
1

Java Virtual Machine Security

© André Zúquete Security 1

Java 2 Security Model

� Java Virtual Machine (JVM)

� Java programs are implemented by a set of Java classes

• From different sources

• Not necessarily trusted

� Secure sandbox for executing Java programs

� Security capabilities

� Easily configurable security policy

� Easily extensible access control structure

� Extension of security checks to all Java programs

© André Zúquete Security 2

2

JVM sandbox model

� Creates a barrier around a Java execution environment

� Applications are executed within a sandbox bounds

� Cannot affect resources outside the sandbox

• i.e. can only access resources available to the sandbox

� Basic rules of sandbox

� Remote resource protection

• Enforced by remote system

� Local resource protection

• Enforced by local security manager

� JVM code and data protection

• Enforced by static and dynamic checking

© André Zúquete Security 3

Java byte code

� One cannot assume that
byte codes are produced by
a correct compiler!

� Byte codes can be produced by
malware

� The JVM must tackle wrong
or malicious byte codes

© André Zúquete Security 4

Java source code
(.java file)

Java byte code
(.class file)

CPU assembly

Java compiler (javac)

Java Virtual Machine (JVM)

3

Java Run-time Environment (JRE):
Security-related features

� Loads required classes

� Usually upon a class method
invocation

� Verifies the correctness of loaded
classes

� Checks consistency and integrity

� Compiles bytecodes

� Only for invoked methods

• Just-in-time

� Keeps original bytecodes

• For enforcing run-time validations

� Correct memory management

� Memory allocation when needed

� Automatic garbage collection

� Checks the correct execution of
classes’ code

� Run-time integrity validations

• Null pointer (ref)

• Type checking

• Dynamic (down)casting

• Array bounds, etc.

� Run-time security validations

• Access control

• Public, Package, Protected and Private
access levels

• Other permissions for Protection
Domains

� Confinement

� Isolation of Protection Domains

© André Zúquete Security 5

Protection domain

� A set of classes whose instances are granted the same
set of permissions

� Determined by the policy currently in effect

� JRE maintains a mapping from code (classes and
instances) to their protection domains

� Instantiation of Protection Domains
� ProtectionDomain (CodeSource, PermissionCollection);

� ProtectionDomain (CodeSource, PermissionCollection, ClassLoader, Principal[]);

� CodeSource (URL, Certificate[]);

© André Zúquete Security 6

4

Permissions

� Definitions of what is allowed or denied

� Subclasses of interface java.security.Permission

� Examples

� BasicPermission

• Hierarchical name and arbitrary (or boolean) action

• RuntimePermission, AWTPermission, ManagementPermission,
NetPermission, PropertyPermission, etc.

� FilePermission

• Pathname & action (read, write, execute, delete)

� SocketPermission

• Host + port + action (accept, connect, listen, resolve)

© André Zúquete Security 7

Security policies

� Each JRE maintains an installed security policy

� It determines the set of granted/denied authorizations

� Subclass of java.security.policy

� Installed policy

� There is always a policy installed (Policy Policy.getPolicy())

• JRE includes a default policy reference implementation

• Policy specified within one or more configuration files

• [java_home]/lib/security/default.policy

• Can be referenced by caller with getPolicy permission

� Can be overwritten (void Policy.setPolicy(Policy))

• Requires a setPolicy permission

• The source location for the policy information utilized by the Policy
object is up to the Policy implementation

© André Zúquete Security 8

5

Security manager

� At most one per JVM

� Enforces a security policy for an application

• What is allowed and denied

� It helps to check whether an action is allowed before requesting it

• In the context of the calling thread

� Class SecurityManager of java.lang

� Default run-time security manager

� Can be redefined

• but requires runtime permission setSecurityManager

• This prevents malicious classes to overrun an installed security manager

� Many checkXXX methods

• For checking authorization for specific actions

void checkRead (String file)

• Uses the AccessController class and the method checkPermissions

© André Zúquete Security 9

AccessController

� An abstract class used for:

� Decide whether an access to a critical system resource is to be
allowed or denied

• According to the security policy currently in effect

FilePermission p = new FilePermission("/temp/testFile", "read“);

AccessController.checkPermission(p);

� Mark code as being privileged

• Affecting subsequent access determinations

� Obtaining a snapshot of the current calling context so access-
control decisions from a different context can be made with
respect to the saved context

© André Zúquete Security 10

6

Dynamic class loading:
Class loaders

� Primordial class loader

� Critical part of VM

• Trusted VM component, defined in JVM specification

� Prevents name spoofing of java.* library classes

� Additional class loaders

� Defined by users/applications

• They can help application to locate and download classes’ contents

• But the bytecodes of classes are installed by the VM class loader

� Each one defines separate namespace environment

• Each class is tagged with class loader that loaded it

• Classes in one namespace cannot interact with classes in other namespaces

� Allows different versions of same class name to co-exist

• Typically associated with code from different origins

© André Zúquete Security 11

Dynamic class loading:
Overview (1/2)

� Class loading security policies

� No class loading of packages java.* other than from the canonical
local repository

• To avoid the replacement of the basic Java classes

• Primordial class loader ensures this

� Classes from different network servers do not interact

• Different domains

• No interference between “programs” of different sources

© André Zúquete Security 12

7

Dynamic class loading:
Overview (2/2)

� Class loading steps
� Locate the requested binary class

• .class file

� Parse/translate into internal data structures for emulation

� Enforce the naming conventions
• Domain, package, classes, fields/methods

• Accessibility levels: public, private, package

� Check correctness of binary class
• File integrity check

• Class integrity check

• Bytecode integrity check

• Runtime integrity check

� Perform any translation of code and metadata
• Make the method ready to be run

� Initialize memory and pass control to emulation engine

© André Zúquete Security 13

Dynamic class loading:
Class loader checks

� File integrity check
� Magic number, proper formats used
� Component declared and actual sizes

� Class integrity check
� Has superclass and is not final
� No override of final superclass method
� Methods and fields have legal names and signatures

� Bytecode integrity check
� Data-flow analysis
� Stack checking
� Static type checking for method arguments and bytecode

operands

� Runtime integrity checks
� Verifications on method calls

© André Zúquete Security 14

8

Subjects, Principals and Credentials

� Subjects (javax.security.auth.Subject) aggregate info
related with a single (authenticated) entity

� Identities

� Credentials (public and private)

� Principals (java.security.Principal) encapsulate identities

� Bind names to Subjects

� Credentials can be any kind of object

© André Zúquete Security 15

