
MCS: Identi�cation, Authentication and Authorization 2020-21

Practical Exercises:
Pluaggable Authentication Modules

April 1, 2022 Due date: no date

Changelog

� v1.0 - Initial version.

1 Introduction

The goal of these exercises is to explore the functionalities of PAM (Pluggable Authentication Modules)

infrastructure present in current Linux distributions.

These exercises will also make use of several authentication methods, such as username and password,

biometrics, one-time passwords and asymmetric key pairs (exploring the Portuguese Citizen Card as

a way to authenticate users and to provide detailed logs).

Errors in PAM con�guration �les may block further access to the system. Beware! Keep

at all times a session as root to be able to recover from mistakes!

1

2 Weak Passwords

By default, current Linux distributions do not verify the strength of the passwords in use. A weak

password is a password which can be found through an intelligent search attack where a set of more

likely passwords are tested (dictionary attack). The widespread availability of dictionaries with words

and even well-known passwords, makes this attack very e�ective. Once the password is found, the

security of the entire system is compromised as it can allow the execution of local exploits and access

private data.

This policy can be changed so that the password modi�cation procedure veri�es the strength of the new

passwords. In Linux these procedures are controlled using PAM (Pluggable Authentication Modules),

which is also used to control several other authentication and access control aspects of any Linux

system.

2.1 The pam_cracklib PAM module

Install libpam-cracklib using apt-get.

Take a look at the manual of pam_cracklib (

man pam_cracklib

) and understand the purpose of the module.

Create a test user named beaker1 (with the adduser beaker command) and set a password for this

user. Verify that you can login into its account (with the su -l beaker command).

The �le /etc/pam.d/common-password stores the rules controlling what happens when users change

passwords. This is a good candidate for enforcing strong passwords and is typically used for this

purpose.

NOTE: as a general safety rule never close the editor where you change PAM con�guration

�les before testing the e�ect of the modi�cations performed. Otherwise, you may not be

able to revert your mistakes!

� Propose a reasonable policy for password security and enforce it. Consider password length,

existence of symbols (e.g. _,;:"'`~^+-*/=<>[]{}()!?@#$%&\), lower and upper case characters

and (decimal) digits.

� In order to better enhance the di�culty of �nding the password, enforce a policy so that common

passwords found in the system dictionary are forbidden. You can use the dictionary �les available

at /usr/share/dict.

Using the beaker user account, test the correct enforcement of the password safety model you have

implemented.

In the end, please restore all PAM-related con�gurations! Otherwise you may be unable to log in into

the system.

1

Beaker is a character from The Muppet Show; he is a laboratory assistant and often a Guinea-pig

for dangerous experiments.

Photo extracted from https://en.wikipedia.org/wiki/Beaker_(Muppet)

2

https://en.wikipedia.org/wiki/Beaker_(Muppet)

3 Biometrics

PAM can naturally support the use of biometrics for authentication. But since this requires some kind

of biometric reader for capturing biometric features, we decided to use one that is common in most

laptops used by people: a camera. And, with a camera, we will explore biometric authentications using

faces.

To this end we will use howdy, a software that implements a Linux replica of the Windows Hello�style

facial authentication. It uses OpenCV and is implemented in Python. Python PAM modules can

be used by means of a middleware module, pam_python, that makes the necessary bridge between

C language PAM library calls to equivalent functions in Python. This module is distributed by the

package libpam-python.

The instructions for installing howdy are provided in its GitHub repository, and are the following. First,

add its repository to the list of repositories used by the laptop,

sudo add-apt-repository ppa:boltgolt/howdy

then update the list of packages,

sudo apt update

and �nally install howdy,

sudo apt install howdy

Once installed, you can check that the installation steps included an optional facial authentication

with howdy prior to the normal Linux authentication with username and password. You can check

this in the �le /etc/pam.d/common-auth, where you should have something like this:

auth [success=2 default=ignore] pam_python.so /lib/security/howdy/pam.py

auth [success=1 default=ignore] pam_unix.so nullok_secure try_first_pass

auth requisite pam_deny.so

These 3 lines are interpreted as follow:

1. The howdymodule is called. If the authentication succeeds, with will jump over the next 2 lines (as

indicated by the clause success=2). Otherwise, it is ignored (as stated by the default=ignore

clause) and the process continues in the next line.

