Authentication protocols

© André Zúquete

Identification, Authentication and Authorization

.

Identity attributes

- > Set of attributes for setting apart individuals
 - Name
 - Numerical identifiers
 - · Fixed for life
 - · Variable with context
 - Address
 - Photo
 - Identity of relatives
 - · Usually parents

© André Zúquete

Identification, Authentication and Authorization

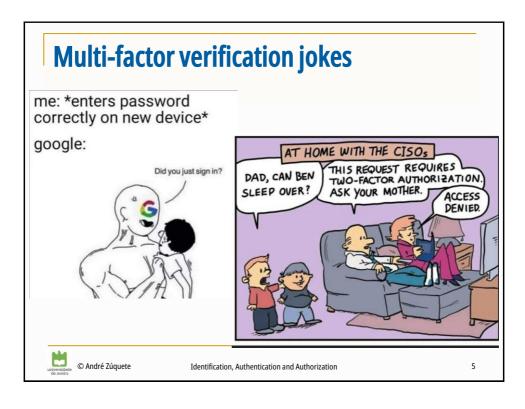
Authentication: Definition

- > Proof that an entity has a claimed identity attribute
 - —Hi, I'm Joe
 - -Prove it!
 - —Here are my Joe's credentials
 - -Credentials accepted/not accepted
 - —Hi, I'm over 18
 - -Prove it!
 - —Here is the proof
 - —Proof accepted/not accepted

© André Zúquete

Identification, Authentication and Authorization

3


Authentication: proof types

- Something we know
 - A secret memorized (or written down...) by Joe
- > Something we have
 - An object/token solely held by Joe
- Something we are
 - Joe's Biometry
- - Join or consecutive use of different proof types

© André Zúquete

Identification, Authentication and Authorization

Authentication: goals

- > Authenticate interactors
 - People, services, servers, hosts, networks, etc.
- > Enable the enforcement of authorization policies and mechanisms
 - Authorization ⇒ authentication
- > Facilitate the exploitation of other securityrelated protocols
 - e.g. key distribution for secure communication

© André Zúquete

Identification, Authentication and Authorization

Authentication: requirements

> Trustworthiness

- How good is it in proving the identity of an entity?
- How difficult is it to be deceived?
- Level of Assurance (LoA) (NIST, eIDAS, ISO 29115)
 - LoA 1 Little or no confidence in the asserted identity
 - LoA 2 Some confidence in the asserted identity
 - LoA 3 High confidence in the asserted identity
 - LoA 4 Very high confidence in the asserted identity

No disclosure of secrets used by legitimate entities

© André Zúquete

Identification, Authentication and Authorization

7

Authentication: requirements

▶ Robustness

- Prevent attacks to the protocol data exchanges
- Prevent on-line DoS attack scenarios
- · Prevent off-line dictionary attacks

⊳ Simplicity

• It should be as simple as possible to prevent entities from choosing dangerous shortcuts

> Deal with vulnerabilities introduced by people

• They have a natural tendency to facilitate or to take shortcuts

© André Zúquete

Identification, Authentication and Authorization

Authentication: Entities and deployment model

- > Entities
 - People
 - Hosts
 - Networks
 - Services / servers

> Deployment model

- · Along the time
 - · Only when interaction starts
 - · Continuously along the interaction
- Directionality
 - · Unidirectional
 - · Bidirectional (or mutual)

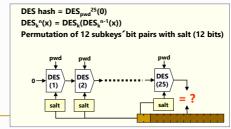
© André Zúquete

Identification, Authentication and Authorization

9

Authentication interactions: Basic approaches

- Direct approach
 - Provide credentials
 - Wait for verdict
 - · Authenticator checks credentials against what it knows
- - Get challenge
 - Provide a response computed from the challenge and the credentials
 - · Wait for verdict
 - Authenticator checks response for the challenge provided and the credentials it knows



© André Zúquete

Identification, Authentication and Authorization

Authentication of people: Direct approach w/ known password

- > A password is matched with a stored value
 - For a claimed identity (username)
- ▷ Personal stored value:
 - Transformed by a unidirectional function
 - · Key Derivation Function (KDF)
 - · Preferably slow!
 - Bcrypt, scrypt, Argon2, PBKDF2
 - UNIX: DES hash + salt
 - Linux: KDF + salt
 - · Windows: digest function

