
Criptogra�a Aplicada, 2024/2025

RSA� and related subjects

Tomás Oliveira e Silva (tos@ua.pt)

The Magic Words are Squeamish Ossifrage
Guess who contributed a modest amount of computation time to this collaborative e�ort.

Security (spoiler)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
1/117

https://link.springer.com/chapter/10.1007/BFb0000440
https://xkcd.com/538/
https://www.explainxkcd.com/wiki/index.php/538:_Security
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Table of Contents

1. Oct 11 Goals

2. Oct 11 Means

3. Oct 11 Programming languages you may use

4. Oct 11 Modular arithmetic

5. Oct 11 The greatest common divisor

6. Oct 11 Linear maps (Merkle-Hellman cryptosystem)

7. Oct 11 Fermat's little theorem

8. Oct 18 Chinese remainder theorem

9. Oct 18 Fermat's little theorem (revisited)

10. Oct 11 Modular exponentiation

11. Fast modular multiplication

12. Oct 11 Multiplicative order

13. Oct 11 Discrete logarithms (modular arithmetic)

14. The integer factorization problem

15. Primality tests

16. Oct 11 The Di�e-Hellman key exchange protocol

17. Oct 25 ElGamal public key cryptosystem

18. Oct 18 The Rivest-Shamir-Adleman cryptosystem

19. Oct 25 Finite �elds

20. Oct 25 Elliptic curves

21. Oct 25 Di�e-Hellman using elliptic curves

22. Oct 25 Discrete logarithms (elliptic curves)

23. Digital signatures (DSA and ECDSA)

24. Dec 06 Secret sharing

25. Dec 06 Quadratic residues

26. Dec 13 Zero-knowledge

27. Dec 13 Homomorphic encryption

28. Dec 13 Lattice-based cryptography

29. Dec 13 Quantum-resistant cryptography

30. Bibliography

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Table of contents 2/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Goals

� Public-key cryptography

� Sharing secrets

� Doing things without leaking information

Public Key (spoiler)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Goals 3/117

https://xkcd.com/1553/
https://www.explainxkcd.com/wiki/index.php/1553:_Public_Key
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Means

� Number theory.

� In particular, modular arithmetic. Why? Because:

� we will be performing computations with integers;

� we get exact results (there is no need to worry about roundo� errors, which may di�er

on di�erent computing devices);

� modular arithmetic can be done e�ciently on almost all computing devices;

� and last, but by no means least, because there exist many number theoretic theorems

that have cryptographic applications.

Mathematics is the queen of the sciences and number theory is the
queen of mathematics.

Carl Friedrich Gauss (1777�1855)

The Theory of Numbers has always been regarded as one of the most
obviously useless branches of Pure Mathematics. The accusation is
one against which there is no valid defence; and it is never more just
than when directed against the parts of the theory which are more

particularly concerned with primes. A science is said to be useful if
its development tends to accentuate the existing inequalities in the
distribution of wealth, or more directly promotes the destruction of
human life. The theory of prime numbers satis�es no such criteria.
Those who pursue it will, if they are wise, make no attempt to justify
their interest in a subject so trivial and so remote, and will console
themselves with the thought that the greatest mathematicians of all
ages have found in it a mysterious attraction impossible to resist.

Godfrey Harold Hardy (1877�1947)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Means 4/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Programming languages you may use

� C, in particular the GNU MP library, also known as libgmp

� C++, using also the GNU MP library, but with classes and arithmetic operator overloading!

� Python

� Java, in particular the BigInteger class

� pari-gp (get it here), because it has everything we will need

� SageMath (get it here), because it has everything we will need and its interface uses the

Python programming language (but it is a big download)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Programming languages 5/117

https://gmplib.org/
https://pari.math.u-bordeaux.fr/
https://www.sagemath.org/
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Modular arithmetic
notation meaning

m | n m divides n.

m - n m does not divide n.

nk ‖ m nk divides m but nk+1 does not (k is the valuation of m at n).

n ≡ r (mod m) m | (n − r), that is, because m divides n − r, n and r have the

same remainder when divided by m.

bxc �oor function: largest integer not larger than x.

n mod m (binary operator) remainder of n when divided by m (m is called

the modulus, which we assume here to be a positive integer). Equal

to n−m
⌊
n
m

⌋
. Note that 0 6 r < m. In C, Python, Java, and pari-gp,

it can be computed using the % binary operator (applied to unsigned

integers).

gcd(a, b) greatest common divisor of a and b.

lcm(a, b) least common multiple of a and b; equal to
ab

gcd(a, b)
.

Zm set of equivalence classes modulo m; slightly abusing the mathe-

matical notation for equivalence classes, Zm = { 0, 1, . . . ,m− 1 }.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular arithmetic 6/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Modular arithmetic examples

� 1 | 10, 5 | 20, 7 | 7, 11 | 44, 3 - 5

� 17 ≡ 7 (mod 10), 27 ≡ 17 (mod 10), 27 ≡ 7 (mod 10)

� b1.1c = 1, b7/3c = 2, b−1.1c = −2

� 17 mod 6 = 5, 7 mod 6 = 1, (17× 7) mod 6 = (5× 1) mod 6 = 5

� gcd(15, 25) = 5, gcd(7, 6) = 1, when n is a positive integer, gcd(n, n+ 1) = 1

� lcm(15, 25) = 75, lcm(7, 6) = 42

� modulo m, the set of the integers � Z � is partitioned into m equivalence classes; we

can choose as representative for each equivalence class an integer from the set Zm; for
example, for m = 5, we have (the representative is underlined)

equivalence class with representative 0: . . . ,−5, 0, 5, 10, . . .

equivalence class with representative 1: . . . ,−4, 1, 6, 11, . . .

equivalence class with representative 2: . . . ,−3, 2, 7, 12, . . .

equivalence class with representative 3: . . . ,−2, 3, 8, 13, . . .

equivalence class with representative 4: . . . ,−1, 4, 9, 14, . . .