2. The pam_unix module is called. If the authentication succeeds, with will jump over the

next line (as indicated by the clause success=1). Otherwise, it is ignored (as stated by the

default=ignore clause) and the process continues in the next line.

3. The pam_deny module is called. It always yields a failure, and since it is a requisite, a �nal failure

decision was reached.

The howdy module has a timeout in the facial recognition, and it is mostly silent.

The con�guration of howdy has two separate components: the de�nition of the personal pro�les and

the general con�guration of the facial detection.

The de�nition of the facial pro�le for the current user is performed with the command

sudo howdy add

or

3

sudo howdy add -U <username>

for another user. For each user you can capture several snapshots, and you can label them accordingly

(normal, with glasses, smiling, etc.).

The general con�guration is performed with the command

sudo howdy config

It launches a vim editor with the con�guration option for howdy.

Of special interest are the parameters certainty and use_cnn. A low value for certainty make the

system more accurate (low False Positive Ratio), but also more di�cult to use (high False Negative

Ratio). With CNN (Convolutional Neural Network) instead of HOG (Histogram of the Oriented

Gradient), with a value of 2 you should succeed from time to time, but not very often. With 2.8, on

the other hand, it should balance well accuracy with usability. With higher values, it will basically

accept any face as a good match.

Experiment these values, with both CNN and HOG. Try to use photographs or computer images as

alternatives to faces. Use several accounts, each for di�erent people, and use them to evaluate your

system's accuracy and usability.

4

4 One-Time Passwords

One-Time Passwords (OTPs) can also be used for authenticating users. OTP systems can have di�erent

�avours; the oldest one computes uses a list of OTPs that users must print and carry with them.

Other system use an application executed in a personal device for computing OTPs. In this guide we

experiment the former.

4.1 Printed OTPs

As expected, PAM supports printed OTPs by means of a library and a de�nition in the con�guration

�les. In Linux systems, it is required to install the packages libpam-otpw and otpw-bin.

If not available, get the source code �le otpw-1.5.tar.gz from https://www.cl.cam.ac.uk/~mgk25/

download, unpack it (with

tar xzvf otpw-1.5.tar.gz

install the package libpam0g-dev, run the

make

command to generate the necessary binaries and, �nally, run

sudo make install

to install those binaries on the right directories. The pam_otpw.so library will be installed in the

correct directory (/lib/x86_64-linux-gnu/security).

The next step is to add the pam_otpw.so module to the appropriate place in the PAM authentications

stack. For the purpose of this laboratory guide, add it to the common-auth �le, as an alternative

authentication method relatively to the UNIX one:

auth [success=2 default=ignore] pam_unix.so nullok_secure

auth [success=1 default=ignore] pam_otpw.so

auth requisite pam_deny.so

Also, comment howdy to experiment only with pam_otpw and do not forget to adjust the success jump

values.

You should take in consideration that the order is important! Place pam_otpw.so after pam_unix.so.

Note that with this con�guration you can choose among two types of authentication: �rst, with Unix,

second, with OTP; if the �rst fails, OTP will be attempted. If they both fail, the authentication will

fail.

NOTE: do not close the editor! Just write the contents of �le being edited

After con�guring PAM for using pam_otpw.so users can choose to use OTP by running the otpw-gen

command. This will generate a �le named \textasciitilde/.otpw containing some metadata, as well

as a list of one-way hashes for the purpose of verifying the response to challenges.

Run the command in order to create the above referred �le. You will need a password pre�x. Choose

any string and remember it! The pre�x will be required for authentication purposes. A table will

also be printed to the generator's standard output; this table provides the responses to the several

challenges initiated by the PAM OTPW module. In a real exploitation scenario, this table would be

printed on a sheet of paper or on a card. In this exercise you can save it on a �le by redirecting the

output of the generator.

otpw-gen > otps_to_print

5

https://www.cl.cam.ac.uk/~mgk25/download
https://www.cl.cam.ac.uk/~mgk25/download

To test if the system is working, execute sudo bash command to initiate a superuser shell session in the

current console. Provide an empty password for the �rst password prompt. You should be presented

with a new password prompt carrying a number as challenge. The correct answer is composed by

the password pre�x and the corresponding entry in the previously referred table (including or not the

space). If multiple numbers are provided, you must provide the answer to all challenges. Spaces are

ignored.

