
MIECT: Security 2019-20

Practical Exercise:
Input Handling Attacks: Bu�er Over�ows

October 9, 2019 Due date: no date

Changelog

� v1.0 - Initial Version.

Introduction

The goal of this laboratory project is to assess some of the problems arising from improper handling
of input data, in particular bu�er over�ows.

Also we expect you to gain experience with bu�er over�ows, to analyze the ways to detect them, and to
understand their consequences. This project should be developed in a 32-bit Linux system and using
the C language. While the vulnerability exists in all architectures, using a 32-bit system will facilitate
analysis.

It is not expected the inclusion of code inside the vulnerable test programs. Programs can be modi�ed
as found appropriate in order to demonstrate the attack. Data exploiting bu�er over�ows should be
provided to the programs developed by means of messages over UDP.

For this laboratory you will need to use a Linux system (possibly virtualized).

Tips

� You can use the netcat program to send data through a socket. As an example you may send a
�le named data to the server at port 12345 with the following command:

nc -v -u 127.0.0.1 12345 < data

In alternative, you can create a simple UDP client in any language you �nd appropriate, to send
custom messages to the vulnerable server. In Python this would be:

import socket

s = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

s.sendto('Attack message: \xDE\xAD\xBE\xEF', ('127.0.0.1 ', 12345))

s.close()

� Please consider the gdb reference card available at the course Web page.

� gcc uses an extension named Call Frame Information which adds extra .cfi lines to ASM �les.
To disable this and improve readability, compile with -fno-asynchronous-unwind-tables.

� Di�erent compilers or compiler versions will produce di�erent output! When comparing your
results with the ones presented in the slides or by the professor, take this in consideration.

1

� In order to compile 32-bit code, use the -m32 �ag when compiling with gcc.

1 Observation of ASLR

Address Space Layout Randomization is a mechanism employed to reduce the risk of bu�er over�ows
by randomly arranging the positions of critical data areas. The Stack address space provided to each
application is also randomly placed.

Modify the �le server.c1 by adding a printf, so that you can print the address of variable addr

(addresses are printed with the %p control string).

Verify what is the address of internal variables (e.g., addr) when enabling and disabling the
ASLR mechanism. In Linux this can be achieved by writing 0 (to disable) or 1 (to enable) to
/proc/sys/kernel/randomize_va_space (as root, with sudo it does not work!):

echo 0 > /proc/sys/kernel/randomize_va_space

echo 1 > /proc/sys/kernel/randomize_va_space

Note: the value of 2 is similar to 1 but adds data segments to ASLR. In theory, this setting increases
the overall security provided by ASLR; but in practice, it is somewhat useless because data segments do
not contain executable code (which deterministic execution upon an over�ow is prevented by ASLR).

2 Observation of a bu�er over�ow

Observe the assembly of the sendEcho function by compiling the program using the gcc compiler with
the following options:

-S -masm=intel -fno-stack-protector -fno-asynchronous-unwind-tables -fno-pic -m32

Their meaning is the following:

� -S: Produce assembly code, and not a binary;

� -fno-stack-protector: Control stack protection mechanisms (the objective of analysis of this
exercise);

� -fno-asynchcronous-unwind-tables and -fno-pic: Disable gcc features for readability pur-
poses;

� -m32: Produce 32-bit code, also for readability purposes.

Note: The LEAVE instruction is equivalent to:

MOV esp , ebp

POP ebp

Check how the stack is managed before the call to the function sendEcho, as well as at the beginning
and end of this function. Compute the length that inbuffer must have in order to provoke an over�ow
when inbuffer is written to outbuffer.

Experimentally check the length that the inbuffer string must have to e�ectively provoke a damaging
over�ow (e.g., one that crashes the application).

Create a bu�er over�ow scenario and observe it with the C debugger, gdb. gdb in the Virtual machine
is tweaked to provide a better user interface. In alternative you can use gdbgui or nemiver, which
should be already pre-installed, and may provide even nicer interfaces.

