
1

Cryptography

© André Zúquete /
João Paulo Barraca Security 1

Cryptography: terminology (1/2)

� Cryptography

� Art or science of hidden writing

• from Gr. kryptós, hidden + graph, r. of graphein, to write

� It was initially used to maintain the confidentiality of information

� Steganography
• from Gr. steganós, hidden + graph, r. of graphein, to write

� Cryptanalysis

� Art or science of breaking cryptographic systems or encrypted
information

� Cryptology

� Cryptography + cryptanalysis

© André Zúquete /
João Paulo Barraca Security 2

2

Cryptography: terminology (2/2)

� Cipher
� Specific cryptographic technique

� Cipher operation
Encryption: plaintext (or cleartext) � ciphertext (or cryptogram)

Decryption: ciphertext � plaintext

Algorithm: way of transforming data

Key: algorithm parameter

© André Zúquete /
João Paulo Barraca Security 3

encrypt()

ciphertextplaintext

decrypt()

Use cases (symmetric cryptography)

� Self-protection with key K
� Alice encrypts plaintext P with key K

A: C = {P}K

� Alice decrypts cryptogram C with key K
A: P’ = {C}K

� P’ should be equal to P (requires checking)

� Secure communication with key K
� Alice encrypts plaintext P with key K

A: C = {P}K

� Bob decrypts C with key K
B: P’ = {C}K

� P’ should be equal to P (requires checking)

© André Zúquete /
João Paulo Barraca Security 4

3

Cryptanalysis: goals

� Discover original plaintext

� Which originated a given ciphertext

� Discover a cipher key

� Allows the decryption of ciphertexts created with the same key

� Discover the cipher algorithm

� Or an equivalent algorithm

� Usually algorithms are not secret, but there are exceptions

• Lorenz, A5 (GSM), RC4 (WEP), Crypto-1 (Mifare)

• Algorithms for DRM (Digital Rights Management)

� Reverse engineering

© André Zúquete /
João Paulo Barraca Security 5

Cryptanalysis attacks: approaches

© André Zúquete /
João Paulo Barraca Security 6

encrypt

ciphertextplaintext

decrypt

ciphertext only

known plaintext

chosen plaintext

4

Cryptanalysis attacks: approaches

� Brute force

� Exhaustive search along the key space until finding
a suitable key

� Usually infeasible for a large key space

• e.g. 2128 random keys (or keys with 128 bits)

• Randomness is fundamental!

� Cleaver attacks

� Reduce the search space to a smaller set of
potential candidates

© André Zúquete /
João Paulo Barraca Security 7

Size matters!

� 232

� IPv4 address space

� World population

� Years for the Sun to become a white dwarf

� 2128

� IPv6 address space

� 2166

� Earth atoms

� 2265

� Hydrogen atoms in the known universe

� 21024 and beyond

� Only cryptography uses them

© André Zúquete /
João Paulo Barraca Security 8

5

Ciphers: evolution of technology

� Manual

� Simple transposition or
substitution algorithms

� Mechanic

� From XIX cent.

• Enigma machine

• M-209 Converter

� More complex substitution
algorithms

� Informatics

� Appear with computers

� Highly complex substitution
algorithms

� Mathematical algorithms

© André Zúquete /
João Paulo Barraca Security 9

Ciphers: basic types (1/3)

� Transposition
� Original cleartext is scrambled

Onexcl raatre ilriad gctsm ilesb

� Block permutations
(13524) � boklc pruem ttoai ns

� Substitution
� Each original symbol is replaced by another

• Original symbols were letters, digits and punctuation

• Actually they are blocks of bits

� Substitution strategies
• Mono-alphabetic (one�one)

• Polyalphabetic (many one�one)

• Homophonic (one�many)

© André Zúquete /
João Paulo Barraca Security 10

O N E X C L

R A A T R E

I L R I A D

G C T S M

I L E S B

6

Ciphers: basic types (2/3):
Mono-alphabetic

� Use a single substitution alphabet
� With #α elements

� Examples
� Additive (translation)

• crypto-symbol = (symbol + key) mod # α
• symbol = (crypto-symbol – key) mod # α
• Possible keys = #α

• Caesar Cipher (ROT-x)

� With sentence key
ABCDEFGHIJKLMNOPQRSTUVWXYZ

QRUVWXZSENTCKYABDFGHIJLMOP

• Possible keys = # α ! � 26! ≈ 288

� Problems
� Reproduce plaintext pattern

• Individual characters, digrams, trigrams, etc.

� Statistical analysis facilitates cryptanalysis
• “The Gold Bug”, Edgar Alan Poe

© André Zúquete /
João Paulo Barraca Security 11

53‡‡†305))6*;4826)4‡.)

