Cryptography

© André Zúquete / João Paulo Barraca

Security

1

Cryptography: terminology (1/2)

- Cryptography
 - · Art or science of hidden writing
 - from Gr. kryptós, hidden + graph, r. of graphein, to write
 - It was initially used to maintain the confidentiality of information
 - Steganography
 - from Gr. steganós, hidden + graph, r. of graphein, to write
- Cryptanalysis
 - Art or science of breaking cryptographic systems or encrypted information
- - Cryptography + cryptanalysis

© André Zúquete / João Paulo Barraca

Security

Cryptanalysis: goals

- Discover original plaintext
 - · Which originated a given ciphertext
- Discover a cipher key
 - · Allows the decryption of ciphertexts created with the same key
- Discover the cipher algorithm
 - Or an equivalent algorithm
 - Usually algorithms are not secret, but there are exceptions
 - · Lorenz, A5 (GSM), RC4 (WEP), Crypto-1 (Mifare)
 - · Algorithms for DRM (Digital Rights Management)
 - · Reverse engineering

Security

Cryptanalysis attacks: approaches

▶ Brute force

- Exhaustive search along the key space until finding a suitable key
- Usually infeasible for a large key space
 - e.g. 2128 random keys (or keys with 128 bits)
 - · Randomness is fundamental!

 Reduce the search space to a smaller set of potential candidates

Security

7

Size matters!

- ≥ 2³²
 - IPv4 address space
 - World population
 - · Years for the Sun to become a white dwarf
- > 2¹²⁸
 - IPv6 address space
- > 2¹66
 - Earth atoms
- \triangleright 2²⁶⁵
 - · Hydrogen atoms in the known universe
- - Only cryptography uses them

Security

> Transposition

- Original cleartext is scrambled
 Onexcl raatre ilriad gctsm ilesb
- Block permutations
 (13524) → boklc pruem ttoai ns

> Substitution

- Each original symbol is replaced by another
 - · Original symbols were letters, digits and punctuation
 - · Actually they are blocks of bits
- · Substitution strategies
 - Mono-alphabetic (one→one)
 - · Polyalphabetic (many one→one)
 - Homophonic (one→many)

Security

Ciphers: basic types (2/3): Mono-alphabetic

- - With #α elements
- Examples
 - Additive (translation)
 - crypto-symbol = (symbol + key) mod # α
 - symbol = (crypto-symbol key) mod # α
 - Possible keys = $\#\alpha$
 - · Caesar Cipher (ROT-x)
 - With sentence key ABCDEFGHIJKLMNOPQRSTUVWXYZ QRUVWXZSENTCKYABDFGHIJLMOP
 - Possible keys = # α ! \rightarrow 26! \approx 288
- ▶ Problems
 - Reproduce plaintext pattern
 - · Individual characters, digrams, trigrams, etc.
 - Statistical analysis facilitates cryptanalysis
 - · "The Gold Bug", Edgar Alan Poe

53##1305)|6*;4826|4#.)
4#);806*;48#860)|85;1#
(;:#*8+83(88)5*+;46(;8
8*96*;8)*#(;485);5*+2
:*#(;4956*2(5*-4)88*;4
069285);)6+8)4##;1(#9;
48081;8:8#1;48+85;4)48
5+528806*81(#9;48;(88;4)(#34;48)4#;161;:188;
#?;

A good glass in the bishop's hostel in the devil's seat fifty-one degrees and thirteen minutes northeast and by north main branch seventh limb east side shoot from the left eye of the death's-head a bee line from the tree through the shot forty feet out

© André Zúquete / João Paulo Barraca

Security

11

Ciphers: basic types (3/3): Polyalphabetic

- - Periodical ciphers, with period N
- - · Vigenère cipher
- ▶ Problems
 - Once known the period, are as easy to cryptanalyze as N monoalphabetic ones
 - · The period can be discovered using statistics
 - Kasiski method
 - · Factoring of distances between equal ciphertext blocks
 - Coincidence index
 - Factoring of self-correlation offsets that yield higher coincidences

