
1

Linux
security mechanisms

© André Zúquete Identification, Authentication and Authorization 1

MechanismsMechanismsMechanismsMechanisms

� Capabilities

� cgroups (control groups)

� LSM (Linux Security Modules)

© André Zúquete Identification, Authentication and Authorization 2

2

Linux management privilegesLinux management privilegesLinux management privilegesLinux management privileges

� Initial UNIX philosophy

 Privileged processes (UID = 0)

• Bypass all kernel permission checks

 Unprivileged processes (UID ≠ 0)

• Subject to permission checking based on their
credentials

• Effective UID, effective GID, secondary group list

© André Zúquete Identification, Authentication and Authorization 3

CapabilitiesCapabilitiesCapabilitiesCapabilities

� Protection mechanism introduced in Kernel 2.2

� They allow to divide the traditional super-user
privileges into distinct units

 That can be independently enabled and disabled

� Capabilities are a per-thread attribute

 Propagated through forks

 Changed explicitly of by execs

© André Zúquete Identification, Authentication and Authorization 4

3

List of capabilities:List of capabilities:List of capabilities:List of capabilities:
Examples (small sample …)Examples (small sample …)Examples (small sample …)Examples (small sample …)

� CAP_CHOWN
 Make arbitrary changes to file UIDs and GIDs

� CAP_DAC_OVERRIDE / CAP_DAC_READ_SEARCH
 Bypass file permission / directory transversal checks

� CAP_KILL
 Bypass permission checks for sending

� CAP_NET_ADMIN
 Perform various network-related operations

� CAP_SYS_ADMIN
 Overloaded general-purpose administration capability

© André Zúquete Identification, Authentication and Authorization 5

Capability managementCapability managementCapability managementCapability management

� Per-thread capabilities

 They define the privileges of the thread

 Divided in sets

� Sets

 Effective

 Inheritable

 Permitted

 Bounding

 Ambient

© André Zúquete Identification, Authentication and Authorization 6

4

Thread capability sets:Thread capability sets:Thread capability sets:Thread capability sets:
EffectiveEffectiveEffectiveEffective

� Set of capabilities used by the kernel to perform
permission checks for the thread

© André Zúquete Identification, Authentication and Authorization 7

Thread capability sets:Thread capability sets:Thread capability sets:Thread capability sets:
InheritableInheritableInheritableInheritable

� Set of capabilities preserved across an exec

 Remain inheritable for any program

� Are added to the permitted set when executing a
program that has the corresponding bits set in
the file inheritable set

© André Zúquete Identification, Authentication and Authorization 8

5

Thread capability sets:Thread capability sets:Thread capability sets:Thread capability sets:
PermittedPermittedPermittedPermitted

� Limiting superset

 For the effective capabilities that the thread may
assume

 For the capabilities that may be added to the
inheritable set
• Except for threads w/ CAP_SETPCAP in their effective set

� Once dropped, it can never be reacquired

 Except upon executing a file with special capabilities

© André Zúquete Identification, Authentication and Authorization 9

Thread capability sets:Thread capability sets:Thread capability sets:Thread capability sets:
BoundingBoundingBoundingBounding

� Set used to limit the capabilities that are gained
during an exec

 From a file with capabilities set

� Was previously a system-wide attribute

 Now is a per-thread attribute

© André Zúquete Identification, Authentication and Authorization 10

6

Thread capability sets:Thread capability sets:Thread capability sets:Thread capability sets:
AmbientAmbientAmbientAmbient

� Set of capabilities that are preserved across
an exec of an unprivileged program

 No set-UID or set-GID

 No capabilities set

� Executing a privileged program will clear the
ambient set

© André Zúquete Identification, Authentication and Authorization 11

Thread capability sets:Thread capability sets:Thread capability sets:Thread capability sets:
AmbientAmbientAmbientAmbient

� No capability can ever be ambient if it is not
both permitted and inheritable

 One cannot preserve something one does not have

 One cannot preserve something one cannot inherit

 Automatically lowered if either of the corresponding
permitted or inheritable capabilities is lowered

� Ambient capabilities are added to the permitted
set and assigned to the effective set upon a exec

© André Zúquete Identification, Authentication and Authorization 12

7

Files extended attributes (Files extended attributes (Files extended attributes (Files extended attributes (xattrxattrxattrxattr))))

� Files’ metadata in UNIX-
like systems
 Some not interpreted by

kernels

� Linux: key-value pairs
 Keys can be defined or

undefined

 If defined, their value can be
empty or not

 Key’s namespaces
• namespace.attr_name[.attr_name]

� Namespace classes
 Security

• For files’ capabilities

• setcap / getcap

 System

• ACL

 Trusted

• Protected metadata

 User
• setfattr / lsattr / getfattr

© André Zúquete Identification, Authentication and Authorization 13

File capabilitiesFile capabilitiesFile capabilitiesFile capabilities

� Stored in the security.capability attribute

� Specify capabilities for threads that exec a file

 Permitted set
• Immediately forced into the permitted set

• Previous AND with the thread’s bounding set

 Inheritable set
• To AND with the threads inheritable set

• Can be used to reduce the effective set upon the exec

 Effective bit
• Enforce all new capabilities into the thread’s effective set

© André Zúquete Identification, Authentication and Authorization 14

8

Capability transfer across exec:Capability transfer across exec:Capability transfer across exec:Capability transfer across exec:
No privileged filesNo privileged filesNo privileged filesNo privileged files

� P'(ambient)
P(ambient)