4‡);806*;48†860))85;1‡

(;:‡*8†83(88)5*†;46(;8

8*96*?;8)*‡(;485);5*†2

:*‡(;4956*2(5*—4)88*;4

069285);)6†8)4‡‡;1(‡9;

48081;8:8‡1;48†85;4)48

5†528806*81(‡9;48;(88;

4(‡?34;48)4‡;161;:188;

‡?;

A good glass in the

bishop's hostel in the

devil's seat fifty-one

degrees and thirteen

minutes northeast and

by north main branch

seventh limb east side

shoot from the left eye

of the death's-head a

bee line from the tree

through the shot forty

feet out

Ciphers: basic types (3/3):
Polyalphabetic

� Use N substitution alphabets

� Periodical ciphers, with period N

� Example

� Vigenère cipher

� Problems

� Once known the period, are as easy to cryptanalyze as N mono-
alphabetic ones
• The period can be discovered using statistics

• Kasiski method
• Factoring of distances between equal ciphertext blocks

• Coincidence index
• Factoring of self-correlation offsets that yield higher coincidences

© André Zúquete /
João Paulo Barraca Security 12

7

Vigenère cipher (or the Vigenère square)
a b c d e f g h i j k l m n o p q r s t u v w x y z

a A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

b B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

c C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

d D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

e E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

f F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

g G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

h H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

i I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

j J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

k K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

l L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

m M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

n N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

o O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

p P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

r R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

s S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

t T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

u U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

v V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

w W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

x X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

� Example of encryption of character M with key S, yielding cryptogram E
� Decryption is the opposite, E and S yield M

© André Zúquete /
João Paulo Barraca Security 13

Cryptanalysis of a Vigenère cryptogram:
Example (1/2)

� Plaintext:
Eles não sabem que o sonho é uma constante da vida
tão concreta e definida como outra coisa qualquer,
como esta pedra cinzenta em que me sento e descanso,
como este ribeiro manso, em serenos sobressaltos
como estes pinheiros altos

� Cipher with the Vigenère square and key “poema”
plaintext elesnaosabemqueosonhoeumaconstantedavidataoconcretaedefinida

key poemapoemapoemapoemapoemapoemapoemapoemapoemapoemapoemapoema

cryptogram tzienpcwmbtaugedgszhdsyyarcretpbxqdpjmpaiosoocqvqtpshqfxbmpa

� Kasiski test
� With text above:

� With the complete poem:

© André Zúquete /
João Paulo Barraca Security 14

8

Cryptanalysis of a Vigenère cryptogram:
Example (2/2)

� Coincidence index (with full poem)

© André Zúquete /
João Paulo Barraca Security 15

C oi nc i de nc e inde x

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

T r ansl at i on shi f t

Rotor Machines (1/3)

© André Zúquete /
João Paulo Barraca Security 16

David J Morgan, www.flickr.com

9

Rotor machines (2/3)

� Rotor machines implement complex polyalphabetic ciphers
� Each rotor contains a permutation

• Same as a set of substitutions

� The position of a rotor implements a substitution alphabet

� Spinning of a rotor implements a polyalphabetic cipher

� Stacking several rotors and spinning them at different times adds
complexity to the cipher

� The cipher key is:
� The set of rotors used

� The relative order of the rotors

� The position of the spinning ring

� The original position of all the rotors

� Symmetrical (two-way) rotors allow
decryption by “double encryption”
� Using a reflection disk (half-rotor)

© André Zúquete /
João Paulo Barraca Security 17

Sarah Witherby, www.flickr.com

Rotor machines (3/3)

� Reciprocal operation with reflector
� Sending operator types “A” as plaintext and gets “Z” as

ciphertext, which is transmitted

� Receiving operator types the received “Z” and gets the
plaintext “A”

� No letter could encrypt to itself !

© André Zúquete /
João Paulo Barraca Security 18

Andrew Magill,
www.flickr.com

10

Enigma

� WWII German rotor machine
� Many models used

� Initially presented in 1919
� Enigma I, with 3 rotors

� Several variants where used
� With different number of rotors

� With patch cord to permute alphabets

� Key settings distributed in codebooks

© André Zúquete /
João Paulo Barraca Security 19

Cryptography: theoretical analysis

� Plaintext space
� Set of all possible plaintext messages (M)

� Ciphertext space
� Set of all possible ciphertext values (C)

� Key space
� Set of all possible key values for a given algorithm (K)

� Perfect (information-theoretical) security
� Given cj ∈ C, p(mi, kj) = p(mi)
� #K ≥ #M
� Vernam cipher (one-time pad)

© André Zúquete /
João Paulo Barraca Security 20

⊕

ciphertextplaintext

⊕

Infinite, random key

11

Cryptography: practical approaches (1/4)

� Theoretical security vs. practical security
� Expected use ≠ practical exploitation

� Defective practices can introduce vulnerabilities

• Example: reuse of keys

� Computational security
� Security is measured by the computational complexity of break-in

attacks

• Using brute force

� Security bounds:

• Cost of cryptanalysis

• Availability of cryptanalysis infra-structure

• Lifetime of ciphertext

© André Zúquete /
João Paulo Barraca Security 21

Cryptography: practical approaches (2/4)

� 5 Shannon criteria
� The amount of offered secrecy

• e.g. key length

� Complexity of key selection
• e.g. key generation, detection of weak keys

� Implementation simplicity

� Error propagation
• Relevant in error-prone environments

• e.g. noisy communication channels

� Dimension of ciphertexts
• Regarding the related plaintexts

© André Zúquete /
João Paulo Barraca Security 22

12

Cryptography: practical approaches (3/4)

� Confusion

� Complex relationship between the key, plaintext and
the ciphertext
• Output bits (ciphertext) should depend on the input bits

(plaintext + key) in a very complex way

� Diffusion

� Plaintext statistics are dissipated in the ciphertext
• If one plaintext bit toggles, then the ciphertext changes

substantially, in an unpredictable or pseudorandom manner

� Avalanche effect

© André Zúquete /
João Paulo Barraca Security 23

Cryptography: practical approaches (4/4)

� Always assume the worst case
� Cryptanalysts knows the algorithm

• Security lies in the key

� Cryptanalysts know/have many ciphertext samples
produced with the same algorithm & key
• Ciphertext is not secret!

