
MCS: Identi�cation, Authentication and Authorization 2020-21

Practical Exercises:
Resource management and monitoring with cgroups

April 2, 2022 Due date: no date

Changelog

� v1.0 - Initial version.

1 Introduction

The goal of these exercises is to explore the functionalities of Linux cgroups. This mechanism allows to

assign resource management and monitoring controllers to processes and, this way, limit their actions

or monitor their activity.

This work requires a Linux host, which can be virtualised.

2 Mounted cgroups

cgroup controllers are nowadays set up at boot time. The set of running cgroup containers is listed

by �le /proc/cgroups. In each line, you have a readable cgroup name, a �le system hierarchy index,

the number of cgroups in that hierarchy and its enabled status.

cat /proc/cgroups

Note: to increase the readability of the output you may change the terminal's tabbing schema with

the command

tabs 16

before listing the cgroups. To restore the normal tab spacing use the command

reset

cgroups form a hierarchy, which is observable and managed as a �le system hierarchy. This hierarchy

is created by mounting cgroup controllers on the �le system mount point /sys/fs/cgroup. The list

of mounted cgroups can be observed with

mount -t cgroup

for version 1 cgroups or

mount -t cgroup2

for version 2 cgroups.

1

For version 1, each line represents a cgroup hierarchy, and some hierarchies have several controllers;

this is the case of:

� cgroups net_cls and net_prio;

� cgroups cpu and cpuacct.

For version 2 there should be a single, uni�ed hierarchy.

Each directory below each hierarchy represents a cgroup within that hierarchy. The processes that

belong to that group have their PID listed in the cgroup �le cgroup.procs. In each hierarchy, a

process cannot belong to more than one cgroup.

3 cgroups of a process

The cgroups that a process belongs to are listed by the �le cgroup in the process /proc directory. For

your current shell, whose PID is given by \$$, its cgroups can be listed as follows:

cat /proc/$$/cgroup

By default, new processes belong to the same cgroups of their ancestors. This way, any limitations

imposed to a process by a cgroup will naturally extend to its process descendance, thus encompassing

all those processes in the same limitative scope.

2

4 Creation and application of new cgroups

New cgroups can be created in the intended hierarchy, and below a given cgroup, with a simple mkdir

command. However, you need privileges to do so.

Assume you have an application that you want to run with a given set of limits imposed by cgroups.

We can use the following program to do it: a (limited) fork bomb (fork-bomb.c):

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <errno.h>

int main()

{

printf("Initial PID: %d\n", getpid ());

for (int i = 0; i < 100; i++) {

switch (fork()) {

case 0:

sleep(10);

exit(0);

case -1:

printf("\nError creating process %d\n", i);

exit(errno);

default:

putchar('.');

fflush(stdout);

continue;

}

}

printf("\n");

return 0;

}

This program creates a high amount of processes (though limited to 100), which can be further limited

with a pids cgroup.

For a UID of 1000 (which you probably have in your Linux system), and cgroups version 1, create a

pids cgroup, as follows:

sudo mkdir /sys/fs/cgroup/pids/user.slice/user-1000.slice/p_limit

Alternative, you can use this command, that works for whatever UID you have:

UID=`id -u`

sudo mkdir /sys/fs/cgroup/pids/user.slice/user-$UID.slice/p_limit

For cgroups version 2, use instead this command:

sudo mkdir /sys/fs/cgroup/user.slice/user-$UID.slice/p_limit

For simplicity, in this exercise we will create a symbolic link to this cgroup in order to reduce the

length of the commands:

ln -s /sys/fs/cgroup/pids/user.slice/user-1000.slice/p_limit ~/p_limit

or, for cgroups version 2,

3

ln -s /sys/fs/cgroup/user.slice/user-1000.slice/p_limit ~/p_limit

We will use this cgroup to limit the number of processes that can be created by the fork bomb. Let's

say, 10. Thus, see �rst what is the limited imposed by the new group:

cat ~/p_limit/pids.max

You will be presented with the value max, which means the maximum value permited by the cgroup

above in the hierarchy. To change this value to 10, run this command:

sudo bash -c "echo 10 > $HOME/p_limit/pids.max"

Run the cat command again to verify the new limit of 10 processes in the cgroup.