© André Zúquete

Identification, Authentication and Authorization

- Advantage
 - Simplicity!
- ▶ Problems
 - Usage of predictable passwords
 - · They enable dictionary attacks
 - Different passwords for different systems
 - To prevent impersonation by malicious admins
 - · But our memory has limits!
 - Exchange along insecure communication channels
 - · Eavesdroppers can easily learn the password
 - e.g. Unix remote services, PAP

TOP 15 2019 by Splashdata

1 - 123456
2 - 123456789
3 - qwerty
4 - password
5 - 12345678
7 - 12345678
7 - 12345678

7 - 12345 8 - iloveyou 9 - 111111

10 - 123123 11 - abc123

12 - qwerty123

13 - 1q2w3e4r 14 - admin

PAP 15 - qwertyuiop source: https://www.teampassword.com/blog/top-50-worst-passwords-of-2019

© André Zúquete

Identification, Authentication and Authorization

Image https://www.pinterest.com/networkboxusa/it-humor

Authentication of people: Direct approach with biometrics

- > People get authenticated using body measurements
 - Biometric samples or features
 - Common modalities
 - · Fingerprint
 - · Facial recognition
 - · Palm print
 - · Iris scan
 - · Voice recognition
 - · DNA
- Measures are compared with personal records
 - Biometric references (or template)
 - · Registered in the system with a previous enrolment procedure

© André Zúquete

Identification, Authentication and Authorization

15

Biometrics: advantages

- - Just be their self
- People cannot chose weak passwords
 - · In fact, they don't chose anything
- Credentials cannot be transferred to others
 - One cannot delegate their own authentication
- Stealth identification
 - · Interesting for security surveillance

© André Zúquete

Identification, Authentication and Authorization

Biometrics: problems

- Usability
 - · Comfort of people, ergonomic
 - · Exploitation scenario
- Biometrics are still being improved
 - · In many cases they can be easily cheated
 - · Liveness detection
- People cannot change their credentials
 - Upon their robbery
- ▷ It can be risky for people
 - · Removal of body parts for impersonation of the victim

© André Zúquete

Image source: https://biometrics.mainguet.org/types/tongue.htm Identification, Authentication and Authorization

Rejected Biometric

Technologie

Biometrics: problems

- Sensitivity tuning
 - Reduction of FRR (annoying)
 - · Reduction of FAR (dangerous)
 - Tuning is mainly performed with the target population
 - · Not with attackers!
- Not easy to deploy remotely
 - · Requires trusting the remote sample acquisition system
- - Diseases
- ▷ Credentials cannot be (easily) copied to others
 - · In case of need in exceptional circumstances

© André Zúquete

Identification, Authentication and Authorization

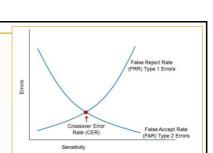


Image source: http://www.pearsonitcertification.com/articles/article.aspx?p=1718488

Authentication of people: Direct approach with OTPs

- - Credential that can be used only once
- > Advantage
 - OTPs can be eavesdropped
 - Eavesdroppers cannot impersonate the OTP owner
 - True for passive eavesdroppers
 - · False for active attackers!

© André Zúquete

Identification, Authentication and Authorization

19

Authentication of people: Direct approach with OTPs

- > Problems
 - Interactors need to know which password they should use at different occasions
 - · Requires some form of synchronization
 - People may need to use extra resources to maintain or generate one-time passwords
 - · Paper sheets
 - Computer programs
 - · Special devices, etc.

© André Zúquete

Identification, Authentication and Authorization

Authentication of people: OTPs and secondary channels

- > OTPs are codes sent through secondary channels
 - A secondary channel is a channel that is not the one were the code is going to be used
 - · SMS, email, Twitter, Firebase, QR codes, NFC, etc.
 - · The secondary channel provides the synchronization
 - · Just-in-time provision of OTP
- > Two authentications are possible
 - Confirm a secondary channel provided by a profile owner
 - · In order to trust that that channel belongs to the profile owner
 - Authenticate the owner of a profile
 - · Which is bound to a secondary channel

© André Zúquete

Identification, Authentication and Authorization

21

Authentication of people: OTPs produced from a shared key

- → HOTP (Hash-based One Time Password, RFC 4226)
 - OTP generated from a counter and a shared key
 - · Counters are updated independently
- → TOTP (Time-based One Time Password, RFC 6238)
 - OTP generated from a timestamp and a shared password
 - TOTP is HOTP with timestamps instead of counters
 - · Clocks need a rough synchronization

