MIECT: Security 2019-20

Practical Exercise:
XSS: Cross-Site Scripting

December 18, 2019 Due date: no date

Changelog

e v1.0 - Initial Version.

Introduction

Cross-Site Scripting (XSS) attacks are a kind of attacks within Web interactions where an attacker
performs indirect attacks against Web clients through a vulnerable Web application. The primary result
is that some external code is injected and executed in the victim’s Web browser. As a consequence,
all existing browser context, including valid cookies, as well as computational resources of the victim,
become available to the injected code.

The attack can be conducted based on data stored in a server, such as a forum message or a blog post,
and this is named a Stored XSS Attack.

The attack data can also be encoded in a URL sent by the attacker directly to the victim. Taking
in consideration where the untrusted data is fetched, the attack can be considered a Server Side
Attack, or a Client Side Attack. And all four combinations are possible.

The problem itself is always due to improper, or insufficient, validation of data external to the system.

1 Environment setup

Please obtain the compressed file xss.tar.bz2 present at the course Web pageE] uncompress it with
bunzip2 and then expand the tar file xss.tar with

tar xvf xss.tar
You will find further instructions in the README.md file that is present in this file.

The application contains one user, identified by the username Administrator and password
top-secret.

2 Cross-Site Scripting
2.1 Stored XSS Attack

The Stored XSS Attack (or persistent) allows an attacker to place a malicious script (usually Javascript)
into a webpage. Victims accessing the webpage will render all scripts, including the one injected by
the attacker. This attack is very common in places where information is shared between users through
web technologies (e.g., forums and blogs). In this case, an attacker must compose a specially crafted

"http://sweet.ua.pt/andre.zuquete/Aulas/Seguranca/19-20/docs/xss

http://sweet.ua.pt/andre.zuquete/Aulas/Seguranca/19-20/docs/xss

message, hiding some script in it, and put it in some place where it can be accessed by a victim. All
users accessing that place would execute the exploit. depicts this attack.

<‘ . : 3) Execute
malicious

Script

1) Store malicious
Script

2) Get Page

* (with malicious script)

(O ORGEC R e s S)
9 C J

Web Server

Figure 1: Stored XSS Attack

The application we are using is vulnerable to Stored XSS Attacks, and there are vulnerabilities both
in the server and client sides. Can you find the vulnerabilities?

For the Server Side Stored XSS Attack, look for an action that stores a message into the server. For it
to be a Server Side Attack, the payload must be included in the Web page when the page is built by
the server.

For the Client Side Stored XSS Attack, look for code that loads dynamic content into the webpage
using Javascript. Use the Web Inspector built in the browser and see if you can find it. Can you trigger
a successful attack? Take in consideration that sometimes, <script> tags are not evaluated directly,
but Javascript can be included in objects event handlers (e.g., onload, onclick...)

2.2 Reflected XSS Attack

A Reflected XSS attack is similar to the previous, but it is assumed that the attack is non-persistent.
With this attack it becomes possible to manipulate the browser DOM for a single user, or for multiple
users which access a page through the same specially crafted URL. depicts a typical attack
scenario.

The application we are using is vulnerable to this attack. Can you find it? Search for an action that
changes the URL. That is, an action that will redirect to the same page but with added variables and
content in the URL. If the page behaves differently based on the URL variables, it is possible that a
Reflected XSS Attack is present.

Can you identify where is the vulnerable code (Client vs Server)?

Can you fix it?

©

1) Send malicious
link

. e 3) Process page
with

injected code

2) Get Page
(using malicious link)

© O @ @ - I s i g
[I i J

Web Server

Figure 2: Reflected XSS Attack

2.3 CSRF Attack

The Cross-Site Request Forgery (CSRF) attack consists in injecting code that, using the credentials
and capabilities of the browser viewing a given object, may attack another system. This attack can
be used for simple DoS, for tracking users, or for invoking requests on systems with the identity of the

victim. depicts a typical attack scenario.

This exploits the fact that, for usability, functionality and performance purposes, Web applications
cache authentication credentials or session tokens in small tokens named cookies’. When a user
accesses a service, such as a social sharing application, or an Online Banking solution, a session is
initialized, usually upon a login, and is kept valid for a long period, even if the user abandons the
webpage. However, if the user visits another page which has a CSRF exploit targeting the first page, it
is possible to invoke services using the user identity, without their knowledge. This attack is frequently
done using the tag, however, other tags can be used.

As an example, consider that a forum post contains the following content:

LOL. That was a good omne Op. :)

When the browser tries to load the image, it will invoke an action to an external server. In this
hypothetical case, it would transfer funds from the victims bank account to the attacker’s bank account.

Sometimes a more complex interaction is required, and the attack will actually inject Javascript code.
Can you build a working attack?

In the scripts directory of the package you downloaded, there is a script named hacker_server.py,
which will dump to stdout all data that is posted to it (using HTTP POST). Run the script directly and
do a POST to http://localhost:8000.

Can you send the cookie to that server?

1) Store malicious / 3) Execute malicious

script

2) Get Page request
* (with malicious script)
5 OO @@ I S i EQJ o) QO G @ I S E’q
Chat Bank
Web Server Web Server

Figure 3: CSRF Attack

2.4 Cross Origin Resource Sharing

Consider that CodeUA has an API, through which users are able to execute actions without the webpage
interface. There is a public mock project name security-vulnerable-test which can be used for
this purpose.

You can create a Wiki page by issuing the following action:

PUT /projects/security-vulnerable-test/wiki/attack.xml
<?xml version="1.0"7>
<wiki_page>
<text>I am vulnerable</text>
<comments >comments </comments >
</wiki_page>

The same page can be deleted by issuing;:

The important thing is that these actions will be executed using the victim session. This is a reason
why it is important to invalidate sessions after a short time, or to logout from Web sites.

Can you create a successful attack? Check the browser console for the message that is presented. In
particular, check for errors.

In order to analyze the result, use wget and get the CodeUA webpage and print the headers sent by the
server:

wget -S --spider https://code.ua.pt

In this particular case, the server is not allowing cross origin requests as this must be explicitly autho-
rized when using modern browsers.

If a similar request is made to the hacker_server.py, using

wget -S --spider --post-data="foo" http://localhost:8000

the header Access-Control-Allow-Origin: * is present. This specific header allows browsers to reach
this page from any origin, allowing the reception of data through CSRF. If the header is omitted, current
browsers will forbid the request.

For more information regarding Cross Origin Resource Sharing, check the Mozilla documentation at
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS.

Further Reading

1. https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF) _Prevention_
Cheat_Sheet

2. http://htmlbsec.org

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
http://html5sec.org

	Environment setup
	Cross-Site Scripting
	Stored XSS Attack
	Reflected XSS Attack
	CSRF Attack
	Cross Origin Resource Sharing

