## **Database security**



Security

1

## Advantages of using databases

- Shared access
  - Many users, one common, centralized data set
- - Individual users do not have to collect and maintain their own sets of data
- Data consistency
  - A change to a data value affects all uses of that data value
- Data integrity
  - Data values can be protected against accidental or malicious undesirable changes
- Controlled access
  - Only authorized users are allowed to view or to modify data values



Security

## **Security requirements (1/2)**

- Physical integrity
  - · Immunity to physical problems
    - e.g. power failures
  - Ability to reconstruct the database if destroyed in a catastrophe
- - · Data structure is preserved
- ▶ Element integrity
  - Data in each element is accurate
- > Auditability
  - It is possible to track who or what has accessed (or modified) which elements in the database



Security

3

## Security requirements (2/2)

- Access control
  - A user/role is allowed to access only authorized data/queries
  - Different users/roles can be restricted to different modes
    - · e.g. read or write records
- - · Every user/role is positively identified
  - Fundamental for audit trails and for permissions to access data
- Availability
  - Users/roles can access the database in general and all the data for which they are authorized



Security

## Two-phase updates

- ▶ Problem
  - · Failures during updates may render databases incoherent
    - Logical integrity problem
  - · But DBMS require ACID properties
    - Atomicity
      - · Entire transaction happens or not
    - Consistency
      - The DB state must be consistent after transactions
    - Isolation
      - · Concurrent transactions do not interfere with each other
    - Durability
      - · Changes occur even in the presence of failures
- Solution: two-phase updates



Security

5

## Two-phase update

- > 1st phase: intent phase
  - The DBMS gathers resources it needs to perform the update
  - It does everything to prepare for the update, but makes no changes to the database
  - · Committing: writes a commit flag to the database
    - · Point-of-no-return
    - · After, the DBMS begins making permanent changes
- > 2nd phase: commit phase
  - Makes the permanent changes in the database
    - Idempotent changes
  - It lasts until finishing all changes prepared in the first phase
  - When it finishes, the database changed to a new, stable and coherent state



Security

### **Redundancy / internal consistency**

- > Error detection and correction codes
  - Parity bits, Hamming codes, cyclic redundancy checks
  - Can be applied to different data elements
    - · Fields, records, entire database
  - More space
    - To store error detection/correction information

#### > Shadow fields

- Duplication of fields or records
- Requires substantial storage space



Security

7

### Concurrency / consistency

- Accesses by two users of the same DBMS must be constrained so that neither interferes with each other
  - Simple locking: multiple readers, one writer
  - But simple locking may not be enough on query-update cycles

#### Solution Solution

- Treat every query-update cycle as a single atomic operation (a transaction)
  - · e.g. flight booking
- Synchronization should be applied to transactions
  - Two concurrent transactions cannot write (and sometimes read) the same field/record



Security

### **Monitors**

- DBMS unit responsible for the DB structural integrity
  - Checks entered values to ensure their consistency with field, record or database consistency constraints

#### > Types of monitors

- Range comparisons
  - · Tests if values belong to an acceptable range
- State constraints
  - · Describe the condition of the entire database
    - · e.g. the commit flag
  - · Impose integrity restriction rules
    - · e.g. to detect duplicate records
- · Transition constraints
  - Describe required conditions before changing the database



Security

9

## **Database activity monitoring**

- > DBMS usage supervision
  - To detect abuses
  - To detect unusual/suspect activity or operations

#### > DBMS independent

- · Not part of the DBMS
- External observation of DBMS activity

#### Monitoring sensors

- Network activity
- · Local SQL commands performed
- Log analysis



Security

#### **Sensitive data**

- > Data requiring (extra) protection
  - From loss (disclosure)
  - From misuse
  - From modification
  - From unauthorized access

#### ▶ Risks

- Privacy and welfare of individuals
- Business activities
- Security-related activities



Security

11

#### **Sensitive data**

- Some databases contain sensitive data
  - Data that should not be made public
    - e.g. clinical records of patients
- Sensitivity depends on: BD purpose + DB data
  - Some record fields, entire records/tables, entire database
    - e.g. personal health record (HER) with all detected pathologies, treatments and interventions
    - · e.g. clinical records of an AIDS table
    - e.g. defense-related databases

#### Complexity

- · Simple cases: all or nothing
  - · Everything sensitive, nothing sensitive
- Complicated cases: part of the DB elements are sensitive
  - In some cases, sensitivity is extended to the simple existence of a field data or record



Security

## Sensitive data: Factors that make data sensitive

- > Inherently sensitive
  - The value itself may be so revealing that it is sensitive
- > From a sensitive source
  - · The value may reveal the identity of its source
- Declared sensitive
  - · The value was explicitly declared sensitive
- ▷ Belongs to a sensitive record
  - Value of a record explicitly marked as sensitive
- > Sensitive given previously disclosed information
  - By itself, the data is not sensitive, but together with other data, the whole can be sensitive