© André Zúquete

Identification, Authentication and Authorization

HOTP (HMAC-based one-time password, RFC 4226)

- Numeric OTP computed from shared key K and synchronized counter C
 - · Hash key and counter
 - · And increase counter
 - From hash, get a (floating) portion of 31 contiguous bits
 - · Dynamic Binary Code (DBC)
 - Compute a d-long decimal number
 - d ≥ 6
- ▶ Issues
 - · Counter synchronization upon a failure
 - If the authenticator keeps it after a failure, exhaustive search attacks are viable
 - · If the authenticator always increments it, DoS attacks are possible
 - Acceptance windows
 - · Mitigates minor desynchronizations, but decreases security

© André Zúquete

Identification, Authentication and Authorization

23

TOPT (Time-based one-time password, RFC 6238)

> HOTP with a counter derived from time

$$\triangleright C_T = \left\lfloor \frac{T - T_0}{T_r} \right\rfloor$$

- T initial time
- T_0 initial time
- T_x time interval (default: 30 seconds)
- $\triangleright \text{TOTP}(K) = \text{HOTP}(K, C_T)$

© André Zúquete

Identification, Authentication and Authorization

Token-based OTP generators: RSA SecurID

- Personal authentication token
 - Or software modules for handhelds (PDAs, smartphones, etc.)
- > It generates a unique number at a fixed rate
 - Usually one per minute (or 30 seconds)
 - Bound to a person (User ID)
 - Unique number computed with:
 - · A 64-bit key stored in the token
 - The actual timestamp
 - · A proprietary digest algorithm (SecurID hash)
 - · An extra PIN (only for some tokens)

© André Zúquete

Identification, Authentication and Authorization

25

RSA SecurID

- ▷ OTP-based authentication
 - A user combines their User ID with the current token number
 OTP = User ID, Token Number
- ▷ An RSA ACE Server does the same and checks for match
 - It also knows the person's key stored in the token
 - There must be a synchronization to tackle clock drifts
 - · RSA Security Time Synchronization
- Robust against dictionary attacks
 - Keys are not selected by people

© André Zúquete

Identification, Authentication and Authorization

Challenge-response approach: Generic description

- > The authenticator provides a challenge
- > The entity being authenticated transforms the challenge
 - · With its authentication credentials
- > The authenticator checks the response
 - Produces a similar result and checks if they match
 - Transforms the result and checks if it matches the challenge or a related value

challenge
response = f(challenge, credentials)

© André Zúquete

Identification, Authentication and Authorization

2.

Challenge-response approach: Generic description

- ▶ Advantage
 - Authentication credentials are not exposed
- > Problems
 - People may require means to compute responses
 - · Hardware or software
 - The authenticator may have to have access to shared secrets
 - · How can we prevent them from using the secrets elsewhere?
 - · Offline dictionary attacks
 - · Against recorded challenge-response dialogs
 - · Can reveal secret credentials (passwords, keys)

© André Zúquete

Identification, Authentication and Authorization

Challenge-response protocols: selection of challenges

- ▷ Challenges cannot be repeated for the same entity
 - Same challenge → same response
 - An active attacker can impersonate a user using a previously recorded protocol run

Challenges should be nonces

- · Nonce: number used only once
- Stateful services can use counters
- Stateless services can use (large) random numbers
- · Time can be used, but with caution
 - · Because one cannot repeat a timestamp

© André Zúquete

Identification, Authentication and Authorization

29

Authentication of people: Challenge-response with smartcards

- > Authentication credentials
 - The smartcard
 - · e.g. Citizen Card
 - · The private key stored in the smartcard
 - The PIN to unlock the private key

The authenticator knows

- The corresponding public key
- · Or some personal identifier
 - Which can be related with a public key through a (verifiable) certificate

© André Zúquete

Identification, Authentication and Authorization

RN.

Authentication of people: Challenge-response with smartcards

Authenticator
(knows K_{pub})

response = E(K_{priv}, challenge)

Card Owner
(has card, knows PIN)

Kpriv

- Signature-based protocol
 - · The authenticator generates a random challenge
 - · Or a value not used before
 - The card owner ciphers the challenge with their private key
 - · PIN-protected
 - The authenticator decrypts the result with the public key
 - · If the output matches the challenge, the authentication succeeds
- Encryption-based protocol
 - Possible when private key decryption is available

