
1

Secure data storage

© André Zúquete /
João Paulo Barraca Security 1

Problems (1/3)

� The classical file system protection is limited

� Physical protection assumptions

• Physical confinement of storage devices

� Logical protection assumptions

• Access control performed by systems managing the devices

• e.g. operating systems

• Proper use of ACLs or other authorization mechanisms

© André Zúquete /
João Paulo Barraca Security 2

2

Problems (2/3)

� There are numerous scenarios where this
protection is useless

� Direct/physical access to storage devices

• Mobile computational units

• Laptops, PDAs, smartphones

• Removable storage devices

• Tapes, diskettes, CDs DVDs, memory cards

� Bypassing of logical access control mechanisms

• Unethical access by powerful users (e.g. administrators)

• Personification of users

© André Zúquete /
João Paulo Barraca Security 3

Problems (3/3)

� Distributed access raises security issues
� Trust in (unknown) administration teams

� Remote authentication of users
• Security level provided

• i.e. how hard it is to impersonate someone

• Integration among clients and servers
• Applications, operating system

• Interaction model
• Sessions vs. requests

• Entities
• People vs. machines/systems

� Secure communications
• Confidentiality, integrity

© André Zúquete /
João Paulo Barraca Security 4

3

Solution:
File encryption

� Encryption/decryption of files’ contents

� Can safely circulate along dangerous networks

� Can safely be stored in insecure storage devices

• Either mobile or administrated by others

� Problems

� Data retrieval

• End-users cannot loose encryption/decryption keys

• Illegitimate end-user encryption

• Corporate data

� File sharing

• It implies some sort of key sharing

� Interference with regular storage administration procedures

• e.g. backups
© André Zúquete /
João Paulo Barraca Security 5

Ideal architecture (1/2)

� Cipher/decipher transparency

� At the application level

� At the level of OS file caches

• But tacking into consideration authorization issues

� Visibility of securely stored data

� Visual awareness

• Of what is protected and not protected

� Automatic setting of encryption attributes

• With customization options
© André Zúquete /
João Paulo Barraca Security 6

4

Ideal architecture (2/2)

� Easy sharing of encrypted data

� By groups of users

� Decryption capacity under special
circumstances by authorized people

� Legal enforcement

� Protection against the loss of decipher keys

© André Zúquete /
João Paulo Barraca Security 7

Current approaches

© André Zúquete /
João Paulo Barraca Security 8

Operating System

Applicational

File systems

Storage volumes

Device

Application

Storage devices

5

Applicational

� Data transformed by autonomous applications

� Little or no integration with other applications

� Usually it is clear what is secure or not

• e.g. using specific file extensions

� There are vulnerability windows

� Cleartext resulting files used by other applications

� Data can be transformed with different algorithms

� Adds flexibility, increases security

� Complicates recovery procedures

� Hard to share data without sharing keys

� Secret keys or public keys

� Examples:

� PGP, AxCrypt, etc.

© André Zúquete /
João Paulo Barraca Security 9

Storage volumes / devices

� Cipher/decipher operations at the volume / device level

� Total transparency for applications and possibly to the OS

� The visibility of protected data has volume / device granularity

� Not required to handle file systems issues

• Protection of meta-information and file data

• Users and access rights

� Cannot differentiate accesses by different users

• More suitable for personal storage devices

� Cannot solve issues raised by distributed file systems

� Decipher occurs when data is fetched from devices to server caches

� Examples:

� PGPdisk, LUKS (Linux Unified Key Setup)

� Self-Encrypting Drives

© André Zúquete /
João Paulo Barraca Security 10

6

Secure file systems:
Approaches

� Data is transformed in the path between storage devices and the
memory of applications

� Storage device � file cache

• No protection for remote accesses (server deciphers)

• The access to caches gets more complex

• Coordination with ACLs

• Knowledge of cipher/decipher keys by the OS

� File cache � memory of applications

• Protection for remote accesses (clients decipher)