1Available at the course Web page.

2

Note: To properly run a program in the debugger, with useful symbolic information (names of variables
and functions, line information, etc.) the program must be compiled with the -g �ag.

The �ags -m32 -fno-pic -masm=intel -fno-stack-protector should also be used when compiling
so that the assembly code produced is similar to the format presented by gdb.

3 Memory allocation in the stack

Compile the program using the following options:

-m32 -fno-pic -z execstack -masm=intel -fno-stack-protector.

Create a bu�er over�ow and observe the addresses of variables outBuffer and sentTime. Swap the
order of declaration of variables and repeat the tests.

Compare the results observed.

Create a bu�er over�ow that sets the sendTime to 1. Verify that you received the current time through
the socket.

4 Control of bu�er over�ows with canaries

The gcc version for the actual Linux distributions is shipped with a default option to protect stacks
from over�ows using canaries (options -fstack-protector and -fstack-protector-all).

These canaries protect critical stack elements using the StackGuard and SSP/Propolice strategies2.

Compile the same program with these stack protections and observe the resulting assembly code.
Afterwards, check what happens with the bu�er over�ows tested in the previous experiences.

5 Controlled jump into existing functions

Create a new function in the �le server.c which sends the current user id (man 2 getuid) through
the socket. Deliberately provoke a bu�er over�ow that creates a jump to the function when sendEcho

returns.

Verify that the current user id is sent through the socket.

Hint: change also server.c to print the address of the new function, and use it in the data used in
the bu�er over�ow.

6 Execution of code injected into the stack

Control the bu�er over�ow of the previous program in order to provoke a jump into the stack and
execute code inserted dynamically. As a recommendation, make a call to a system function (_exit or
exec, for instance).

To �nd the assembly instructions required to make such a call, include a call to the function in a C
program, execute it with the debugger and perform a step-by-step execution from the point of interest.
See below:

void foo()

{

exit (0);

}

int main (int argc , char **argv)

{

2http://wiki.osdev.org/Stack_Smashing_Protector

3

http://wiki.osdev.org/Stack_Smashing_Protector

foo();

}

Alternatively, disassemble the desired function using the commands ar and objdump (see example
below for function _exit):

ar -x /usr/lib/i386-linux-gnu/libc.a _exit.o

objdump -Mintel -d _exit.o

In Linux, execution protection (NX) can be manipulated by using the gcc �ag -z execstack or by
using the execstack command line tool.

Because function sprint doesn't allow you to inject the 0x00 character (EOL), it may be necessary to
create custom assembly code. This code will do the same as observed with objdump but without having
the 0x00 character. Please consider that there are several instructions producing the same result. As
an example, mov eax, 0x00000001, can be replaced by xor eax,eax plus inc eax.

In order to achieve this, you can create a text �le with your assembly and then observe the assembly
created. To compile the assembly �le exit.s use: nasm exit.s. This will produce a �le named exit.
To observe the byte code produced, you can use the x86dis or hexdump tools.

The following example describes the process of assembling and inspecting the result:

$> cat test.s

mov eax ,0x01

int 0x80

hlt

$> nasm test.s

$>x86dis -s intel -e 0 -L < test

00000000 66 B8 01 00 00 00 mov eax , 0x00000001

00000006 CD 80 int 0x80

00000008 F4 hlt

$>hexdump -e '/4 "%04X "' test;echo

1B866 80 CD0000 00F4

You can also inject a call a shell command (e.g. bash), which is very common method for gaining access
to a system. The shell would execute with the permissions of the user that launched the vulnerable
application. For an example, check the shell codes available at http://shell-storm.org/shellcode/

4

http://shell-storm.org/shellcode/

	Observation of ASLR
	Observation of a buffer overflow
	Memory allocation in the stack
	Control of buffer overflows with canaries
	Controlled jump into existing functions
	Execution of code injected into the stack

