ISO/IEC 14443-3

Initialization and anticollision for Type A and Type B tags

ISO/IEC 14443:

Identification cards - Contactless integrated circuit(s) cards - Proximity cards

- Physical characteristics
- 2. Radio frequency power and signal interface
- 3. Initialization and anticollision
- 4. Transmission protocol

© André Zúquete

Identification with RFID

Terminology

- Anticollision loop
 - Algorithm to prepare the communication with one or more tags in the reader range
 - Bit collision detection protocol
 - A collision occurs when two tags transmit complementary bits
 - Upon detection, the reader initiates a cascaded recognition of all nearby tags
 - Each tag has a unique ID (UID or PUPI) for disambiguation
- Time slot protocol
 - Reader→tag and tag→reader messages are sent on specific time slots
 - Allows a reader to communicate with one or more tags

© André Zúquete

Identification with RFID

3

Terminology

- Frame
 - Series of bits containing
 - Start and end delimiters
 - Data bits
 - [optional] error correcting bits
- Unique IDs
 - Unique binary values that identify tags
 - Type A tags UID
 - 4, 7 or 10 bytes (32, 56 or 80 bits)
 - Single, double or triple size
 - Type B tags UID
 - 4 bytes (32 bits)

© André Zúquete

Identification with RFID

Terminology

- Single size Type A UIDs
 - Fixed
 - First byte = 08H
 - Random
 - First byte = proprietary fixed number
- Double/triple size Type A UIDs
 - □ Fixed or random, depends on manufacturer
 - First byte = Manufacturer ID

© André Zúquete

Identification with RFID

5

Acronyms

- PICC (Proximity Integrated Chip Card)
 - RFID tag
- PCD (Proximity Coupling Device)
 - RFID reader
- AFI (Application Family Identifier)
 - It helps the reader to select tags suitable for a particular application
- PUPI (Pseudo-Unique PICC Identifier)
 - Permanent UID; or
 - Temporary, random UID after power-on reset

© André Zúquete

Identification with RFID

Type A tags: REQA command

- All nearby tags respond with ATQA
 - □ ATQA = UID size + bit frame anticollision bit
 - \bigcirc 0+1 collisions \rightarrow 1
 - Reader is able to learn the maximum UID size:
 - Single (up to 32 bits): 0 0
 - Double (up to 56 bits): 0 1
 - Triple (up to 80 bits): 1 0

© André Zúquete

Identification with RFID

9

Type A tags:

Anticollision loop (initial step)

- Reader sends (probing) SELECT
 - □ NVB = '20'
 - No part of UID transmitted
 - All nearby tags send their UID and remain READY
- No collision
 - Reader gets only one UID
 - Reader sends SELECT + UID
 - NVB = '70'
 - Complete 5-byte portion of UID transmitted
 - Tags sends SACK and becomes ACTIVE
- Collision
 - Reader gets many overlapped UIDs
 - Reader starts anticollision loop to SELECT a single tag

© André Zúquete

Identification with RFID

Type A tags: Anticollision loop (next steps) Reader sends (tentative) SELECT NVB = initial identical bits of all UIDs + 1 tentative bit NVB bits of UID transmitted All nearby tags with a UID conforming with NVB bits send their UID and remain $\ensuremath{\mathsf{READY}}$ No answer Keep NVB Use the other value for tentative bit Send tentative SELECT again Single UID answer Reader sends SELECT + UID NVB = 70 Complete UID transmitted Tags sends SACK and becomes ACTIVE Multiple UID answers (collision) Increase NVB Use initial value for tentative bit Send tentative SELECT again © André Zúquete Identification with RFID 11

Type B tags:

Anticollision sequence

- Strategies
 - Time-slotted responses
 - Tags respond in different time slots
 - Probabilistic answers
 - Tags not always respond to a REQB/WAKE-UP
- Combinations
 - Probabilistic
 - $\begin{array}{ll} \bullet & \text{Repetitive single slot prompt with response} \\ \text{probability} \leq 1 \end{array}$
 - Pseudo-deterministic
 - Multiple slots with scanning of all them
 - Dynamic mixture of both

© André Zúquete

Identification with RFID

Type B tags: Commands (1/2)

- REQB (AFI, N response slots, tag selector)
 - □ AFI = $0 \rightarrow \text{all-apps}$, AFI $\neq 0 \rightarrow \text{app-specific}$
 - Selects all IDLE and READY tags, possibly HALTed tags
 - All selected tags in range may send an ATQB and become Ready-Declared
 - Until sending ATQB remain in the Ready-Requested sub-state
- Slot-MARKER (slot mark)
 - All Ready-Requested tags in range matching the slot-marker send ATQB and become Ready-Declared
 - ATQB = PUPI + App Data + Protocol Info
 - Protocol Info:
 - Bit rate capability
 - Maximum frame size
 - Protocol type (ISO/IEC 14443-4 / other)
 - Frame Waiting time Integer
 - Frame Option (Node ADdress / Card IDentifier support)

© André Zúquete

Identification with RFID

15

Type B tage:

Commands (2/2)

- ATTRIB (PUPI, Param[3], CID)
 - Used to select a tag for a longer interaction with the reader
 - Tag replies with ATA
 - □ ATA = CID + optional higher layer response
 - Tag changes from state Ready-Declared to ACTIVE
 - CID (Card IDentifier)
 - [0,14], unique ID of all ACTIVE cards
- HALT (PUPI)
 - The Ready-Declared or ACTIVE tag with the given PUPI becomes HALTed

© André Zúquete

Identification with RFID