
1

Security in Operating Systems

© André Zúquete /
João Paulo Barraca Security 1

Operating system

� Kernel mission
� Virtualize the hardware

• Computational model

� Enforce protection policies and provide protection mechanisms
• Against involuntary mistakes
• Against non-authorized activities

© André Zúquete /
João Paulo Barraca Security 2

Hardware

SO kernel

Server Application
user-mode:

Execute in normal CPU mode,

no access to privileged instructions

supervisor mode:

Execute in privileged CPU mode,

has access to privileged instructions

system calls

2

Execution rings

� Different levels of privilege

� Forming a set of concentric rings

� Used by CPU’s to prevent non-privileged code from running
privileged opcodes

• e.g. IN/OUT, TLB manipulation

� Nowadays processors have 4 rings

� But OS’s usually use only 2

• 0 (supervisor/kernel mode) and 3 (user-mode)

� Transfer of control between rings requires special gates

� The ones that are used by syscalls

© André Zúquete /
João Paulo Barraca Security 3

3
2
1

0

Virtual machines and hypervisors

� Emulation of a particular (virtual) hardware
with the existing one (real)

� Hosted virtualization

� The hypervisor is a process of a given OS (host)

� The VM runs inside the virtualizer (guest OS)

� Bare-metal virtualization

� The hypervisor runs on top of the host hardware

© André Zúquete /
João Paulo Barraca Security 4

hardwarehardware
host OS

hypervisor process
guest OS

hardwarehardware
hypervisor
guest OS

3

Execution of virtual machines

� Common approach for hosted virtualization

� Software-based virtualization

� Direct execution of guest user-mode code

� Binary, on-the-fly translation of privileged code (full virtualization)

• Guest OS kernels remain unchanged

• No direct access to the host hardware

� Hardware-assisted virtualization (bare-metal)

� Full virtualization

� There is a ring -1 below ring 0

• Hypervisor (or Virtual Machine Monitor, VMM)

� It can virtualize hardware for many ring 0 kernels

• No need of binary translation

• Guest OS’s run faster

© André Zúquete /
João Paulo Barraca Security 5

Computational model

� Set of entities (objects) managed by the OS kernel
� User identifiers
� Processes
� Virtual memory
� Files and file systems
� Communication channels
� Physical devices

• Storage
• Magnetic disks, optical disks, silicon disks, tapes

• Network interfaces
• Wired, wireless

• Human-computer interfaces
• Keyboards, graphical screens, text consoles, mice

• Serial/parallel I/O interfaces
• USB, serial ports, parallel ports, infrared, bluetooth

© André Zúquete /
João Paulo Barraca Security 6

4

Computational model:
User identifiers

� For the OS kernel a user is a number

� Established during a login operation

� User ID (UID)

� All activities are executed on a computer on behalf of a UID

� The UID allows the kernel to assert what is allowed/denied to
processes

� Linux: UID 0 is omnipotent (root)
• Administration activities are usually executed with UID 0

� Windows: concept of privileges
• For administration, system configuration, etc.

• There is no unique, well-known identifier for and administrator

• Administration privileges can be bound to several UIDs
• Usually through administration groups

• Administrators, Power Users, Backup Operators

© André Zúquete /
João Paulo Barraca Security 7

Computational model:
Group identifiers

� Groups also have an identifier
� A group is a set of users

� A group can be defined by including other groups

� Group ID (GID)

� A user can belong to several groups
� Rights = UID rights + rights of his groups

� In Linux all activities are executed on behalf of a
set of groups
� Primary group

• Typically used for setting file protection

� Secondary groups

© André Zúquete /
João Paulo Barraca Security 8

5

Computational model:
Processes

� A process defines the context of an activity

� For taking security-related decisions

� For other purposes (e.g. scheduling)

� Security-related context

� Identity (UID and GIDs)

• Fundamental for enforcing access control

� Resources being used

• Open files

• Including communication channels

• Reserved virtual memory areas

• CPU time used

© André Zúquete /
João Paulo Barraca Security 9

Access control

� The OS kernel is an access control monitor

� Controls all interactions with the hardware

� Controls all interactions between entities of the
computational model

� Subjects

� Usually local processes

• Through the system call API

• A system call (or syscall) is not an ordinary function call

� But also messages from other hosts

© André Zúquete /
João Paulo Barraca Security 10

6

Mandatory access controls

� OS kernels have plenty mandatory access control
policies

� They are part of the computational model logic

� They cannot be overruled not even by administrators

• Unless they change the OS kernel behavior

� Examples:

� Kernel runs in CPU privileged modes, user applications run
in non-privileged modes

� Separation of virtual memory areas

� Inter-process signaling

� Interpretation of files’ ACLs

© André Zúquete /
João Paulo Barraca Security 11

Protection with ACLs

� Each object has an ACL
� It says which subjects can do what

� An ACL can be discretionary or mandatory
� When mandatory it cannot be modified

� When discretionary it can be tailored

� An ACL is checked when an activity, on behalf of a
subject, wants to manipulate the object
� Ifs the manipulation request is not authorized by the ACL,

the access is denied

� The SO kernel is the responsible for enforcing ACL-based
protection
• It acts as a security monitor

© André Zúquete /
João Paulo Barraca Security 12

7

Protection with capabilities

� Less common in normal OS kernels

� Though there are some good examples

� Example: open file descriptors

� Applications’ processes indirectly manipulate open file descriptors
through the OS kernel
• Using integer indexes (also called file descriptors …)

• The OS kernel has full control over the contents of open file descriptors

� Open file descriptors can only be granted to other processes
through the OS kernel
• Not really a usual operation, but possible!

