
MIECT: Security 2019-20

Practical Exercise:
Asymmetric Key Cryptography (RSA)

October 16, 2019 Due date: no date

Changelog

� v1.0 - Initial Version.

Introduction

In order to elaborate this laboratory guide it is required to install the Java Development Environment

(JDK) or Python 3.

The examples provided will use both Java and Python. For Python you need to install the

cryptography module.

1 Key generation

Implement a small program to generate a pair of asymmetric keys to be used with the RSA algorithm.

The program should accept the key size (1024, 2048, 3072, or 4096) as the �rst argument, and create

the key with this size. Once having the keys, the program should write the public key to a �le speci�ed

as the second argument, and the private key to a �le speci�ed as the third argument.

Therefore the program should be executed as:

java AsymKeys 1024 public.key private.key

The basic structure of such program in Java will be:

KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");

kpg.initialize(keySize);

KeyPair keyPair = kpg.generateKeyPair ();

Tip: use the classes

� java.security.KeyPairGenerator

� java.security.KeyPair

and the interfaces

� java.security.PrivateKey

� java.security.PublicKey

For Python consider the execution of the program with di�erent parameters, namely a password for

protecting the key �le and a single �le name with the PEM extension:

1

http://docs.oracle.com/javase/9/docs/api/java/security/KeyPairGenerator.html
http://docs.oracle.com/javase/9/docs/api/java/security/KeyPair.html
http://docs.oracle.com/javase/9/docs/api/java/security/PrivateKey.html
http://docs.oracle.com/javase/9/docs/api/java/security/PublicKey.html

python3 asym_keys.py 1024 password key.PEM

The basic structure of such program in Python will be:

from cryptography.hazmat.primitives.asymmetric import rsa

from cryptography.hazmat.primitives import serialization

from cryptography.hazmat.backends import default_backend

Set variables key_size and pwd out of the program arguments

...

Use 65537 (2^16 + 1) as public exponent

priv_key = rsa.generate_private_key(65537, key_size , default_backend ())

Save the key pair to a PEM file protected by the password saved in variable pwd

pem_encoding = priv_key.private_bytes(serialization.Encoding.PEM ,

serialization.PrivateFormat.PKCS8 ,

serialization.BestAvailableEncryption(bytes(pwd ,

"utf -8")))

Save the contents of pem_encoding in a file

...

2 Ciphering with the RSA algorithm

Implement a second program to cipher the content of a �le using the RSA algorithm and the PKCS #1

OAEP (Optimal Asymmetric Encryption Padding) padding. The program should accept three argu-

ments: the �rst is the name of the �le containing the (public) key to use; the second is the name of the

�le containing the clear text �le to cipher; and the third is the name of the �le to write the ciphertext.

Tip: you can use less arguments and consider the use of STDIN and STDOUT in the absence of �le

speci�cations.

The basic structure of such program in Java will be:

Cipher cipher = Cipher.getInstance ("RSA/ECB/OAEPWithSHA -1 AndMGF1Padding");

cipher.init(Cipher.ENCRYPT_MODE , publicKey);

// clearText must be a byte array

cryptogram = cipher.doFinal(cleartext);

Tip: use the classes

� java.security.KeyFactory,

� javax.crypto.Cipher

� java.security.spec.X509EncodedKeySpec.

Note: Take in consideration that a speci�c key size will impose a speci�c block size, which limits

the amount of bytes that cleartext can have. Take a look at the getBlockSize method of the

javax.crypto.Cipher class. Only use small �les with the appropriate size. The methods to handle

larger �les will be addressed in section 4.

Tip: for saving both private and public key contents in a single PEM �le you can consider using the

Bouncy Castle package1.

The basic structure of such program in Python will be:

1https://www.bouncycastle.org

2

http://docs.oracle.com/javase/9/docs/api/java/security/KeyFactory.html
http://docs.oracle.com/javase/9/docs/api/javax/crypto/Cipher.html
http://docs.oracle.com/javase/9/docs/api/java/security/spec/X509EncodedKeySpec.html
http://docs.oracle.com/javase/9/docs/api/javax/crypto/Cipher.html
https://www.bouncycastle.org

from cryptography.hazmat.primitives import hashes

from cryptography.hazmat.primitives import serialization

from cryptography.hazmat.primitives.asymmetric import padding

from cryptography.hazmat.backends import default_backend

Load key pair to a PEM file protected by a password

with open(key_filename , "rb") as kf:

priv_key = serialization.load_pem_private_key(kf.read(),

bytes(password , "utf -8"),

default_backend ())

pub_key = priv_key.public_key ()

Calculate the maximum amount of data we can encrypt with OAEP + SHA256

maxLen = (pub_key.key_size // 8) - 2 * hashes.SHA256.digest_size - 2

Read for plaintext no more than maxLen bytes from the input file

Encrypt the plaintext using OAEP + MGF1(SHA256) + SHA256

ciphertext = pub_key.encrypt(plaintext ,

padding.OAEP(padding.MGF1(hashes.SHA256 ()),

hashes.SHA256 (), None))

Write ciphertext in the ouput file

3 Deciphering with the RSA algorithm

Implement a second program to decipher the content of a �le using the RSA algorithm. The program

should accept three arguments: the �rst is the name of the �le containing the (private) key to use; the

second is the name of the �le containing the ciphertext �le to decipher; and the third is the name of

the �le to write the clear text.