� Cryptanalysts partially know original plaintexts
• As they have some idea of what they are looking for

• Know-plaintext attacks

• Chosen-plaintext attacks

© André Zúquete /
João Paulo Barraca Security 24

13

Cryptographic robustness

� The robustness of algorithms is their resistance to attacks

� No one can evaluate it precisely
• Only speculate or demonstrate using some other robustness assumptions

� They are robust until someone breaks them

� There are public guidelines with what should/must not be used
• Sometimes antecipating future problems

� Public algorithms without known attacks are likely to be more
robust

� More people looking for weaknesses

� Algorithms with longer keys are likely to be more robust

� And usually slower …

© André Zúquete /
João Paulo Barraca Security 25

Cryptographic guidelines

� Guideline for Using Cryptographic Standards in the Federal
Government: Cryptographic Mechanisms, NIST Special Publication
800-175B, August 2016

� Cryptographic Storage Cheat Sheet, OWASP Cheat Sheets (last
revision: 06/18/2018)

� Guidelines on cryptographic algorithms usage and key
management, European Payments Council, EPC342-08 Version 7.0, 4
November, 2017

� Algorithms, Key Size and Protocols Report, ECRYPT – Coordination
& Support Action, Deliverable D5.4, H2020-ICT-2014 Project 645421,
28 February, 2018

© André Zúquete /
João Paulo Barraca Security 26

14

Stream ciphers (1/2)

� Mixture of a keystream with the plaintext or ciphertext

� Random keystream (Vernam’s one-time pad)

� Pseudo-random keystream (produced by generator using a finite key)

� Reversible mixture function

� e.g. bitwise XOR

� C = P ⊕ ks P = C ⊕ ks

� Polyalphabetic cipher

� Each keystream symbol defines an alphabet

© André Zúquete / João
Paulo Barraca Security 27

mix ciphertextplaintext

keystream generator

mix-1

generator

plaintext

Stream ciphers (2/2)

� Keystream may be infinite but with a finite period
� The period depends on the generator

� Practical security issues
� Each keystream should be used only once!

• Otherwise, the sum of cryptograms yields the sum of plaintexts

C1 = P1 ⊕ Ks, C2 = P2 ⊕ Ks � C1 ⊕ C2 = P1 ⊕ P2

� Plaintext length should be smaller than the keystream period
• Total keystream exposure under know/chosen plaintext attacks

• Keystream cycles help the cryptanalysts knowing plaintext samples

� Integrity control is mandatory
• No diffusion! (only confusion)

• Ciphertexts can easily be changed deterministically

© André Zúquete /
João Paulo Barraca Security 28

15

Lorenz (Tunny)

� 12-Rotor stream cipher

� Used by the German high-command during the 2nd WW

� Implements a stream cipher
• Each 5-bit character is mixed with 5 keystreams

� Operation

� 5 regularly stepped (χ) wheels

� 5 irregularly stepped (ψ) wheels
• All or none stepping

� 2 motor wheels
• For stepping the ψ wheels

� Number of steps in all wheels is
relatively prime

© André Zúquete /
João Paulo Barraca Security 29

Cryptanalysis of Tunny in Bletchley Park (1/4)

� They didn’t know Lorenz internal structure

� They observed one only at the end of the war

� They knew about them because they could get 5-bit
encrypted transmissions
• Using the 32-symbol Baudot code instead of Morse code

© André Zúquete /
João Paulo Barraca Security 30

16

Cryptanalysis of Tunny in Bletchley Park (2/4)

� The mistake (30 August 1941)
� A German operator had a long message (~4,000) to send

• He set up his Lorenz and sent a 12 letter indicator (wheel setup) to the
receiver

• After ~4,000 characters had been keyed, by hand, the receiver said
"send it again“

� The operator resets the machine to the same initial setup
• Same keystream! Absolutely forbidden!

� The sender began to key in the message again (by hand)
• But he typed a slightly different message!

• C = M ⊕ Ks
• C’ = M’ ⊕ Ks � M’ = C ⊕ C’ ⊕ M � text variations
• If you know part of the initial text, you can find the variations

© André Zúquete /
João Paulo Barraca Security 31

Cryptanalysis of Tunny in Bletchley Park (3/4)

� Breakthrough
� Messages began with a well known SPRUCHNUMMER — “msg number"

• The first time the operator keyed in S P R U C H N U M M E R
• The second time he keyed in S P R U C H N R
• Thus, immediately following the N the two texts were different!

� Both messages were sent to John Tiltman at Bletchley Park, which was
able to fully decrypt them using an additive combination of the messages
(called Depths)
• The 2nd message was ~500 characters shorter than the first one
• Tiltman managed to discover the correct message for the 1st ciphertext

� They got for the 1st time a long stretch of the Lorenz keystream
• They did not know how the machine did it, …
• … but they knew that this was what it was generating!

