the same class, but now using the methods verifyInit, update and verify.

The certi�cates required for the validation can be obtained with the java.security.KeyStore method

getCertificate.

With Python you can generate a signature using the authentication private key of the Citizen Card as

follows:

4

http://docs.oracle.com/javase/9/docs/api/java/security/Signature.html
http://docs.oracle.com/javase/9/docs/api/java/security/KeyStore.html
http://docs.oracle.com/javase/9/docs/api/java/security/KeyStore.html

from PyKCS11 import *

lib = '/usr/local/lib/libpteidpkcs11.so'

pkcs11 = PyKCS11.PyKCS11Lib ()

pkcs11.load(lib)

slots = pkcs11.getSlotList ()

for slot in slots:

if 'CARTAO DE CIDADAO ' in pkcs11.getTokenInfo(slot).label:

data = bytes('data to be signed ', 'utf -8')

session = pkcs11.openSession(slot)

privKey = session.findObjects([(CKA_CLASS , CKO_PRIVATE_KEY),

(CKA_LABEL , 'CITIZEN AUTHENTICATION KEY')])[0]

signature = bytes(session.sign(privKey , data , Mechanism(CKM_SHA1_RSA_PKCS)))

session.closeSession

For validating the signature we do it di�erently, since we do not need to use a PKCS #11 provider,

since this is an operation that does not need to be performed by a crypto token.

The following code completes the one presented before to verify the signature generated.

from cryptography.hazmat.backends import default_backend

from cryptography.hazmat.primitives import hashes

from cryptography.hazmat.primitives.serialization import load_der_public_key

from cryptography.hazmat.primitives.asymmetric import (

padding , rsa , utils

)

session = pkcs11.openSession(slot)

pubKeyHandle = session.findObjects ([(CKA_CLASS , CKO_PUBLIC_KEY),(CKA_LABEL , 'CITIZEN

AUTHENTICATION KEY')])[0]

pubKeyDer = session.getAttributeValue(pubKeyHandle , [CKA_VALUE], True)[0]

session.closeSession

pubKey = load_der_public_key(bytes(pubKeyDer), default_backend ())

try :

pubKey.verify(signature , data , padding.PKCS1v15 (), hashes.SHA1())

print('Verification succeeded ')

except:

print('Verification failed ')

4 Validation of certi�cation chains

Usually digital signatures are accompanied by a set of certi�cates. This set includes two di�erent types

of certi�cates, all of them part of a single certi�cation chain:

� The personal certi�cate of the signer (usually a person);

� The certi�cate of the intermediate Certi�cation Authority the issued the personal certi�cate, and

the successive Certi�cation Authorities thereafter until the last one, immediately under a root

Certi�cation Authority.

The validation of a certi�cation chain must be performed for a particular date, namely the date where

a particular operation (e.g. a signature) was performed with the private key corresponding to the

(personal) certi�ed public key. The validation can also use downloaded CRL lists or query OCSP

services to check possible certi�cate revocations at the referred date.

To validate a certi�cation path we need �rst to de�ne it. A path is no more than a set of certi�cates,

5

where one certi�es the public key that signs the other, from a trusted root (trust anchor) until the

certi�cate that we want ultimately to validate.

For a signature performed with a CC, and in the absence of any certi�cation chain provided along with

the signature, we can use the following process:

� Fetch all certi�cates used by CC's intermediate CAs (check this Web page) and build a keystore

with them for facilitating their usage. Add to the keystore the certi�cates distributed with the

CC middleware (there may be some repeated ones). This Make�le shows how this can be done.