Test now with a user for which this system was not set up: beaker. For that, execute the command

su - beaker

In this case, you will see that the PAM OTPW module will not ask for an OTP, since it does not have

a way to check it!

4.2 Google Authenticator

This PAM module works together with the Google Authenticator App, which you should add to a

mobile terminal. This mechanism uses a shared key (not a password) for computing OTPs. In detail,

it implements HOTP (HMAC-based One Time Password algorithm), which computes OTPs from the

shared key and loosly synchronized counter, and TOTP, a HOTP extension that uses the current time

as the challenge.

First, install libpam-google-authenticator using apt:

apt install libpam-google-authenticator

This installation keeps your PAM orchestration �les unchanged, you must change them manually. Now

you should have access to the google-authenticator application, which you can use to create a login

random secret for the current account.

4.2.1 Time-based One-time Password (TOTP)

Running the google-authenticator application, it asks whether you want to use TOTP (a negative

answer falls back to HOTP). Select TOPT for this �rst experiment.

Once selected the authentication method, the application will present you 3 ways for adding the

randomly generated secret key to your mobile terminal:

� A Google link (which should not be used, as it exposes the key to Google);

� A QR code, that you can scan with the application in your mobile terminal to import the key;

or

� The key itself, that you can enter manually in the mobile terminal.

Once con�gured, you can use the code presented by the mobile application to check if the setup is

working; notice that for TOTP the codes presented are time limited.

The setup completes with several other steps.

First, the user is presented with a set of 5 emergency scratch codes. These are codes that you should

print and use in case you loose the secret key. You can only use each of them once.

Second, you con�gure whether you can use the same TOTP password several times during its validity

period. Allowing it increases usability, but decreases robustness against eavesdroppers.

Third, you are asked if you want to allow to compensate time skews between the computer where you

are con�guring this method and the mobile terminal that generates the OTPs. Since usually mobile

terminal will have a network connection, and thus will be able to keep their clock synchronized, you

can assume that time skews will be negligible.

6

Forth, you can limit the number of wrong input credentials to 3 per each 30 seconds. This alternative

is the safest one, but do not select it to facilitate the experiments.

This con�gurations correspond to running the command as follows:

google-authenticator -t -u -W -d

Now, its time to add this OTP method to the PAM con�guration �les. Manually edit the common-auth

�le, and add this other authentication method to the ones already existing:

auth [success=2 default=ignore] pam_unix.so nullok_secure

auth [success=1 default=ignore] pam_google_authenticator nullok

auth requisite pam_deny.so

Also, keep howdy commented and comment pam_otpw.

At this moment you should have your mobile application con�gured to login in this host using TOPT.

Try it, using exactly the same commands used for experimenting the OTPW module.

4.2.2 HMAC-based One-time Password (HOTP)

Run again the command google-authenticator to set up an OTP mechanism based on a loosely

coupled counter:

google-authenticator -c

Import the new con�guration for your mobile application, it should overwrite the exist pro�le for your

account. With this new con�guration, the user is supposed to request a new code each time it needs

to.

Each time you request a new code, the local counter is incremented. And, on the authenticator side, the

same happens each time the PAM module is called. However, a desynchronisation can occur if (i) the

user requests codes without need and (ii) the authenticator increments the counter upon a malicious

logging attempt. The authenticator supports a con�gurable amount of clients' desynchronisation, by

looking ahead for a correct response. The look-ahead amount is adjustable, being 3 by default. Thus,

if the user requests more than 3 OTPs without using them, their counter will become desynchronised

and they need to resort to the scrap codes. To thwart malicious increments on the authenticator side,

you should use the following module option: no_increment_hotp.