© André Zúquete

Identification, Authentication and Authorization

31

Authentication of people: Challenge-response with memorized password

- > Authentication credentials
 - Passwords selected by people
- > The authenticator knows
 - All the registered passwords; or
 - A transformation of each password
 - · Preferable option
 - Preferably combined with some local value (salt)
 - Preferable using a tunable function (e.g. iterations)

© André Zúquete

Identification, Authentication and Authorization

Authentication of people: Challenge-response with memorized password

- > The authenticator generates a random challenge
- > The person computes a function of the challenge and password
 - e.g. a joint digest: response = digest (challenge, password)
 - e.g. an encryption response = E_{password} (challenge)
- - If the output matches the response (or the challenge), the authentication succeeds
- - · CHAP, MS-CHAP v1/v2, S/Key

© André Zúquete

Identification, Authentication and Authorization

33

PAP & CHAP (RFC 1334, 1992, RFC 1994, 1996)

- ▶ Protocols used in PPP (Point-to-Point Protocol)
 - Unidirectional authentication
 - Authenticator is not authenticated
- > PPP developed in 1992
 - Mostly used for dial-up connections
- > PPP protocols are used by PPTP VPNs
 - e.g. vpn.ua.pt

© André Zúquete

Identification, Authentication and Authorization

PAP & CHAP (RFC 1334, 1992, RFC 1994, 1996)

- ▶ PAP (PPP Authentication Protocol)
 - Simple UID/password presentation
 - Insecure cleartext password transmission

Aut \rightarrow U: authID, challenge U \rightarrow Aut: authID, MD5(authID, pwd, challenge), identity Aut \rightarrow U: authID, OK/not OK

The authenticator may require a reauthentication anytime

© André Zúquete

Identification, Authentication and Authorization

35

MS-CHAP (Microsoft CHAP) (RFC 2433, 1998, RFC 2759, 2000)

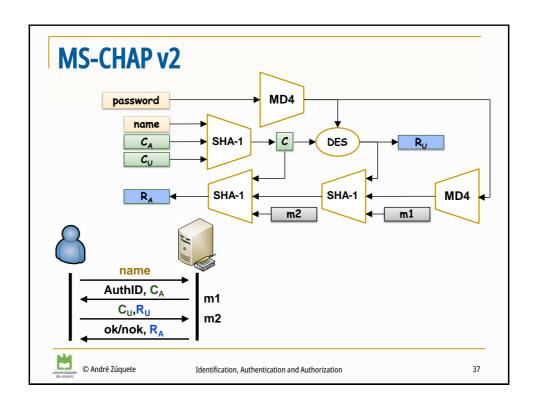
 $A \rightarrow U$: authID, **C** $U \rightarrow A$: **R1**, **R2**

A →U: OK/not OK

 $R1 = DES_{LMPH}(C)$ $R2 = DES_{NTPH}(C)$

LMPH = DEShash(pwd') NTPH = MD4(pwd)

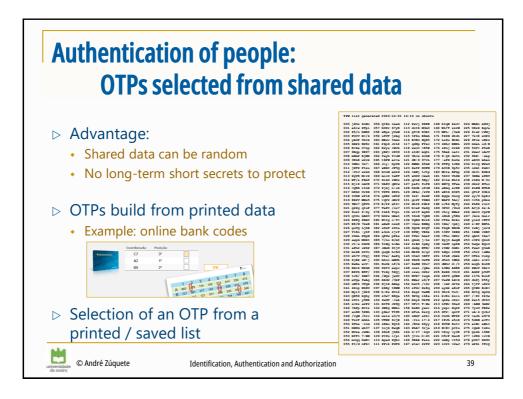
pwd' = capitalized(pwd)


A \rightarrow U: authID, $C_A \leftarrow m1$ U \rightarrow A: C_U , R1A \rightarrow U: OK/not OK, R2R1 = DES_{PH} (C) C = SHA(C_U , C_A , username) PH = MD4(password) R2 = SHA(SHA(MD4(PH), R1, m1), C, m2)

- Mutual authentication
- Passwords can be updated

© André Zúquete

Identification, Authentication and Authorization



Authentication of people: Generation of OTPs with challenges

- > OTPs can be produced from a challenge received
 - The fundamental protocol is password-based
 - But passwords are OTPs
 - OTPs are produced from a challenge
 - One can use several algorithms to handle OTPs

Identification, Authentication and Authorization

S/Key (RFC 2289, 1998)

- > Authentication credentials
 - A password (pwd)
- > The authenticator knows
 - The last used one-time password (OTP)
 - The last used OTP index
 - · Defines an order among consecutive OTPs
 - An seed value for the each person's OTPs
 - · The seed is similar to a UNIX salt