© André Zúquete / João Paulo Barraca

Security

 a
 A
 B
 C
 D
 E
 F
 G
 H
 I
 J
 K
 L
 M
 N
 O
 P
 Q
 R
 S
 T
 U
 V
 W
 X
 Y
 Z
 A

 G
 D
 E
 F
 G
 H
 I
 J
 K
 L
 M
 N
 O
 P
 Q
 R
 S
 T
 U
 V
 W
 X
 Y
 Z
 A
 B

 d
 D
 E
 F
 G
 H
 I
 J
 K
 L
 M
 N
 O
 P
 Q
 R
 S
 T
 U
 V
 W
 X
 Y
 Z
 A
 B
 C
 D
 E
 F
 G
 H
 I
 J
 K
 L
 M
 N
 O
 P
 Q
 R
 S
 T
 U
 V
 W
 X
 Y
 Z
 A

▷ Example of encryption of character M with key S, yielding cryptogram E
• Decryption is the opposite, E and S yield M

Security

13

Cryptanalysis of a Vigenère cryptogram: Example (1/2)

Plaintext:

Eles não sabem que o sonho é uma constante da vida tão concreta e definida como outra coisa qualquer, como esta pedra cinzenta em que me sento e descanso, como este ribeiro manso, em serenos sobressaltos como estes pinheiros altos

▷ Cipher with the Vigenère square and key "poema"

- Kasiski test
 - · With text above:
 - With the complete poem:

mpa	$20 = 2 \times$	2×5
tp	$20=2\times$	2×5

$175 = 5 \times 5 \times 7$	1
$105 = 3 \times 5 \times 7$	3
$35 = 5 \times 7$	1
$20 = 2 \times 2 \times 5$	4

© André Zúquete / João Paulo Barraca

Security

Rotor machines (2/3)

- ▶ Rotor machines implement complex polyalphabetic ciphers
 - Each rotor contains a permutation
 - · Same as a set of substitutions
 - The position of a rotor implements a substitution alphabet
 - Spinning of a rotor implements a polyalphabetic cipher
 - Stacking several rotors and spinning them at different times adds complexity to the cipher
- - The set of rotors used
 - The relative order of the rotors
 - · The position of the spinning ring
 - The original position of all the rotors
- Symmetrical (two-way) rotors allow decryption by "double encryption"
 - Using a reflection disk (half-rotor)

Security

Cryptography: practical approaches (1/4)

- > Theoretical security vs. practical security
 - Expected use ≠ practical exploitation
 - · Defective practices can introduce vulnerabilities
 - Example: reuse of keys

Computational security

- Security is measured by the computational complexity of break-in attacks
 - · Using brute force
- · Security bounds:
 - Cost of cryptanalysis
 - · Availability of cryptanalysis infra-structure
 - · Lifetime of ciphertext

Security

21

Cryptography: practical approaches (2/4)

- - · The amount of offered secrecy
 - · e.g. key length
 - Complexity of key selection
 - · e.g. key generation, detection of weak keys
 - · Implementation simplicity
 - Error propagation
 - · Relevant in error-prone environments
 - · e.g. noisy communication channels
 - · Dimension of ciphertexts
 - · Regarding the related plaintexts

Security

Cryptography: practical approaches (3/4)

- Complex relationship between the key, plaintext and the ciphertext
 - Output bits (ciphertext) should depend on the input bits (plaintext + key) in a very complex way

▶ Diffusion

- Plaintext statistics are dissipated in the ciphertext
 - If one plaintext bit toggles, then the ciphertext changes substantially, in an unpredictable or pseudorandom manner
- Avalanche effect

Security

23

Cryptography: practical approaches (4/4)