© André Zúquete /
João Paulo Barraca Security 32

17

Cryptanalysis of Tunny in Bletchley Park (4/4):
Colossus

� The cipher structure was
determined from the keystream

� But deciphering it required
knowing the initial position of
rotors

� Germans started using numbers
for the initial wheels’ state

� Bill Tutte invented the double-delta method for finding that state

� The Colossus was built to apply the double-delta method

� Colossus

� Design started in March 1943

� The 1,500 valve Colossus Mark 1 was operational in January 1944

� Colossus reduced the time to break Lorenz from weeks to hours

© André Zúquete /
João Paulo Barraca Security 33

Chris Monk, www.flickr.com

Modern ciphers: types

� Concerning operation

� Block ciphers (mono-alphabetic)

� Stream ciphers (polyalphabetic)

� Concerning their key

� Symmetric ciphers (secret key or shared key ciphers)

� Asymmetric ciphers (or public key ciphers)

� Arrangements

© André Zúquete /
João Paulo Barraca Security 34

Block ciphers Stream ciphers

Symmetric ciphers

Asymmetric ciphers

18

Symmetric ciphers

� Secret key

� Shared by 2 or more peers

� Allow

� Confidentiality among the key holders

� Limited authentication of messages

• When block ciphers are used

� Advantages

� Performance (usually very efficient)

� Disadvantages

� N interacting peers, pairwise secrecy ⇒ N x (N-1)/2 keys

� Problems

� Key distribution

© André Zúquete /
João Paulo Barraca Security 35

Symmetric block ciphers

� Usual approaches
� Large bit blocks

• 64, 128, 256, etc.

� Diffusion & confusion
• Permutation, substitution, expansion, compression

• Feistel Networks
• Li=Ri-1 Ri=Li-1⊕f(Ri-1,Ki)

• Iterations

� Most common algorithms
� DES (Data Enc. Stand.), D=64; K=56

� IDEA (Int. Data Enc. Alg.), D=64; K=128

� AES (Adv. Enc. Stand., aka Rijndael), D=128, K=128, 192, 256

� Other (Blowfish, CAST, RC5, etc.)

© André Zúquete /
João Paulo Barraca Security 36

Li Ri

Li-1 Ri-1

f(Ki)

19

DES (Data Encryption Standard) (1/4)

� 1970: the need of a standard cipher for civilians was identified

� 1972: NBS opens a contest for a new cipher, requiring:
� The cryptographic algorithm must be secure to a high degree

� Algorithm details described in an easy-to-understand language

� The details of the algorithm must be publicly available
• So that anyone could implement it in software or hardware

� The security of the algorithm must depend on the key
• Not on keeping the method itself (or part of it) secret

� The method must be adaptable for use in many applications

� Hardware implementations of the algorithm must be practical
• i.e. not prohibitively expensive or extremely slow

� The method must be efficient

� Test and validation under real-life conditions

� The algorithm should be exportable

© André Zúquete /
João Paulo Barraca Security 37

DES (2/4)

� 1974: new contest
� Proposal based on Lucifer from IBM
� 64-bit blocks
� 56-bit keys

• 48-bit subkeys (key schedules)

� Diffusion & confusion
• Feistel networks
• Permutations, substitutions, expansions, compressions
• 16 iterations

� Several modes of operation
• ECB (Electronic Code Book), CBC (Cypher Block Chaining)
• OFB (Output Feedback), CFB (Cypher Feedback)

� 1976: adopted at US as a federal standard

© André Zúquete /
João Paulo Barraca Security 38

20

DES (3/4)

© André Zúquete / João
Paulo Barraca Security 39

Input (64)

IP

L0 R0

Li Ri

L1 R1

KS1

L16 R16

KS16

IP-1

output (64)

Li-1 Ri-1

Ri

E + P

S-Box i

K (56)

� [i] � [i]

C + P

P-box

KSi

Permutation

s & iterations

Feistel

networks

Substitutions (S-boxes),

permutations (P-Boxes),

expansions,

compressions

Ksi (48)

DES: offered security

� Key selection
� Most 56-bit values are suitable keys

� 4 weak, 12 semi-weak keys, 48 possibly weak keys
• Produce equal key schedules (one Ks, two Ks or four Ks)

• Easy to spot and avoid

� Known attacks
� Exhaustive key space search

� Key length
� 56 bits are actually too few

• Exhaustive search is technically possible and economically interesting

� Solution: multiple encryption
• Double encryption is not (theoretically) more secure

• Triple encryption: 3DES (Triple-DES)
• With 2 or 3 keys

• Equivalent key length of 112 or 168 bits

© André Zúquete /
João Paulo Barraca Security 40

21

(Symmetric) stream ciphers

� Approaches
� Cryptographically secure pseudo-random generators (PRNG)

• Using linear feedback shift registers (LFSR)

• Using block ciphers

• Other (families of functions, etc.)

� Usually not self-synchronized

� Usually without uniform random access
• No immediate setup of generator’s state for a given plaintext/cryptogram offset

� Most common algorithms
� A5/1 (US, Europe), A5/2 (GSM)

� RC4 (802.11 WEP/TKIP, etc.)