Identification, Authentication and Authorization

S/Key setup

- > The authenticator defines a random seed

```
OTP_n = h^n (seed, pwd), where h = MD4
```

- Some S/Key versions also use MD5 or SHA-1
- authentication credentials

Identification, Authentication and Authorization

41

S/Key authentication protocol

- - They act as a challenge
- - · And selects the last one as result
 - result = OPT_{index-1}
- ▷ The authenticator computes h (result) and compares the result with the stored OPT_{index}
 - If they match, the authentication succeeds
 - Upon success, stores the recently used index & OTP
 - index-1 and OPT_{index-1}

© André Zúquete

Identification, Authentication and Authorization

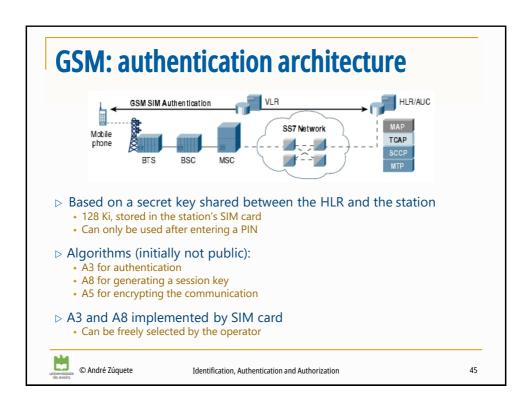
S/Key

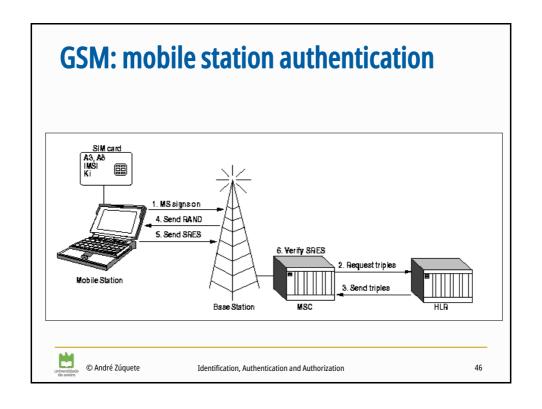
- ▶ Advantages
 - Users passwords are unknown to authenticators
 - OTPs can be used as ordinary passwords
- - People need an application to compute OTPs
 - Passwords can be derived using dictionary attacks
 - From data stored in authenticators
 - · From captured protocol runs

© André Zúquete

Identification, Authentication and Authorization

43


Authentication of people: Challenge-response with shared key


- - Robust against dictionary attacks
 - Requires some token to store the key
- - GSM

© André Zúquete

Identification, Authentication and Authorization

GSM: mobile station authentication

- MSC fetches trio from HLR
 - RAND, SRES, Kc
 - · In fact more than one are requested
- ▶ HLR generates RAND and corresponding trio using subscriber's Ki
 - RAND, random value (128 bits)
 - SRES = A3 (Ki, RAND) (32 bits)
 - Kc = A8 (Ki, RAND) (64 bits)
- - Recommended by the GSM Consortium
 - [SRES, Kc] = COMP128 (Ki, RAND)

© André Zúquete

Identification, Authentication and Authorization

47

Host authentication

- - · DNS name, IP address, MAC address, other
 - Extremely weak, no cryptographic proofs
 - · Nevertheless, used by many services
 - · e.g. NFS, TCP wrappers
- With cryptographic keys
 - Keys shared among peers
 - · With an history of usual interaction
 - · Per-host asymmetric key pair
 - · Pre-shared public keys with usual peers
 - · Certified public keys with any peer

© André Zúquete

Identification, Authentication and Authorization

Service / server authentication

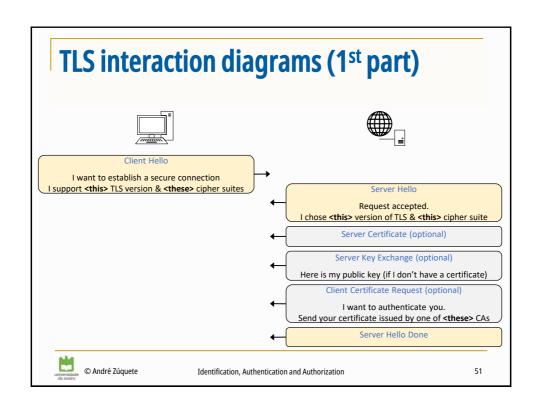
- - All co-located services/servers are indirectly authenticated
- > Per-service/server credentials
 - Shared keys
 - · When related with the authentication of people
 - The key shared with each person can be used to authenticate the service to that person
 - Per-service/server asymmetric key pair
 - · Certified or not