- - · Cryptanalysts knows the algorithm
 - · Security lies in the key
 - Cryptanalysts know/have many ciphertext samples produced with the same algorithm & key
 - · Ciphertext is not secret!
 - Cryptanalysts partially know original plaintexts
 - · As they have some idea of what they are looking for
 - · Know-plaintext attacks
 - · Chosen-plaintext attacks

Security

Cryptographic robustness

- > The robustness of algorithms is their resistance to attacks
 - No one can evaluate it precisely
 - · Only speculate or demonstrate using some other robustness assumptions
 - · They are robust until someone breaks them
 - There are public guidelines with what should/must not be used
 - · Sometimes antecipating future problems
- Public algorithms without known attacks are likely to be more robust
 - More people looking for weaknesses
- > Algorithms with longer keys are likely to be more robust
 - And usually slower ...

Security

25

Cryptographic guidelines

- □ Guideline for Using Cryptographic Standards in the Federal Government: Cryptographic Mechanisms, NIST Special Publication 800-175B, August 2016
- Cryptographic Storage Cheat Sheet, OWASP Cheat Sheets (last revision: 06/18/2018)
- Guidelines on cryptographic algorithms usage and key management, European Payments Council, EPC342-08 Version 7.0, 4 November, 2017
- △ Algorithms, Key Size and Protocols Report, ECRYPT Coordination
 & Support Action, Deliverable D5.4, H2020-ICT-2014 Project 645421,
 28 February, 2018

Security

Stream ciphers (2/2)

- Keystream may be infinite but with a finite period
 - The period depends on the generator
- Practical security issues
 - Each keystream should be used only once!
 - · Otherwise, the sum of cryptograms yields the sum of plaintexts

$$C1 = P1 \oplus Ks$$
, $C2 = P2 \oplus Ks \rightarrow C1 \oplus C2 = P1 \oplus P2$

- Plaintext length should be smaller than the keystream period
 - Total keystream exposure under know/chosen plaintext attacks
 - · Keystream cycles help the cryptanalysts knowing plaintext samples
- Integrity control is mandatory
 - · No diffusion! (only confusion)
 - · Ciphertexts can easily be changed deterministically

Security

Cryptanalysis of Tunny in Bletchley Park (2/4)

- - A German operator had a long message (~4,000) to send
 - He set up his Lorenz and sent a 12 letter indicator (wheel setup) to the receiver
 - After ~4,000 characters had been keyed, by hand, the receiver said "send it again"
 - The operator resets the machine to the same initial setup
 - · Same keystream! Absolutely forbidden!
 - The sender began to key in the message again (by hand)
 - But he typed a slightly different message!
 - . C = M ⊕ Ks
 - \cdot C' = M' \oplus Ks \rightarrow M' = C \oplus C' \oplus M \rightarrow text variations
 - If you know part of the initial text, you can find the variations

Security

31

Cryptanalysis of Tunny in Bletchley Park (3/4)

- Breakthrough
 - Messages began with a well known SPRUCHNUMMER "msg number"
 - The first time the operator keyed in SPRUCHNUMMER
 - The second time he keyed in SPRUCHNR
 - Thus, immediately following the N the two texts were different!
 - Both messages were sent to John Tiltman at Bletchley Park, which was able to fully decrypt them using an additive combination of the messages (called *Depths*)
 - \cdot The 2nd message was ~500 characters shorter than the first one
 - Tiltman managed to discover the correct message for the 1st ciphertext
 - They got for the 1st time a long stretch of the Lorenz keystream
 - · They did not know how the machine did it, ...
 - · ... but they knew that this was what it was generating!