• Can take place outside the OS (e.g. STDIO in UNIX)

� Examples:

� CFS (Cryptographic File System), encfs

� EFS (Encrypted File System)

© André Zúquete /
João Paulo Barraca Security 11

Secure file systems:
Limitations (1/2)

� File system integrity must be preserved

� Some file attributes cannot be hidden

• For keeping the regular file system operation

• Because of other administration tools (e.g. backup tools)

� Attributes that can easily be hidden

� Arbitrary file/directory names

• Encrypted versions must conform FS naming rules

� File contents

• Preferably without changing file’s size

© André Zúquete /
João Paulo Barraca Security 12

7

Secure file systems:
Limitations (2/2)

� Attributes that cannot (should not) be hidden/changed

� Object types
• They define the structure of the file system

� Contents of directories

� Some well-defined names
• e.g. “.” and “..” in UNIX

� Dates
• For managing backups

� Dimension
• For knowing the real occupation of storage devices

� Ownership
• For managing storage quotas

� Access protection
• For keeping the normal access control policies

© André Zúquete /
João Paulo Barraca Security 13

Secure file systems:
Practical encryption issues

� Uniform random access to encrypted data

� Ciphers with feedback are not suitable

� Confidentiality

� Not advised to use the same key for different files

• Similar patterns could reveal similar files

� Not advised to use the same key for an entire file

• Similar patterns along a file could reveal its semantics

� Stream ciphers are not advised w/ the same key for different files

• Known-plaintext attacks could reveal contents of other files

© André Zúquete /
João Paulo Barraca Security 14

8

CFS (Cryptographic File System)

� NFS extension

� OS � local CFS server � local or remote NFS server

� The NFS interface is kept

� The MOUNT interface changes
• Includes a password

� Encryption / decryption operations

� Performed by the local CFS server

• Files circulate encrypted in the network

• Decrypted file contents are maintained in the client OS file cache

• All local users with READ access to the file can read the decrypted contents

� Cipher/decipher keys supplied per each mount point

• Communicated to the local CFS server by a modified mount command

• This command uses the new MOUNT interface

© André Zúquete /
João Paulo Barraca Security 15

CFS

� Encrypts file names and file contents

� Using two keys (K1 and K2) derived from a password

� Name

� Concatenated with and integrity control value

� Encrypted with ECB

� File contents

� Stream with OFB ⊕ block ECB

• OFB with K1

• ECB com K2 (disk blocks are not increased)

� OFB mask computed with K1 per mount point

� Random IV per file

• Applied between XOR with OFB mask and ECB

• Stored in the i-node GID

• CFS provides the directory GID instead of the file GID

© André Zúquete /
João Paulo Barraca Security 16

9

EFS (Encrypted File System)

� Windows NTFS extension

� First appeared in Windows 2000

� Provides encryption facilities to NTFS 5

� Functionality

� Each user is bound to an asymmetric key pair

• Stored and managed by the OS

� Each file is encrypted with a unique symmetric key

• FEK (File Encryption Key)

� An encrypted file can be accessed by many users

• For each file EFS stores copy of FEK encrypted with the public key of each authorized user

• Encrypted FEKs are stored in a STREAM associated to the file

• NTFS files are formed by sets of STREAMS

� Each encrypted file is clearly visible

• Using the Explorer file navigator

© André Zúquete /
João Paulo Barraca Security 17

EFS cryptographic technology

� Algorithms

� Asymmetric encryption of FEKs: RSA

� Symmetric encryption with FEKs: DESX

DESX ≡ DES with whitening

FEK = (K1, K2, K3)

C = K1 ⊕ DES(K2, P ⊕ K3)

� Problems

� Asymmetric key pairs are stored in disk

• Loss risk

• Illegitimate access by administrators

� Files are decrypted by servers

• No network protection for files stored remotely

© André Zúquete /
João Paulo Barraca Security 18