� E0 (Bluetooth BR/EDR)

� SEAL (w/ uniform random access)
© André Zúquete /
João Paulo Barraca Security 41

Uniform random access

� Same time to reach and process any piece of
information regardeless of its position

� Uniform

� Memory

� Disks (magnetic, optical)

� Non-uniform

� Tapes (audio, video, computer)

© André Zúquete /
João Paulo Barraca Security 42

https://www.ict4u.net/components/backing-storage.php

22

Linear Feedback Shift Register (LFSR)

� 2n-1 non-null sequences
� If one of them has a 2n-1 period length, then all have it

� Primitive feedback functions (primitive polynomials)
� All non-null sequences have a 2n–1 period length

© André Zúquete /
João Paulo Barraca Security 43

Sn-1 S1 S0

Cn-1 C2 C1 C0

Initial state = keyFeedback (polinomial) function

Ck

Generators using many LFSR:
A5/1 (GSM)

© André Zúquete /
João Paulo Barraca Security 44

LFSR1

LFSR2

LFSR3

19 bits

22 bits

23 bits

Majority
If == to
majority

Majority

23

Deployment of (symmetric) block ciphers:
Cipher modes

� Initially proposed for DES
� ECB (Electronic Code Book)

� CBC (Cipher Block Chaining)

� OFB (Output Feeback)

� CFB (Cipher Feedback)

� Can be used with other block ciphers
� In principle ...

� Some other modes do exist
� CTR (Counter Mode)

� GCM (Galois/Counter Mode)

© André Zúquete /
João Paulo Barraca Security 45

Block cipher modes:
ECB and CBC

Electronic Code Book
Ci = EK(Ti)

Ti = DK(Ci)

Cipher Block Chaining
Ci = EK(Ti ⊕ Ci-1)

Ti = DK(Ci) ⊕ Ci-1

© André Zúquete /
João Paulo Barraca Security 46

T1 T2 Tn

C1 C2 Cn

EK EK EK EK

DK DK DK DK

T1 T2 Tn

T1 T2 Tn-1 Tn

C1 C2 Cn-1 Cn

EK EK EK EK EK

T1 T2 Tn-1 Tn

DK DK DK DK DK

IV

IV

24

ECB/CBC cipher modes:
Trailing sub-block issues

� Block cipher modes ECB and CBC require block-aligned inputs

� Trailing sub-blocks need special treatment

� Alternatives

� Padding

• Of last block, identifiable

• PKCS #7

• X = B – (M mod B)

• X extra bytes, with the value X

• PKCS #5

• Equal to PKCS #7 with B = 8

� Different processing for the last block

• Adds complexity

© André Zúquete /
João Paulo Barraca Security 47

X X X

B

X

M

ECB/CBC cipher modes:
Handling trailing sub-blocks

� Sort of stream cipher � Ciphertext stealing

© André Zúquete /
João Paulo Barraca Security 48

Cn-1

Tn

Cn

EK

Tn

EK

Cn-1

EK

DK

Tn-1

EK

DK

Tn-1

Cn

Tn

C’

C’

Tn C’

Tn-1

Cn-1

EK EK

Tn-1

DK DK

Cn

Tn

0

0

Tn C’

Cn-2

EK

25

Stream cipher modes:
n-bit OFB (Output Feedback)

Ci = Ti ⊕ EK(Si)

Ti = Ci ⊕ EK(Si)

Si = f(Si-1, EK(Si-1))

S0 = IV

© André Zúquete /
João Paulo Barraca Security 49

T1

C1

EK EK EK

Tn

Cn

EK EK EK

T1 Tn

IV

IV

T C

EK

IV

feedback

n

Stream cipher modes:
n-bit CFB (Ciphertext Feedback)

Ci = Ti ⊕ EK(Si)

Ti = Ci ⊕ EK(Si)

Si = f(Si-1, Ci)

S0 = IV

© André Zúquete /
João Paulo Barraca Security 50

T1

C1

EK EK EK

Tn

Cn

T1 Tn

IV

EK EK EKIV

T C

EK

IV

n

feedback

26

Stream cipher modes:
n-bit CTR (Counter)

Ci = Ti ⊕ EK(Si)

Ti = Ci ⊕ EK(Si)

Si = Si-1+1

S0 = IV

© André Zúquete /
João Paulo Barraca Security 51

T1

C1

EK EK EK

Tn

Cn

T1 Tn

IV

T C

EK

IV +1

feedback

+1 +1

EK EK EKIV

+1 +1
n

Cipher modes:
Pros and cons

Block Stream

ECB CBC OFB CFB CTR

Input pattern hiding � � � �

Confusion on the cipher input � �
Secret
counter

Same key for different
messages

� � other IV other IV other IV

Tampering difficulty � � (...) �

Pre-processing � ... �

Parallel processing
�

Decryption

Only
w/ pre-

processing
Decryption

only
�

Uniform random access

Error propagation
Same
block

Same block

Next block
Some bits

afterwards

Capacity to recover from
losses

Block

Losses

Block

Losses
�

© André Zúquete /
João Paulo Barraca Security 52

27

Cipher modes:
Security reinforcement

� Multiple encryption
� Double encryption

• Breakable with a meet-in-the-meddle attack in 2n+1 attempts
• With 2 or more known plaintext blocks

• Using 2n blocks stored in memory ...