Security

Cryptanalysis of Tunny in Bletchley Park (4/4): Colossus

- - But deciphering it required knowing the initial position of rotors
- □ Germans started using numbers for the initial wheels' state
 - · Bill Tutte invented the double-delta method for finding that state
 - The Colossus was built to apply the double-delta method
- - · Design started in March 1943
 - The 1,500 valve Colossus Mark 1 was operational in January 1944
 - Colossus reduced the time to break Lorenz from weeks to hours

Security

33

Modern ciphers: types

- > Concerning operation
 - Block ciphers (mono-alphabetic)
 - Stream ciphers (polyalphabetic)
- - Symmetric ciphers (secret key or shared key ciphers)
 - Asymmetric ciphers (or public key ciphers)
- > Arrangements

	Block ciphers	Stream ciphers
Symmetric ciphers		
Asymmetric ciphers		

© André Zúquete / João Paulo Barraca

Security

Symmetric ciphers

- Secret key
 - · Shared by 2 or more peers
- - Confidentiality among the key holders
 - · Limited authentication of messages
 - · When block ciphers are used
- Advantages
 - Performance (usually very efficient)
- Disadvantages
 - N interacting peers, pairwise secrecy ⇒ N x (N-1)/2 keys
- ▶ Problems
 - Key distribution

© André Zúquete / João Paulo Barraca

Security

35

Symmetric block ciphers

- Usual approaches
 - Large bit blocks
 - · 64, 128, 256, etc.
 - Diffusion & confusion
 - · Permutation, substitution, expansion, compression
 - · Feistel Networks
 - $L_i = R_{i-1}$ $R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$
 - Iterations

Most common algorithms

- DES (Data Enc. Stand.), D=64; K=56
- IDEA (Int. Data Enc. Alg.), D=64; K=128
- AES (Adv. Enc. Stand., aka Rijndael), D=128, K=128, 192, 256
- Other (Blowfish, CAST, RC5, etc.)

© André Zúquete / João Paulo Barraca

Security

DES (Data Encryption Standard) (1/4)

- > 1970: the need of a standard cipher for civilians was identified
- ▶ 1972: NBS opens a contest for a new cipher, requiring:
 - The cryptographic algorithm must be secure to a high degree
 - Algorithm details described in an easy-to-understand language
 - The details of the algorithm must be publicly available
 - $\boldsymbol{\cdot}$ So that anyone could implement it in software or hardware
 - The security of the algorithm must depend on the key
 - Not on keeping the method itself (or part of it) secret
 - The method must be adaptable for use in many applications
 - · Hardware implementations of the algorithm must be practical
 - · i.e. not prohibitively expensive or extremely slow
 - · The method must be efficient
 - · Test and validation under real-life conditions
 - · The algorithm should be exportable

Security

37

DES (2/4)

- ▶ 1974: new contest
 - Proposal based on Lucifer from IBM
 - 64-bit blocks
 - 56-bit keys
 - · 48-bit subkeys (key schedules)
 - Diffusion & confusion
 - · Feistel networks
 - · Permutations, substitutions, expansions, compressions
 - 16 iterations
 - Several modes of operation
 - ECB (Electronic Code Book), CBC (Cypher Block Chaining)
 - **OFB** (Output Feedback), **CFB** (Cypher Feedback)
- ▶ 1976: adopted at US as a federal standard

Security

(Symmetric) stream ciphers

- Approaches
 - Cryptographically secure pseudo-random generators (PRNG)
 - · Using linear feedback shift registers (LFSR)
 - · Using block ciphers
 - · Other (families of functions, etc.)
 - · Usually not self-synchronized
 - · Usually without uniform random access
 - · No immediate setup of generator's state for a given plaintext/cryptogram offset
- - A5/1 (US, Europe), A5/2 (GSM)
 - RC4 (802.11 WEP/TKIP, etc.)
 - E0 (Bluetooth BR/EDR)
 - SEAL (w/ uniform random access)

© André Zúquete / João Paulo Barraca

Security

Uniform random access

- > Same time to reach and process any piece of information regardeless of its position
- ▶ Uniform
 - Memory
 - Disks (magnetic, optical)
- ▶ Non-uniform
 - Tapes (audio, video, computer)