Experiment the system with a correct synchronization. Then, request more than 3 OTPs without

using them and try again; it should fail. Now make only attempts with fake OTPs. After a few, you

should be able to authenticate again with the correct OTPs (the counters got close enough, and now

became synchronized). Add the option above referred to the PAM module:

auth [success=2 default=ignore] pam_unix.so nullok_secure

auth [success=1 default=ignore] pam_google_authenticator nullok no_increment_hotp

auth requisite pam_deny.so

Try again to use fake OTPs and con�rm that you did not succeed in getting the counters desynchro-

nised.

7

5 Authentication using Smartcards

An example source code in C of a PAM module implementing local authentication with the Portuguese

Citizen Card (CC) can be found at: https://code.ua.pt/projects/ccpam. We can get the source

code using git and the following command:

git clone https://code.ua.pt/git/ccpam

Before you can compile the module, you should install the PAM library development �les

(libpam0g-dev), the C language PKCS#11 development �les (libopencryptoki-dev) and the

OpenSSL library development �les (libssl-dev) using apt:

apt install libpam0g-dev libopencryptoki-dev libssl-dev

Also install the Portuguese Citizen Card middleware2.

Compile the module by executing

make

and install it with

sudo make install

Edit the common-auth PAM con�guration �le and a line the line using pam_PTEIDCC.so as follows:

auth [success=2 default=ignore] pam_unix.so nullok_secure

auth [success=1 default=ignore] pam_PTEIDCC.so /etc/CC/keys

auth requisite pam_deny.so

as the second rule in the authentication stack. Keep all the other methods other than the UNIX one

commented.

Using the addCCuser tool to bind a given CC to the test user (the default �le is /etc/CC/keys).

Verify that you can use the CC to authenticate the test user.

Modify the library so that the actual name and BI of the user are logged to the auth.log �le. You will

have to consult the CC SDK documentation in order to determine the relevant PTEID API functions

to use.

The following code may be helpful to log messages to syslog:

static void pam_cc_syslog(int priority , const char *format , ...)

{

va_list args;

va_start(args , format);

openlog("pam_PTEIDCC", LOG_CONS | LOG_PID , LOG_AUTHPRIV);

vsyslog(priority , format , args);

closelog ();

vfprintf(stderr , format , args);

}

...

pam_cc_syslog(LOG_ALERT ,"Name: %s Civil ID: %u\n", name , civil_id);

Listing 1: Helper Function to write a string to syslog

2https://www.autenticacao.gov.pt/cc-aplicacao

8

https://code.ua.pt/projects/ccpam
https://www.autenticacao.gov.pt/cc-aplicacao

Once again, verify that this information is indeed present in the system authentication log �le, /var/

log/auth.log.

9

6 Final remarks

Use the several PAM modules experimented in this guide to make several kinds of two-factor authen-

tication.

At the end, leave the con�guration �le as it was after installing howdy, but you may want to comment

the line using it. That line should be removed upon uninstalling the howdy package.

Note: see if all works well with the �nal con�guration before leaving the NOTE: see if all works

well with the �nal con�guration before closing the editor!

7 References

� Linux PAM web site: http://www.linux-pam.org

� Linux PAM Howdy GitHub web site: https://github.com/boltgolt/howdy

� Linux PAM OTPW web site: https://www.cl.cam.ac.uk/~mgk25/otpw.html

� Linux PAM Google Authenticator GitHub web site: https://github.com/google/

google-authenticator-libpam

� Portuguese Citizen Card web site: https://www.cartaodecidadao.pt

10

http://www.linux-pam.org
https://github.com/boltgolt/howdy
https://www.cl.cam.ac.uk/~mgk25/otpw.html
https://github.com/google/google-authenticator-libpam
https://github.com/google/google-authenticator-libpam
https://www.cartaodecidadao.pt

	Introduction
	Weak Passwords
	The pam_cracklib PAM module

	Biometrics
	One-Time Passwords
	Printed OTPs
	Google Authenticator
	Time-based One-time Password (TOTP)
	HMAC-based One-time Password (HOTP)

	Authentication using Smartcards
	Final remarks
	References