• Not secure enough (theoretically)

� Triple encryption (EDE)
• Ci = EK1(DK2 (EK3 (Ti))) Pi = DK3(EK2 (DK1 (Ci))

• Usually K1=K3

• If K1=K2=K3 ,then we get simple encryption

� Whitening (DESX)
• Simple and efficient technique to add confusion

• Ci = EK(K1 ⊕ Ti) ⊕ K2

• Ti = K1 ⊕ DK(K2 ⊕ Ci)

© André Zúquete /
João Paulo Barraca Security 53

K1

K2

EK

E

D

E

Asymmetric (block) ciphers

� Use key pairs
� One private key (personal, not transmittable)
� One public key

� Allow
� Confidentiality without any previous exchange of secrets
� Authentication

• Of contents (data integrity)
• Of origin (source authentication, or digital signature)

� Disadvantages
� Performance (usually very inefficient and memory consuming)

� Advantages
� N peers requiring pairwise, secret interaction ⇒ N key pairs

� Problems
� Distribution of public keys
� Lifetime of key pairs

© André Zúquete /
João Paulo Barraca Security 54

28

Confidentiality w/ asymmetric ciphers

� Only the key pair of the recipient is involved
� C = E(K, P) P = D(K-1, C)

� To send something with confidentiality to X is only required to know X’s
public key (KX)

� There is no source authentication
� X has no means to know who produced the ciphertext

� If KX is really public, then everybody can do it

© André Zúquete /
João Paulo Barraca Security 55

KX (public)

message

KX
-1 (private)

ciphertext messageencryption decryption

Mr. X

Source authentication w/ asymmetric
ciphers

� Only the key pair of the originator is involved

� C = E(K-1, P)P = D(K, C);

� Only X knows KX
-1 that produced C

� There is no confidentiality

� Anyone knowing the public key of the originator (KX) can decrypt C

� If KX is really public, then everybody can do it

© André Zúquete /
João Paulo Barraca Security 56

KX (public)

message

KX
-1 (private)

ciphertext messageencryption decryption

Mr. X

29

Asymmetric (block) ciphers

� Approaches: complex mathematic problems

� Discrete logarithms of large numbers

� Integer factorization of large numbers

� Knapsack problems

� Most common algorithms

� RSA

� ElGamal

� Elliptic curves (ECC)

� Other techniques with asymmetric key pairs

� Diffie-Hellman (key agreement)
© André Zúquete /
João Paulo Barraca Security 57

Diffie-Hellman key agreement

© André Zúquete /
João Paulo Barraca Security 58

a � random

Ya = αa mod q

send / publish Ya

receive Yb

Kab = Yb
a mod q

b � random

Yb = αb mod q

send / publish Yb

receive Ya

Kab = Ya
b mod q

q (large prime)
α (primitive root mod q)

Ya

Yb

30

Diffie-Hellman key agreement:
Man-in-the-Middle (MitM) attack

© André Zúquete /
João Paulo Barraca Security 59

a � random
Ya = αa mod q

send Ya

receive Yc

Kac = Yc
amod q

b � random
Yb = αb mod q

send Yb

receive Yc

Kcb = Yc
bmod q

c � random
Yc = αc mod q

send Yc

receive
Ya, Yb

Kac = Ya
cmod q

Kcb = Yb
cmod q

Ya

Yc

Yb

Yc

RSA (Rivest, Shamir, Adelman)

� Published in 1978
� Computational complexity

� Discrete logarithm
� Integer factoring

� Operations and keys
� K = (e, n)
� K-1 = (d, n)

� C = Pe mod n P = Cd mod
n

� C = Pd mod n P = Ce mod
n

� Key selection
� Large n (hundreds or thousands of bits)
� n = p×q p and q being large (secret) prime numbers
�

� Chose an e co-prime with (p-1)×(q-1)
� Compute d such that e×d ≡ 1 mod (p-1)×(q-1)
� Discard p and q
� The value of d cannot be computed out of e and n

• Only from p and q

© André Zúquete /
João Paulo Barraca Security 60

31

RSA: example

� p = 5 q = 11 (small primes)

� n = p x q = 55

� (p-1) × (q-1) = 40

� e = 3

� Co-prime with 40

� d = 27

� e × d ≡ 1 mod 40

� P = 26 (note that P, C∈[0, n-1])

� C = Pe mod n = 263 mod 55 = 31

� P = Cd mod n = 3127 mod 55 = 26
© André Zúquete /
João Paulo Barraca Security 61

ElGamal

� Published by El Gamal in 1984
� Similar to RSA

� But using only the discrete logarithm complexity

� A variant is used for digital signatures
� DSA (Digital Signature Algorithm)
� US Digital Signature Standard (DSS)

� Operations and keys (for signature handling)
� β = αx mod p K = (β, α, p) K-1 = (x, α, p)
� k random, k · k-1 ≡ 1 mod (p-1)
� Signature of M: (γ,δ) γ = αk mod p δ = k-1 (M - xγ) mod (p-1)
� Validation of signature over M: βγγδ ≡ αM (mod p)

� Problem
� Knowing k reveals x out of δ
� k must be randomly generated and remain secret