© André Zúguete / João Paulo Barraca

Security

Deployment of (symmetric) block ciphers: Cipher modes

- - ECB (Electronic Code Book)
 - CBC (Cipher Block Chaining)
 - OFB (Output Feeback)
 - CFB (Cipher Feedback)
- - In principle ...
- - CTR (Counter Mode)
 - GCM (Galois/Counter Mode)

Security

Cipher modes: Pros and					
i i oo ana	Block		Stream		
	E <i>C</i> B	СВС	OFB	CFB	CTR
Input pattern hiding		✓	✓	✓	✓
Confusion on the cipher input		√		√	Secret counter
Same key for different messages	*	~	other IV	other IV	other IV
Tampering difficulty	✓	√ ()		✓	
Pre-processing			✓		✓
Parallel processing	1	Decryption Only	w/ pre- processing	Decryption only	✓
Uniform random access					
Error propagation	Same block	Same block Next block		Some bits afterwards	
Capacity to recover from losses	Block Losses	Block Losses		√	

Asymmetric (block) ciphers

- > Approaches: complex mathematic problems
 - Discrete logarithms of large numbers
 - Integer factorization of large numbers
 - Knapsack problems
- > Most common algorithms
 - RSA
 - ElGamal
 - Elliptic curves (ECC)
- > Other techniques with asymmetric key pairs
 - Diffie-Hellman (key agreement)

Security

RSA: example

```
(small primes)
\triangleright p = 5 q = 11
   • n = p \times q = 55
   • (p-1) \times (q-1) = 40
\triangleright e = 3
   • Co-prime with 40
> d = 27
   • e \times d \equiv 1 \mod 40
P = 26
                                  (note that P, C\in [0, n-1])
   • C = P^e \mod n = 26^3 \mod 55 = 31
   P = C^d \mod n = 31^{27} \mod 55 = 26
   © André Zúquete /
   。 João Paulo Barraca
```

ElGamal

- ▶ Published by El Gamal in 1984
- - · But using only the discrete logarithm complexity
- - DSA (Digital Signature Algorithm)
 - US Digital Signature Standard (DSS)
- ▷ Operations and keys (for signature handling)
 - $\beta = \alpha^x \mod p$ $K = (\beta, \alpha, p)$
 - $k \text{ random}, k \cdot k^{-1} \equiv 1 \mod (p-1)$
 - Signature of M: (γ, δ) $\gamma = \alpha^k \mod p$ $\delta = k^{-1} (M x\gamma) \mod (p-1)$

 $K^{-1} = (x, \alpha, p)$

- Validation of signature over M: $\beta^{\gamma} \gamma^{\delta} \equiv \alpha^{M} \pmod{p}$
- ▶ Problem
 - Knowing k reveals x out of δ
 - · k must be randomly generated and remain secret

João Paulo Barraca

Security

Elliptic curve

- \triangleright A curve described by an equation $y^2 + axy + by = x^3 + cx^2 + dx + e$
- Curves of this kind are symmetric to the X axis
 - And don't have solution for all x values

Security

EC discrete logarithm problem

- ightharpoonup Given an elliptic curve $E(\mathbb{F}_p)$,
 - a point G on that curve,
 - a point P which is an integer multiple of G,

find the integer x such that xG = P

For cryptographic operations, x will be the private key and P the public key

Security

EC cryptography (ECC): curves' definition

- \triangleright Prime p \rightarrow (p, a, b, G, n, h)
 - Constants a and b of the EC equation
 - A generator point (or base point) G
 - The order n of G
 - Normally prime
 - A (small) co-factor h
 - Given by $\frac{1}{n} \# E(\mathbb{F}_p)$

Security

69

EC Diffie-Hellman (ECDH)

- - (p, a, b, G, n, h)
- \triangleright Alice chooses a random α
 - And publishes $A = \alpha G$
- - And publishes $B = \beta G$
- - $K = \alpha B$ $K = \beta A$