� P'(permitted)
P'(ambient)

� P'(effective)
P'(ambient)

� P'(inheritable)
P(inheritable)

� P'(bounding)
P(bounding)

© André Zúquete Identification, Authentication and Authorization 15

Capability transfer across exec (nonCapability transfer across exec (nonCapability transfer across exec (nonCapability transfer across exec (non----root)root)root)root)

� P'(ambient)
(file is privileged) ? 0 : P(ambient)

� P'(permitted)
(P(inheritable) & F(inheritable)) |

(P(bounding) & F(permitted)) |

P'(ambient)

� P'(effective)
F(effective) ? P'(permitted) : P'(ambient)

� P'(inheritable)
P(inheritable)

� P'(bounding)
P(bounding)

© André Zúquete Identification, Authentication and Authorization 16

9

Capability transfer across exec (root)Capability transfer across exec (root)Capability transfer across exec (root)Capability transfer across exec (root)

� EUID = 0 or RUID = 0

 File sets are considered to be all 1’s

� EUID = 0

 File effective bit considered 1

� Exception: EUID = 0, RUID ≠ 0

 File capabilities are honored if present

© André Zúquete Identification, Authentication and Authorization 17

Control groups (cgroups)Control groups (cgroups)Control groups (cgroups)Control groups (cgroups)

� Collection of processes bound by the same criteria and
associated with a set of parameters or limits

� cgroups are organized hierarchically
 cgroup file system

 Limits can be defined at each hierarchical level

• Affecting the subhierarchy underneath

� Subsystems
 Kernel component that modifies the behavior of cgroup

processes

 Resource controllers (or simply controllers)

© André Zúquete Identification, Authentication and Authorization 18

10

ccccgroups file systemgroups file systemgroups file systemgroups file system

� This file system is created by mounting
several controllers as cgroup-type file system
entities

 Usually /sys/fs/cgroup

� Each controller defines a tree of cgroups
below the mount point

 e.g. memory controller  /sys/fs/cgroup/memory

© André Zúquete Identification, Authentication and Authorization 19

ccccgroups v1 and v2groups v1 and v2groups v1 and v2groups v1 and v2

� Currently two versions coexist

 But controllers can only be used in on of them

© André Zúquete Identification, Authentication and Authorization 20

11

cgroup controllerscgroup controllerscgroup controllerscgroup controllers

� cpu, cpuacct

 CPU usage & accounting

� cpuset

 CPU bounding

� memory

 Memory usage & accounting

� devices

 Device creation & usage

� freezer

 Suspend/resume groups of
processes

� net_cls

 Outbound packet classification

� blkio

 Block I/O management

� perf_event
 Performance monitoring

� net_prio
 Network interfaces priorities

� hugelb
 Huge pages management

� pids
 # of processes in cgroup

� rdma
 RDMA / IB resources’ management

© André Zúquete Identification, Authentication and Authorization 21

ccccgroups v1:groups v1:groups v1:groups v1:
Common filesCommon filesCommon filesCommon files

� cgroup.procs

 The processes in the cgroup

© André Zúquete Identification, Authentication and Authorization 22

12

ccccgroups of a processgroups of a processgroups of a processgroups of a process

� A process can be controlled by an arbitrary
number of cgroups

� The list of a process’ cgroups is given by the
/proc file system

 /proc/[PID]/cgroup

© André Zúquete Identification, Authentication and Authorization 23

Linux Security Modules (LSM)Linux Security Modules (LSM)Linux Security Modules (LSM)Linux Security Modules (LSM)

� Framework to add new Mandatory Access
Control (MAC) extensions to the kernel

� Those extensions are not kernel modules

 They are embedded in the kernel code

 They can be activated or not at boot time

 List of extensions given by /sys/kernel/security/lsm

© André Zúquete Identification, Authentication and Authorization 24

13

LSM extensionsLSM extensionsLSM extensionsLSM extensions

� Capacities (default)

� AppArmor

� LoadPin

� SELinux

� Smack

� TOMOYO

� Yama

© André Zúquete Identification, Authentication and Authorization 25

AppArmorAppArmorAppArmorAppArmor

� Enables the definition of per-application MAC policies
 Profiles

 Applications are identified by their path
• Instead of i-node

� Profiles restrict applications’ actions to the required set
 All other actions will be denied

� Profiles define
 Capabilities

 Permissions (r/w/x) over file system objects

© André Zúquete Identification, Authentication and Authorization 26

14

AppArmorAppArmorAppArmorAppArmor: profiles: profiles: profiles: profiles

� Profiles are loaded into the kernel

 Upon compilation from textual files

 apparmor_parser

© André Zúquete Identification, Authentication and Authorization 27

AppArmorAppArmorAppArmorAppArmor::::
Usage of loaded profilesUsage of loaded profilesUsage of loaded profilesUsage of loaded profiles

� Enforce mode

 Auditing rules are enforced

 Status events (profile loads, ...) and denied events
generate audit messages

� Complain mode

 Auditing rules are checked
• But all denied events succeed

 Denied events generate allowed audit messages

© André Zúquete Identification, Authentication and Authorization 28

15

AppArmorAppArmorAppArmorAppArmor::::
Usage of loaded profilesUsage of loaded profilesUsage of loaded profilesUsage of loaded profiles

� Audit mode

 Generates and message for each event mediated by
AppArmor
• Whether it is allowed or rejected

� Kill mode

 Generates a message for any denied event and then
kills the process

© André Zúquete Identification, Authentication and Authorization 29