© André Zúquete /
João Paulo Barraca Security 62

32

Elliptic curve

� A curve described by an equation
�� � ��� � �� � �� � 	�� �
� � �

� Curves of this kind are symmetric to the X
axis

� And don’t have solution for all x values

© André Zúquete /
João Paulo Barraca Security 63

Operations on elliptic curves

� Sum of two points:

� C = A + B

© André Zúquete /
João Paulo Barraca Security 64

-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1 2 3

A

B

C

33

Operations on elliptic curves

� Sum of two equal points:

� C = 2A

© André Zúquete /
João Paulo Barraca Security 65

-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1 2 3

A

C

EC over finite fields

� A set of points satisfying the equation
�� � �� � �� � �	
��
	��

� The curve also includes a point at infinity

� All x and y values must belong to 0, � � 1

� q must be equal to

� ��, for a prime p (finite field ���)

� 2�, for a prime m (finite field ���)

� The elliptic curve is denominated �
���

© André Zúquete /
João Paulo Barraca Security 66

34

EC over finite fields: example

�� � �� � �	
��
	71�

© André Zúquete /
João Paulo Barraca Security 67

From https://en.wikipedia.org/wiki/Elliptic_curve

EC discrete logarithm problem

� Given an elliptic curve �
���,

a point G on that curve,
a point P which is an integer multiple of G,

find the integer x such that
xG = P

� For cryptographic operations, x will be the
private key and P the public key

© André Zúquete /
João Paulo Barraca Security 68

35

EC cryptography (ECC): curves’ definition

� Prime p � (p, a, b, G, n, h)

� Constants a and b of the EC equation

� A generator point (or base point) G

� The order n of G

• Normally prime

� A (small) co-factor h

• Given by
!

"
#�
���

© André Zúquete /
João Paulo Barraca Security 69

EC Diffie-Hellman (ECDH)

� Alice and Bob agree on EC curve

� (p, a, b, G, n, h)

� Alice chooses a random α

� And publishes Α � &'

� Bob chooses a random β

� And publishes Β � *'

� Both Alice and Bob compute K

� + � &Β								+ � *Α

© André Zúquete /
João Paulo Barraca Security 70

36

Recommended curves

� NIST, 1999

� 5 P curves over prime fields ��
• �� � �� � 3� � �

� 5 B curves over binary fields ���

• �� � �� � �� �	�� �	�

� b randomly generated

• SHA-1 hash of a seed

� 5 K (Koblitz) curves over binary fields ���

• �� � �� � �� �	��� �	1

© André Zúquete /
João Paulo Barraca Security 71

Length of n (bits) p (bits) m (bits)

161 – 223 192 163

224 – 255 224 233

256 – 383 256 283

384 – 511 384 409

≥ 512 521 571

Recommended curves

� IETF

� Daniel Bernstein’s Curve25519

• �� � �� �	486662	�� �	�	 ��
	�

• � � 2�00 	� 19

� Curve448

• �� � �� �	15632	�� �	�	 ��
	�

• � � 2334 	� 2��3 	� 1

© André Zúquete /
João Paulo Barraca Security 72

37

Randomization of asymmetric encryptions

� Non-deterministic (unpredictable) result of
asymmetric encryptions

� N encryptions of the same value, with the same key,
should yield N different results

� Goal: prevent the trial & error discovery of encrypted
values

� Technics

� Concatenation of value to encrypt with two values
• A fixed one (for integrity control)

• A random one (para randomization)

© André Zúquete /
João Paulo Barraca Security 73

Randomization of asymmetric encryptions:
OAEP (Optimal Asymmetric Encryption Padding)

© André Zúquete /
João Paulo Barraca Security 74

38

Digest functions

� Give a fixed-length value from a variable-length text
� Sort of text “fingerprint”

� Produce very different values for similar texts
� Cryptographic one-way hash functions

� Relevant properties:
� Preimage resistance

• Given a digest, it is infeasible to find an original text producing it

� 2nd-preimage resistance
• Given a text, it is infeasible to find another one with the same digest

� Collision resistance
• It is infeasible to find any two texts with the same digest
• Birthday paradox

© André Zúquete /
João Paulo Barraca Security 75

Digest functions

� Approaches
� Collision-resistente, one-way compression functions
� Merkle-Damgård construction

• Iterative compression
• Length padding

� Most common algorithms
� MD5 (128 bits)

• No longer secure! It’s easy to find collisions!

� SHA-1 (Secure Hash Algorithm, 160 bits)
• Also no longer secure … (collisions found in 2017)

� Other
• RIPEM
• SHA-2, aka SHA-256/SHA-512
• SHA-3, etc.

© André Zúquete /
João Paulo Barraca Security 76

IV

T1

digest

Tn

39

Message Authentication Codes (MAC)

� Hash, or digest, computed with a key
� Only key holders can generate/validate the MAC

� Used to authenticate messages
� M’ = M | MAC(M)

© André Zúquete /
João Paulo Barraca Security 77

M MAC

MAC ‘

=?