© André Zúquete / João Paulo Barraca

Security

Recommended curves

Length of n (bits)	p (bits)	m (bits)
161 - 223	192	163
224 - 255	224	233
256 - 383	256	283
384 - 511	384	409
≥ 512	521	571

NIST, 1999

• 5 P curves over prime fields \mathbb{F}_p

$$\cdot y^2 = x^3 - 3x + b$$

• 5 B curves over binary fields \mathbb{F}_{2^m}

$$y^2 + xy = x^3 + x^2 + b$$

- b randomly generated
 - SHA-1 hash of a seed
- 5 K (Koblitz) curves over binary fields \mathbb{F}_{2^m}

$$y^2 + xy = x^3 + ax^2 + 1$$

Security

71

Recommended curves

□ IETF

• Daniel Bernstein's Curve25519

$$y^2 = x^3 + 486662 x^2 + x \pmod{q}$$

$$\cdot q = 2^{255} - 19$$

Curve448

$$y^2 = x^3 + 15632 x^2 + x \pmod{q}$$

$$\cdot q = 2^{448} - 2^{224} - 1$$

© André Zúquete / João Paulo Barraca

Security

Randomization of asymmetric encryptions

- Non-deterministic (unpredictable) result of asymmetric encryptions
 - N encryptions of the same value, with the same key, should yield N different results
 - Goal: prevent the trial & error discovery of encrypted values
- ▶ Technics
 - Concatenation of value to encrypt with two values
 - · A fixed one (for integrity control)
 - A random one (para randomization)

Security

Digest functions

- - Sort of text "fingerprint"
- ▶ Produce very different values for similar texts
 - Cryptographic one-way hash functions
- Relevant properties:
 - · Preimage resistance
 - · Given a digest, it is infeasible to find an original text producing it
 - 2nd-preimage resistance
 - Given a text, it is infeasible to find another one with the same digest
 - Collision resistance
 - It is infeasible to find any two texts with the same digest
 - · Birthday paradox

Security

Message Authentication Codes (MAC): Approaches

- - Using, for instance, a symmetric block cipher
- □ Using encryption with feedback & error propagation
 - ANSI X9.9 (or DES-MAC) with DES CBC (64 bits)
- Adding a key to the hashed data
 - Keyed-MD5 (128 bits)
 - MD5(K, keyfill, text, K, MD5fill)
 - HMAC (output length depends on the function H used)
 - H(K, opad, H(K, ipad, text))
 - ipad = 0x36 B times

opad = 0x5C B times

· HMAC-MD5, HMAC-SHA, etc.

© André Zúquete / João Paulo Barraca

Security

Authenticated encryption

- ▷ Encryption mixed with integrity control
 - Error propagation
 - Authentication tags
- - GCM (Galois/Counter Mode)
 - CCM (Counter with CBC-MAC)

Security

Blind signatures

- Signatures made by a "blinded" signer
 - Signer cannot observe the signed contents
 - Similar to a handwritten signature on an envelope containing a document and a carbon-copy sheet
- ► They are useful for ensuring anonymity of the signed information holder, while the signed information provides some extra functionality
 - Signer X knows who requires a signature (Y)
 - X signs T₁, but Y afterwards transforms it into a signature over T₂
 - Not any T₂, a specific one linked to T₁
 - Requester Y can present T₂ signed by X
 - But it cannot change T₂
 - X cannot link T₂ to the T₁ that it observed when signing

Security

85

Chaum Blind Signatures

- - Blinding
 - Random blinding factor K
 - $k \times k^{-1} \equiv 1 \pmod{N}$
 - $\cdot m' = k^e \times m \mod N$
 - Ordinary signature (encryption w/ private key)
 - $\cdot A_x (m') = (m')^d \mod N$
 - Unblinding
 - $\cdot A_x (m) = k^{-1} \times A_x (m') \mod$

Security