Now, to facilitate the inclusion of processes in the p_limit cgroup, change protection of the �le that

de�nes which processes belong to the cgroup (cgroup.procs). Assuming that $USER gives your user

name (usually does), change the owner of the cgroup cgroup.procs �le to be yourself:

sudo chown $USER ~/p_limit/cgroup.procs

Now, consider the following program (cgroup.c) that launches an arbitrary command within a given

set of cgroups:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <fcntl.h>

#include <errno.h>

#include <string.h>

#include <string.h>

#include <wait.h>

char * pid2str(pid_t pid)

{

int len = 2;

char * str;

pid_t scout = pid;

while (scout /= 10) len++;

str = malloc(len);

snprintf(str , len , "%u", pid);

return str;

}

void usage(char * command)

{

fprintf(stderr , "Usage: %s cgroup [cgroup list] -c command [command args]\n", command);

exit(1);

}

int main(int argc , char ** argv)

{

char ** command = 0;

pid_t pid;

char * pid_str;

int pipe_fds [2];

for (int i = 1; i < argc; i++) {

if (strcmp(argv[i], "-c") == 0) {

command = argv + i + 1;

argv[i] = 0;

}

}

4

if (command == 0 || command == argv + 2) {

fprintf(stderr , "No cgroups where provided\n");

usage(argv [0]);

}

for (int i = 1; argv[i] != 0; i++) {

char * cgroup_pids = malloc(strlen(argv[i]) + 14); // "/ cgroup.procs"

sprintf(cgroup_pids , "%s/cgroup.procs", argv[i]);

if (access(cgroup_pids , W_OK) == -1) {

switch(errno) {

case ENOENT:

fprintf(stderr , "cgroup %s not found\n\t(looking for file %s)\n", argv[i],

cgroup_pids);

exit(1);

case EACCES:

fprintf(stderr , "No permission to add PID to cgroup %s\n\t(looking for file

%s)\n", argv[i], cgroup_pids);

exit(1);

default:

fprintf(stderr , "cgroup %s access error %d\n\t(looking for file %s)\n",

argv[i], errno , cgroup_pids);

exit(1);

}

}

argv[i] = cgroup_pids;

}

printf("Execute the command %s with these cgroups :\n", *command);

for (int i = 1; argv[i] != 0; i++) {

printf("\t%s\n", argv[i]);

}

pipe(pipe_fds); // To sync parent and child

pid = fork();

if (pid == -1) { // error

fprintf(stderr , "Could not fork , errno = %d\n", errno);

exit(2);

}

if (pid == 0) { // child

char c;

read(pipe_fds [0], &c, 1); // indication to proceed from parent

close(pipe_fds [0]);

close(pipe_fds [1]);

execv(command [0], command);

fprintf(stderr , "Could not exec , errno = %d\n", errno);

exit(3);

}

pid_str = pid2str(pid);

for (int i = 1; argv[i] != 0; i++) {

int fd = open(argv[i], O_WRONLY);

if (fd == -1) {

fprintf(stderr , "Cannot open to write cgroup file %s (errno = %d)\n", argv[i],

errno);

exit(1);

}

if (write(fd, pid_str , strlen(pid_str)) == -1) {

fprintf(stderr , "Child process coulnt not be included in cgroup\n");

kill(pid , SIGKILL);

}

close(fd);

}

write(pipe_fds [1], pid_str , 1); // Send indication to child to proceed

wait(0);

return 0;

5

}

Compile this program and use it to launch the fork bomb with it:

./cgroup ~/p_limit -c fork-bomb

Verify that the fork bomb cannot create more than 9 processes.

Since each process created by the fork bom lasts for 10 seconds, you can observe the presence of their

PID in the cgroup cgroup.procs �le:

cat ~/p_limit/cgroup.procs

Repeat this command until you see that all processes left the cgroup (upon their termination).

Now, if you repeat the controlled launching of the fork bomb again several times, fast, you will see

that you will probably succeed only the frst time; in the next ones the fork bomb will not work at all.

Explain why.

Upon launching the fork bomb with the p_limit cgroup, you can observe its use by one of the processes

in that group (you need to be fast, or to increase the lifetime of the processes created by the fork bomb):

cat /proc/`head -1 ~/p_limit/cgroup.procs`/cgroup

Now run the fork bomb without the cgroup:

./fork-bomb

In this case, it will be able to create 100 new processes.

Add your actual shell to the cgroup we have been using:

echo $$ > ~/p_limit/cgroup.procs

Execute again the fork bomb, without any control, and see what happens.

Answer this question: how can the shell continue to execute commands while the processes of the fork

bomb are still running? All commands? Try a pipeline (a sequence of commands connected by a pipe).

Did it work? Explain.

Once useless, you can remove the cgroup by acting on the cgroups �le system:

sudo rmdir /sys/fs/cgroup/pids/user.slice/user-1000.slice/p_limit

or, for cgroups version 2,

sudo rmdir /sys/fs/cgroup/user.slice/user-1000.slice/p_limit

and you can also remove the symbolic link used:

rm ~/p_limit

Note: you may simply remove the directory (the cgroup) without having to remove all the �les (cgroup

attributes) that the cgroup contains.

6

5 Homework

Experiment to use the memory controller to create a cgroup that limits the amount of memory a process

can use. The limit can be tested with the consecutive allocation of 4KiB chunks.

7

	Introduction
	Mounted cgroups
	cgroups of a process
	Creation and application of new cgroups
	Homework