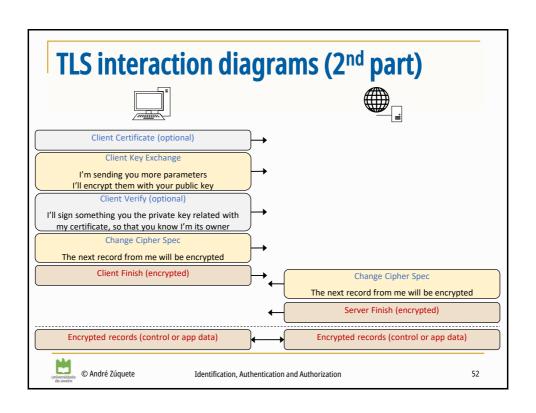
© André Zúquete

Identification, Authentication and Authorization

49

TLS (Transport Layer Security, RFC 8446)


- Secure communication protocol over TCP/IP
 - Created upon SSL V3 (Secure Sockets Layer)
 - Manages per-application secure sessions over TCP/IP
 - · Initially conceived for HTTP traffic
 - · Actually used for other traffic types
- Security mechanisms
 - Communication confidentiality and integrity
 - · Key distribution
 - Authentication of communication endpoints
 - · Servers (or, more frequently, services)
 - · Client users
 - · Both with asymmetric key pairs, typically with certified public keys



© André Zúquete

Identification, Authentication and Authorization

Image source: https://hpbn.co/transport-layer-security-tls/

SSH (Secure Shell, RFC 4251)

- - Manages secure consoles over TCP/IP
 - · Initially conceived to replace telnet
 - · Actually used for other applications
 - · Secure execution of remote commands (rsh/rexec)
 - · Secure copy of contents between machines (rcp)
 - · Secure FTP (sftp)
 - · Creation of arbitrary secure tunnels (inbound/outbound/dynamic)

Security mechanisms

- · Communication confidentiality and integrity
 - Key distribution
- Authentication of communication endpoints
 - · Servers / machines
 - · Client users
 - · Both with different techniques

© André Zúquete

Identification, Authentication and Authorization

53

SSH authentication mechanisms

- > Server: with asymmetric keys pair
 - Inline public key distribution
 - · Not certified!
 - · Clients cache previously used public keys
 - · Caching should occur in a trustworthy environment
 - · Update of a server's key raises a problem to its usual clients
- - Username + password
 - By default
 - Username + private key
 - · Upload of public key in advance to the server

© André Zúquete

Identification, Authentication and Authorization

Single Sign-On (SSO)

- ▶ Unique, centralized authentication for a set of federated services
 - The identity of a client, upon authentication, is given to all federated services
 - The identity attributes given to each service may vary
 - The authenticator is called Identity Provider (IdP)
- Examples
 - SSO authentication @ UA
 - · Performed by a central IdP (idp.ua.pt)
 - The identity attributes are securely conveyed to the service accessed by the user

© André Zúquete

Identification, Authentication and Authorization

55

Authentication metaprotocols

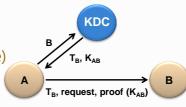
- Generic authentication protocols that encapsulate other authentication protocols
- - EAP (Extensible Authentication Protocol)
 - · Used in 802.1X (WiFi, enterprise mode)
 - e.g. PEAP (Protected EAP) and EAP-TLS run over EAP
 - ISAKMP(Internet Security Association and Key Management Protocol)
 - · Formerly used in IPSec
 - e.g. IKE v1 (Internet Key Exchange) runs over ISAKMP

© André Zúquete

Identification, Authentication and Authorization

Authentication services

- > Trusted third parties (TTP) used for authentication
 - But often combined with other related functionalities
- > AAA services
 - Authentication, Authorization and Accounting
 - e.g. RADIUS


© André Zúquete

Identification, Authentication and Authorization

57

Key distribution services > Services that distribute a shared key for authenticated entities

- That key can then be used by those entities to protect their communication and ensure
- source authentication
- - 802.1X (Wi-Fi, enterprise mode)
 - Kerberos

KDC

© André Zúquete

Identification, Authentication and Authorization