Security

13

# **Sensitive data: General Data Protection Regulation (GDPR)**

- Personal data
  - Data that can be unequivocally linked to a (living) individual
  - Links can be provided by unique identifiers or sets of quasiidentifiers
- Specially sensitive personal data
  - · Those that can threat fundamental rights
    - · Ethnic/racial origins
    - · Political opinions
    - · Philosophical or religious beliefs
    - · Syndicate memberships
    - · Sexual life and orientations
    - · Health status and history
    - · Related with genetics or biometrics



© André Zúquete / João Paulo Barraca

Security

## Laws for the protection of personal data

- - There is not a global consensus
- - Comissão Nacional de Proteção de Dados
  - All data processing involving personal data gathered from individuals needs to be <u>submitted to CNPD for authorization</u>
- - Started on May 25, 2018



Security

15

## Types of disclosures (of sensitive data)

- Exact data
  - The exact value of a sensitive datum
  - · The most serious disclosure
- ▶ Bounds
  - Sensitive data item is > lower bound or < upper bound
  - Sometimes bounds are used to protect (hide) sensitive data
    - By providing bounds to elements instead of their exact value
- Negative result
  - By getting a negative result for a query on a sensitive value, a user can conclude that the value has a particular set of values
    - · e.g. from a list of effective voters we can conclude who didn't vote



Security

## Types of disclosures (of sensitive data)

#### Existence

- The existence of a sensitive field in a record can be, by itself, sensitive information
  - Because it may reveal a hidden data gathering & processing activity

#### > Probable value

• By crossing the results of several queries we can infer a probability for an element value



Security

17

### **Inference**

#### > Definition

- A way to extract, or derive, sensitive information from non-sensitive information
- We are assuming that there is no free access to the entire data repository
  - Conclusions need to be taken from authorized queries that, by themselves, alone, do not:
    - · Leak any sensitive information
    - · Allow an exclusive use of sensitive fields to select information



Security

#### **Inference attacks**

#### Direct attack

- Uses queries with a blend of selection rules that use sensitive fields and non-sensitive fields
- The DBMS can be deceived by the selection rules with nonsensitive fields, which are not intended to select particular records

#### ▶ Indirect attack

- Inference of particular values from statistical values computed over several records
  - · Counts, sums, averages



Security

19

### **Inference attacks**

#### > Tracker attack

- The database may conceal data when a small number of records make up the large proportion of the data revealed
- A tracker attack can fool the DBMS by using different queries that reveal data and, by combining the results, the attacker can get the desired information



Security

## **K-anonymity**

L. Sweeney, "K-anonymity: A Model for Protecting Privacy", Int. Journal on Uncertainty, Fuzziness and Knowledge-based Systems. 2002

- Definition
  - No query can deliver an anonymity set with less than k entries
  - The anonymity set is the set of all possible subjects
- Privacy-critical attributes
  - (Unique) identifiers
  - Quasi-identifiers
    - · When combined can produce unique tuples
  - Sensitive attributes
    - · Potentially unique per subject
    - · Disease, salary, crime committed, etc.



Security

21

#### Multilevel security: Goal

- > Tag information items with security classifications
  - · e.g. unclassified, confidential, secret, top secret
- > Tag queries with security levels
  - The security level of the entity responsible for the query
- Prevent queries from observing values of fields with a different security classification
  - Or from observing meaningful values



Security

## Multilevel security: Poli-instanciation

- A record with a particular key field may be duplicated in different security levels
  - · Possibly with different values
- ▷ This reduces the precision of the database information
  - The correctness of the information depends on the entity performing the query
  - · Duplicates can legitimately occur



Security

23

## Multilevel security: Separation strategies (1)

- > Partitioning
  - Different security levels, different databases
  - Queries are directed to the appropriate DB
- > Advantages
  - Easy to implement
- Disadvantages
  - Redundancy of information
  - Problems in the access to records with fields with different security levels



Security

## Multilevel security: Separation strategies (2)

- ▶ Encryption
  - · Fields are encrypted with a security-level key
- Advantages
  - Single database, same database structure
- Disadvantages
  - · Decryption on each query with the adequate security level key
  - Randomized encryption: equal fields should not produce the same cryptogram
    - · Otherwise statistics and known-plaintext attacks disclose values
    - · Solution: different keys per record or different IVs per record
  - No encrypted values should be updated by providing another encrypted value



Security

25

## Multilevel security: Separation strategies (3)

- - Each data item is formed by three parts:
    - · Data item, sensitivity label, checksum
  - · The sensitivity label should be
    - · Unforgeable (cannot be changed)
    - · Unique (cannot be copied to another data item)
    - · Concealed (cannot be observed)
- Advantages
  - Can use a regular DBMS
  - Trusted stored procedures are enough to implement them
- Disadvantages
  - · Space for storing sensitivity labels and checksums



Security