� From a Java program, open the keystore, and go through all the certi�cates, separating them

in two Java java.util.Collections: one for the trusted anchors (formed only by self-certi�ed

certi�cates), another for intermediate certi�cates. Self-certi�ed certi�cates can be easily detected

because their signature can be validated with their own public key.

import java.security.PublicKey;

PublicKey key = cert.getPublicKey ();

cert.verify(key);

� De�ne a set of parameters (with a java.security.cert.PKIXBuilderParameters object) for guid-

ing the search of a certi�cation path from a target certi�cate until some anchor. These parameters

should include:

� a selector, which is a java.security.cert.X509CertSelector object with the certi�cate to

validate;

� a java.util.Set of acceptable anchors (a subset of all known self-certi�ed certi�cates);

� rules to validate or not revocations of certi�cates; and

� a java.security.cert.CertStore containing all known intermediate certi�cates.

X509CertSelector selector = new X509CertSelector ();

selector.setCertificate(cert);

PKIXBuilderParameters pkixParams = new PKIXBuilderParameters(anchors , selector);

pkixParams.setRevocationEnabled(false); // No CRL checking

pkixParams.addCertStore(intermediateCertStore);

� One having all these parameters set, we create a PKIX java.security.cert.CertPathBuilder

object and we build a java.security.cert.PKIXCertPathBuilderResult using those parameters.

CertPathBuilder builder = CertPathBuilder.getInstance("PKIX");

PKIXCertPathBuilderResult path = (PKIXCertPathBuilderResult) builder.build(pkixParams);

Once having a certi�cation path to validate, we can use the PKIX (Public Key Infras-

tructure for X.509 certi�cates) certi�cation validation rules as follows. First we create a

java.security.cert.CertPathValidator for implementing a PKIX validation policy. Then we de�ne

the parameters for the validation (e.g. date), and we ask for a validation.

CertPathValidator cpv = CertPathValidator.getInstance("PKIX");

PKIXParameters validationParams = new PKIXParameters(anchors);

validationParams.setRevocationEnabled(true);

validationParams.setDate(date);

cpv.validate(path.getCertPath (), validationParams);

6

https://pki.cartaodecidadao.pt
http://sweet.ua.pt/andre.zuquete/Aulas/Seguranca/17-18/docs/Makefile
http://docs.oracle.com/javase/9/docs/api/java/util/Collection.html
http://docs.oracle.com/javase/9/docs/api/java/security/cert/PKIXBuilderParameters.html
http://docs.oracle.com/javase/9/docs/api/java/security/cert/X509CertSelector.html
http://docs.oracle.com/javase/9/docs/api/java/util/Set.html
http://docs.oracle.com/javase/9/docs/api/java/security/cert/CertStore.html
http://docs.oracle.com/javase/9/docs/api/java/security/cert/CertPathBuilder.html
http://docs.oracle.com/javase/9/docs/api/java/security/cert/PKIXCertPathBuilderResult.html
http://docs.oracle.com/javase/9/docs/api/java/security/cert/CertPathValidator.html

As an exercise, validate the certi�cation chain for both certi�cates in a CC using di�erent dates (e.g.

one before their issuing, another with the current date, and yet another after their expiration date).

Check also what happens when CRL validation is used.

References

� Portuguese Citizen Card web site: https://www.cartaodecidadao.pt

� Java PKCS #11 Reference Guide: https://docs.oracle.com/javase/9/security/

pkcs11-reference-guide1.htm#JSSEC-GUID-30E98B63-4910-40A1-A6DD-663EAF466991

� Welcome to pyca/cryptography: https://cryptography.io/en/latest

� PyKCS11 1.5.2 documentation: https://pkcs11wrap.sourceforge.io/api/index.html

7

https://www.cartaodecidadao.pt
https://docs.oracle.com/javase/9/security/pkcs11-reference-guide1.htm#JSSEC-GUID-30E98B63-4910-40A1-A6DD-663EAF466991
https://docs.oracle.com/javase/9/security/pkcs11-reference-guide1.htm#JSSEC-GUID-30E98B63-4910-40A1-A6DD-663EAF466991
https://cryptography.io/en/latest
https://pkcs11wrap.sourceforge.io/api/index.html

	Relevant CC middleware
	Exploitation of a PKCS #11 device from Java
	PKCS #11 provider
	Provider objects

	Digital signatures with the CC
	Validation of certification chains