Tip: use the classes

� java.security.KeyFactory

� javax.crypto.Cipher

� java.security.spec.PKCS8EncodedKeySpec

as well as the interface

� java.security.PrivateKey.

Note: for the Python program you may have to use an extra argument, a password, to get access to

the private key stored inside the key �le.

4 How to cipher a big �le?

As referred previously, when using RSA the maximum number of bytes that can be successfully ciphered

is limited by the key size. For a key with 1024 bits and OAEP with SHA-1, that maximum is 86 bytes2.
For other paddings the maximum is di�erent; for instance, for PKCS #1 v1.5 it is 117 bytes3. This is

a major limitation of RSA as the size of most �les, emails, and Web pages are well above this value.

A simple solution would be to break the input text in blocks, each with 86 bytes, and cipher the blocks

independently. This is the approach followed when using the ECB approach in symmetric ciphers (but

now without the pattern repetition problem exempli�ed in the last class � explain why!!).

286 = 128− 2× 20− 2, where 20 is the SHA-1 output length.
3117 = 128− 11

3

http://docs.oracle.com/javase/9/docs/api/java/security/KeyFactory.html
http://docs.oracle.com/javase/9/docs/api/javax/crypto/Cipher.html
http://docs.oracle.com/javase/9/docs/api/java/security/spec/PKCS8EncodedKeySpec.html
http://docs.oracle.com/javase/9/docs/api/java/security/PrivateKey.html

Moreover, RSA is very slow in comparison with the symmetric algorithms. As an example, in a com-

monly available laptop, it is possible to do 7254 sign (cipher) operations per second with RSA-1024,

while it is possible to do 8 million cipher operations over 128 bits when using AES-128-CBC4.

Therefore, the use of RSA for ciphering big texts (more than one block) is discouraged. Can you propose

a solution for quickly securing a large �le with RSA, so that only the owner of a given public key can

decipher it? Maybe by combining di�erent algorithms (AES and RSA)?

Implement the respective hybrid cipher and decipher programs and evaluate your solution.

5 Implementing the RSA algorithm

While the implementation of cryptographic algorithms for use in �nal applications is discouraged, in

relation to use well known, publicly available and properly reviewed libraries, implementing the RSA

algorithm is a simple task with educational value.

The RSA key generation process can be quickly described according to the following steps. Take in

consideration that in Java, manipulation of large integers can be done with the java.math.BigInteger.

� Generate two (large) random primes, P and Q, of approximately equal size. The BigInteger class

provides a method (probablePrime) which generates probable primes with a given bit length.

Take in consideration the P and Q are just part of the key. Therefore these prime numbers must

be about half the size of the desired key;

� Compute N = P ×Q. You can use the standard multiplication of the BigInteger class;

� Compute Z = (P −1)× (Q−1). You can use the standard multiplication of the BigInteger class;

� Choose an integer E, 1 < E < Z, such that GCD(E,Z) = 1. GDC is the Greatest Common

Divisor and is supported by the BigInteger class;

� Compute the secret exponent D, 1 < D < Z, such that E × D ≡ 1 mod Z. This can be

computed using the modInverse method (e.g, D = E.modInverse(Z))

� The public key is the tuple < N,E > and the private key is the tuple < N,D >.

After the keys are generated, the algorithm supports two operations: cipher and decipher. Remember

that the clear text is handled as a BigInteger, even if the clear text is some text �le.

Ciphering a text requires computing c = tE mod N

Deciphering a cipherText requires computing t = cD mod N

Where c is the ciphertext, t is the clear text, D, E, N represent the key components.

Implement a program generating a key pair and then using the keys to cipher and decipher a clear

text. Consider the method modPow of the BigInteger class for ciphering and deciphering.

Note: In this example we are skipping the implementation of any padding before encryption, and

unpadding (and validation) upon decryption, which usually takes place when using RSA.

References

1. RSA Cryptography Speci�cations Version 2.0, http://tools.ietf.org/html/rfc2437

2. Basic RSA example, http://www.java2s.com/Tutorial/Java/0490__Security/BasicRSAexample.

htm

4You can check your laptop running openssl speed

4

http://docs.oracle.com/javase/9/docs/api/java/math/BigInteger.html
http://tools.ietf.org/html/rfc2437
http://www.java2s.com/Tutorial/Java/0490__Security/BasicRSAexample.htm
http://www.java2s.com/Tutorial/Java/0490__Security/BasicRSAexample.htm

	Key generation
	Ciphering with the RSA algorithm
	Deciphering with the RSA algorithm
	How to cipher a big file?
	Implementing the RSA algorithm

