Introduction

Security

Security: Objectives

- Defense against non-authorized activities (adversaries)
 - Initiated by someone "from inside"
 - Initiated by someone "from outside"
- > Types of illegal activities:
 - Access to information
 - Information modification
 - Resource usage
 - · CPU, memory, printer, network, etc.
 - Denial of Service (DoS)
 - Vandalism
 - Interference with the normal system behavior without any benefit for the attacker

Security

Security in computing systems: Complex problems

- ▷ Computers can do a lot of damage in a short time frame
 - They manage an always growing amount of data/information
 - · They process and communicate very fast

- · Systems are getting more complex with time
- Time-to-market is each time shorter
- Networks allow:
 - · Anonymous (?) attacks from anywhere
 - · Automatic propagation of cyberplagues
 - · The existence and exploitation of hostile hosts and applications
- - Because they are not aware of the problems and solutions
 - Because they take risks

Security

3

Security: Pragmatic approach

- - · Cost-efficiency balance
- Security is expensive
 - Dedicated technology, skilled people
 - · Use only the minimum required
- > Protection, value e punishment
 - · Good protection for the most frequent attacks
 - Less interference with daily work than the damage caused by attackers
 - Police and courts for tracking and prosecuting attackers
 - It is critical to avoid the notion of total impunity

Security

Security lexicon

- - · A system weakness that makes it sensible to attacks
 - Design / development / installation
- - · A set of steps that lead to the execution of illegal activities
 - · Usually exploiting vulnerabilities
- - Damage resulting from an attack
- ▷ Defense
 - Set of policies and mechanisms aiming at
 - · Reducing the amount of vulnerabilities
 - · Detect as fast as possible actual and past attacks
 - · Reduce the risks of systems

Security

5

Security risks

- ▷ Information, time and money
 - Destruction or tampering of information
- Confidentiality
 - Non-authorized access to information
- ▶ Privacy
 - Non-authorized gathering of personal information
 - Data warehousing on personal information
- Resource availability
 - · Disruption of computing systems / networks
- ▶ Impersonation
 - Of people / of services
 - · Non-authorized exploitation of personal accounts / profiles

© André Zúquete / João Paulo Barraca

Security

Main vulnerability sources

https://www.pinterest.pt/pin/457256168394094122/

- ▶ People
 - · Ignorant or careless
 - Hostile

Applications with bugs

Root kits help newcomers to exploit well-known vulnerabilities

Malware installation

· Trojan horses, worms, virus

Defective administration

- · Systems get more complex as they evolve
- · Security restrictions vs. flexible operation
 - Most people cannot understand security jargon in order to manage security configurations
 Default configurations may not be the most secure ones
- Communications over uncontrolled/unknown/unsafe network links

Security

Security level offered by a computer

- Depends on:
 - · Available security policies
 - Correctness and effectiveness of their specification / implementation
- Evaluation criteria:
 - NCSC Trusted Computer System Evaluation Criteria (TCSEC, Orange Book)
 - Classes: **D**, **C** (1, 2), **B** (1, 2, 3) e **A** (1)
 - · D: insecure (minimum protection level)
 - · A1: most secure
 - · Very demanding and expensive protection policies
 - · Formal validation of specification
 - · Highly supervised implementation
 - EC Information Technology Security Evaluation Criteria (ITSEC)
 - · Levels: E1 to E6
 - · Formal specification level
 - · Correctness of implementation

Security

12

Security policies for distributed systems

- Must encompass several hosts and networks
 - Security Domains
 - · Definition of the set of hosts and networks of the domain
 - · Definition of the set of accepted/authorized users
 - · Definition of the set of accepted/not accepted activities
 - Security gateways
 - · Definition of the set of allowed in-out interactions
- > Perimeter defense vs. Defense in depth

Security

Attacks to distributed systems

Attacks to hosts

- Stealing
- Intrusion
- Impersonation (of users)
- Denial of service

Attacks to networks

- Packet inspection
- Packet tampering / injection
- Traffic interception
- · Traffic replaying
- Host impersonation
- Denial of service (jamming, flooding, deception, etc.)

Covert channels

© André Zúquete / João Paulo Barraca

Security

14

Attack models

- > Target-specific attacks
 - Conceived for a particular host / network
 - Idealized and conducted in real-time by specialists
- > Generic, autonomous attacks
 - Conceived for exploiting well-known, common vulnerabilities
 - Coded for many scenarios and targets
 - Mean survivability time
 - · Time between two consecutive automatic attacks
 - There are "network sensors" that help to compute it

© André Zúquete / João Paulo Barraca

Security

Security:

Mechanisms for distributed systems (2/5)

- > Trusted Operating Systems
 - Security levels, certification
 - · Secure execution environments for servers
 - Sandboxing / virtual machines

- · Traffic control between networks
- Monitoring (traffic load, etc.)

Secure communications / VPNs

- · Secure channels over insecure, public networks
- Secure extension of organizational networks

Security

18

Security:

Mechanisms for distributed systems (3/5)

- > Authentication
 - Local
 - Remote (network authentication)
 - Single Sign-On

▷ Certification Authorities / PKI

· Management of public key certificates

- · Privacy / confidentiality of network data
- · Privacy / confidentiality of long-term stored data

Security

Security:

Mechanisms for distributed systems (4/5)

- - Detention of forbidden / abnormal activities
 - Network-Based / Host-based
- > Vulnerability scanners
 - · Scanning for problem fixing or exploitation
 - Network-based / Host-based

Penetration testing

- · Vulnerability assessment
- · Demo penetration attempts
- · Testing of installed security mechanisms
- · Assessment of badly implemented security policies

Security

20

Security:

Mechanisms for distributed systems (5/5)

- - Detection of virus, worms or other cyber plagues
- Security administration
 - · Development of security policies
 - · Distributed enforcement of policies
 - Co-administration / outsourcing of security services

- · Capacity to detect and react to security incidents in real-time
- · Means for a rapid and effective incident reaction

Security