� Changes in the protection of files does not impact existing open
file descriptors
• The access rights are evaluated and memorized when the file is open

© André Zúquete /
João Paulo Barraca Security 13

Unix file protection ACLs:
Fixed-structure, discretionary ACL

� Each file system object has an ACL
� Binding 3 rights to 3 subjects

� Only the owner can update the ACL

� Rights: R W X
� Read right / Listing right

� Write right / create or remove files or subdirectories

� Execution right / use as process’ current working directory

� Subjects:
� An UID (owner)

� A GID

� Others

© André Zúquete /
João Paulo Barraca Security 14

8

Windows NTFS file protection:
Variable-size, discretionary ACLs

� Each file system object has an
ACL and a owner
� The ACL grants 14 types of

access rights to a variable-size
list of subjects

� Owner can be an UID or a GID
� Owner has no special rights

over the ACL

� Subjects:
� Users (UIDs)
� Groups (GIDs)

• The group “Everyone” stands for
anybody

� Rights:
� Traverse Folder / Execute File
� List Folder / Read Data
� Read Attributes
� Read Extended Attributes
� Create Files /Write Data
� Create Folders / Append Data
� Write Attributes
� Write Extended Attributes
� Delete Subfolders and Files
� Delete
� Read Permissions
� Change Permissions
� Take Ownership

© André Zúquete /
João Paulo Barraca Security 15

Privilege elevation:
Set-UID mechanism

� It is used to change the UID of a process running a
program stored on a Set-UID file
� If the program file is owned by UID X and the set-UID ACL

bit is set, then it will be executed in a process with UID X,
independently of the UID of the subject that executed the
program

� It is used to provide privileged programs for running
administration task invoked by normal, untrusted
users
� Change the user’s password (passwd)

� Change to super-user mode (su, sudo)

� Mount devices (mount)
© André Zúquete /
João Paulo Barraca Security 16

9

Privilege elevation:
Set-UID mechanism (cont.)

� Effective UID / Real UID
� Real UID is the UID of the process creator

• App launcher

� Effective UID is the UID of the process
• The one that really matters for defining the rights of the process

� UID change
� Ordinary application

• eUID = rUID = UID of process that executed exec

• eUID cannot be changed (unless = 0)

� Set-UID application
• eUID = UID of exec’d application file, rUID = initial process UID

• eUID can revert to rUID

� rUID cannot change

© André Zúquete /
João Paulo Barraca Security 17

Privilege elevation:
Set-UID/Set-GID decision flowchart

� exec (path, …)
� File referred by path has Set-UID?

� Yes
• ID = path owner

• Change the process effective UID to ID

� No

• Do nothing

� File referred by path has Set-GID?

� Yes
• ID = path GID

• Change the process GIDs to ID only

� No

• Do nothing

© André Zúquete /
João Paulo Barraca Security 18

10

Privilege elevation:
sudo mechanism

� Administration by root is not advised

� One “identity”, many people

� Who did what?

� Preferable approach

� Administration role (uid = 0), many users assume it

• Sudoers

• Defined by a configuration file used by sudo

� sudo is a Set-UID application with UID = 0

� Appropriate logging can take place on each command
run with sudo

© André Zúquete /
João Paulo Barraca Security 19

Privilege reduction:
chroot mechanism (or jail)

� Used to reduce the visibility of a file system

� Each process descriptor has a root i-node number

• From which absolute pathname resolution takes place

� chroot changes it to an arbitrary directory

• The process’ file system view gets reduced

� Used to protect the file system from potentially
problematic applications

� e.g. public servers, downloaded applications

� But it is not bullet proof!

© André Zúquete /
João Paulo Barraca Security 20

11

Linux login:
Not an OS kernel operation

� A privileged login application presents a login interface for getting users’
credentials

� A username/password pair

� Biometric data

� Smartcard and activation PIN

� The login application validates the credentials and fetches the appropriate
UID and GIDs for the user

� And starts an initial user application on a process with those identifiers
• In a Linux console this application is a shell

� When this process ends the login application reappears

� Thereafter all processes created by the user have its identifiers

� Inherited through forks

© André Zúquete /
João Paulo Barraca Security 21

Linux: from login to session processes

� The login process must be a privileged process

� Has to create processes with arbitrary UID and GIDs
• The ones of the entity logging in

© André Zúquete /
João Paulo Barraca Security 22

fork();

setuid(1000);

setgid(1000); setgid(...);

setenv(“HOME=/home/avz”);

chdir(“/home/avz”);

loginlogin
process
(uid = 0)

new process
(uid = 1000)

upon successeful

authentication of

user avz login login
application
(uid = 1000) exec(...);

avz:x:1000:1000:Andre Zuquete,,,:/home/avz:/bin/bash

/etc/passwd

12

Login in Linux:
Password validation process

� Username is used to fetch a UID/GID pair from /etc/passwd

� And a set of additional GIDs in the /etc/group file

� Supplied password is transformed using a digest function

� Currently configurable, for creating a new user (/etc/login.defs)

� Its identification is stored along with the transformed password

� The result is checked against a value stored in /etc/shadow

� Indexed again by the username

� If they match, the user was correctly authenticated

� File protections

� /etc/passwd and /etc/group can be read by anyone

• This is fundamental, for instance, for listing directories (why?)

� /etc/shadow can only be read by root

• Protection against dictionary attacks

© André Zúquete /
João Paulo Barraca Security 23