F(K)

F(K)

Message Authentication Codes (MAC):
Approaches

� Encryption of an ordinary digest
� Using, for instance, a symmetric block cipher

� Using encryption with feedback & error propagation
� ANSI X9.9 (or DES-MAC) with DES CBC (64 bits)

� Adding a key to the hashed data
� Keyed-MD5 (128 bits)

• MD5(K, keyfill, text, K, MD5fill)

� HMAC (output length depends on the function H used)

• H(K, opad, H(K, ipad, text))

• ipad = 0x36 B times opad = 0x5C B times

• HMAC-MD5, HMAC-SHA, etc.

© André Zúquete /
João Paulo Barraca Security 78

40

Authenticated encryption

� Encryption mixed with integrity control

� Error propagation

� Authentication tags

� Examples

� GCM (Galois/Counter Mode)

� CCM (Counter with CBC-MAC)

© André Zúquete /
João Paulo Barraca Security 79

GCM

� CTR mode encryption

� Successive multiplications
for integrity control
� Multiplications in GF(2n)

� H = Ek(0)

© André Zúquete /
João Paulo Barraca Security 80

41

Encryption + authentication

� Encrypt-then-MAC

� MAC is computed from cryptogram

� Encrypt-and-MAC

� MAC is computed from plaintext

� MAC is not encrypted

� MAC-then-Encrypt

� MAC is computed from plaintext

� MAC is encrypted

© André Zúquete /
João Paulo Barraca Security 81

P

EE

C MAC

P

EE

C MAC

P

EE

C

MAC

Digital signatures

� Goal
� Authenticate the contents of a document

• Ensure its integrity

� Authenticate its author
• Ensure the identity of the creator/originator

� Prevent origin repudiation
• Genuine authors cannot deny authorship

� Approaches
� Asymmetric encryption
� Digest functions (only for performance)

� Algorithms
Signing: Ax(doc) = info + E(Kx

-1, digest(doc+info))

Verification: info�Kx

D(Kx, Ax(doc)) ≡ digest(doc + info)

© André Zúquete /
João Paulo Barraca Security 82

42

Signing / verification diagrams

© André Zúquete /
João Paulo Barraca Security 83

wikipedia, http://en.wikipedia.org/wiki/Digital_signature

Digital signature on a mail:
Multipart content, signature w/ certificate

From - Fri Oct 02 15:37:14 2009

[…]

Date: Fri, 02 Oct 2009 15:35:55 +0100

From: =?ISO-8859-1?Q?Andr=E9_Z=FAquete?= <andre.zuquete@ua.pt>

Reply-To: andre.zuquete@ua.pt

Organization: IEETA / UA

MIME-Version: 1.0

To: =?ISO-8859-1?Q?Andr=E9_Z=FAquete?= <andre.zuquete@ua.pt>

Subject: Teste

Content-Type: multipart/signed; protocol="application/x-pkcs7-signature"; micalg=sha1; boundary="------------ms050405070101010502050101"

This is a cryptographically signed message in MIME format.

--------------ms050405070101010502050101

Content-Type: multipart/mixed;

boundary="------------060802050708070409030504"

This is a multi-part message in MIME format.

--------------060802050708070409030504

Content-Type: text/plain; charset=ISO-8859-1

Content-Transfer-Encoding: quoted-printable

Corpo do mail

--------------060802050708070409030504—

--------------ms050405070101010502050101

Content-Type: application/x-pkcs7-signature; name="smime.p7s"

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename="smime.p7s"

Content-Description: S/MIME Cryptographic Signature

MIAGCSqGSIb3DQEHAqCAMIACAQExCzAJBgUrDgMCGgUAMIAGCSqGSIb3DQEHAQAAoIIamTCC

BUkwggSyoAMCAQICBAcnIaEwDQYJKoZIhvcNAQEFBQAwdTELMAkGA1UEBhMCVVMxGDAWBgNV

[…]

KoZIhvcNAQEBBQAEgYCofks852BV77NVuww53vSxO1XtI2JhC1CDlu+tcTPoMD1wq5dc5v40

Tgsaw0N8dqgVLk8aC/CdGMbRBu+J1LKrcVZa+khnjjtB66HhDRLrjmEGDNttrEjbqvpd2QO2

vxB3iPTlU+vCGXo47e6GyRydqTpbq0r49Zqmx+IJ6Z7iigAAAAAAAA==

--------------ms050405070101010502050101--

© André Zúquete /
João Paulo Barraca Security 84

43

Blind signatures

� Signatures made by a “blinded” signer
� Signer cannot observe the signed contents

� Similar to a handwritten signature on an envelope containing a
document and a carbon-copy sheet

� They are useful for ensuring anonymity of the signed information
holder, while the signed information provides some extra
functionality

� Signer X knows who requires a signature (Y)

� X signs T1, but Y afterwards transforms it into a signature over T2

• Not any T2, a specific one linked to T1

� Requester Y can present T2 signed by X
• But it cannot change T2

• X cannot link T2 to the T1 that it observed when signing

© André Zúquete /
João Paulo Barraca Security 85

Chaum Blind Signatures

� Implementation using RSA

� Blinding

• Random blinding factor K

• k × k-1 ≡ 1 (mod N)

• m’ = ke × m mod N

� Ordinary signature (encryption w/ private key)

• Ax (m’) = (m’)d mod N

� Unblinding

• Ax (m) = k-1 × Ax (m’) mod

© André Zúquete /
João Paulo Barraca Security 86