The binary mod operator we de�ned in the previous slide computes this representative.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular arithmetic 7/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

More modular arithmetic examples

Tables for addition (on the left) and multiplication (on the right) modulo 7.

+ a\b 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

× a\b 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

� All elements of Z7 have a symmetric value; given any a it is also possible to �nd b, which

is unique, such that a+ b ≡ 0 (mod m). This is so for any modulus.

� In this case all non-zero elements of Z7 have inverses. However, this is not general. An

element a of Zm has an inverse if and only if gcd(a,m) = 1. The inverse of a, if it exists,

is the (unique in Zm) b such that ab ≡ 1 (mod m). We say that a−1 ≡ b (mod m). When

the modulus is a prime number, as is the case here, only 0 does not have an inverse.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular arithmetic 8/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Modular arithmetic in C

� Addition, for small integers:

long add_mod(long a,long b,long m)

{ // assuming that 0 <= a,b < m, return (a+b) mod m, 0 < m < (1L << 62)

long r = a + b;

if(r >= m)

r -= m;

return r;

}

� Addition, for arbitrary precision integers (using the GNU MP library):

#include <gmp.h>

void add_mod(mpz_t r,mpz_t a,mpz_t b,mpz_t m)

{ // assuming that 0 <= a,b < m, compute r = (a+b) mod m

mpz_add(r,a,b); // r = a+b

if(mpz_cmp(r,m) >= 0)

mpz_sub(r,r,m); // r -= m

}

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular arithmetic 9/117

https://gmplib.org/
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Modular arithmetic exercises

Use a program (and perhaps brute force) to compute:

� (1122334455× 6677889900) mod 349335433

� 3−1 mod 7. This one does not require a program but do it anyway, it can be used to check

if your program is working properly.

� 4−1 mod 7. Neither does this one.

� 3−1 mod 10. Neither does this one.

� 271828−1 mod 314159. Just to warm up.

� 271828183−1 mod 314159265. Now we are cooking!

� 2718281828459−1 mod 3141592653590. Can you handle this one?

� 27182818284590452353602875−1 mod 31415926535897932384626434. Is the teacher sane?

The jury is still out on that one!

Solutions: 1, 5, 2, 7, 898, 96034192, 1566612579879, 27577365958247392822327707.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular arithmetic 10/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The greatest common divisor

� Let pk be the k-th prime number, so that p1 = 2, p2 = 3, p3 = 5, and so on.

� Each positive integer can the factored into prime factors in a unique way (this is the

fundamental theorem of arithmetic).

� Let a =
∏∞
k=1 p

ak
k , where ak is the number of times pk divides a. Since a is a �nite number,

almost all of the ak values will be zero.

� Likewise for b, let b =
∏∞
k=1 p

bk
k .

� Then,

gcd(a, b) =
∏∞

k=1
p

min(ak,bk)
k

and

lcm(a, b) =
∏∞

k=1
p

max(ak,bk)
k

� If gcd(a, b) = 1 then a and b are said to be relatively prime (or coprime).

� The greatest common divisor can be generalized to polynomials with integer coe�cients!

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Greatest common divisor 11/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The greatest common divisor (algorithm)

Assume that a > 0 and that b > 0. Then:

� gcd(a, b) = gcd(b, a), and so gcd(a, b) = gcd
(
max(a, b),min(a, b)

)
. Thus, by exchanging

a with b if necessary, we may assume that a > b.

� as any positive integer divides 0 we have gcd(a, 0) = a for a > 0. The mathematicians say

that gcd(0, 0) = 0, and so we can say that gcd(a, 0) = a as long as a > 0.

� If a > b then gcd(a, b) = gcd(a− b, b). We can keep subtracting b from (the updated) a

until it becomes smaller than b, and so gcd(a, b) = gcd(a mod b, b) = gcd(b, a mod b).

These observations give rise to the following so-called Euclidean algorithm (coded in C, but it

can easily be translated to another programming language):

long gcd(long a,long b)

{

while(b != 0) { long c = a % b; a = b; b = c; } return a;

}

The GNU MP library has a function, mpz_gcd, for this; pari-gp does this with the gcd function.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Greatest common divisor 12/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The greatest common divisor (example)

Goal: to compute gcd(273, 715).

� Step 1: gcd(273, 715) = gcd(715, 273).

� Step 2: gcd(715, 273) = gcd(715− 2× 273, 273) = gcd(169, 273).

� Step 3: gcd(169, 273) = gcd(273, 169) = gcd(273− 169, 169) = gcd(104, 169).

� Step 4: gcd(104, 169) = gcd(169, 104) = gcd(169− 104, 104) = gcd(65, 104).

� Step 5: gcd(65, 104) = gcd(104, 65) = gcd(104− 65, 65) = gcd(39, 65).

� Step 6: gcd(39, 65) = gcd(65, 39) = gcd(65− 39, 39) = gcd(26, 39).

� Step 7: gcd(26, 39) = gcd(39, 26) = gcd(39− 26, 26) = gcd(13, 26).

� Step 8: gcd(13, 26) = gcd(26, 13) = gcd(26− 2× 13, 13) = gcd(0, 13).

� Step 9: gcd(0, 13) = gcd(13, 0) = 13.

It is known that the computational complexity of computing gcd(a, b) is O
(
log max(a, b)

)
.

Compute gcd(1538099040171999308, 1505213291912594821). Solution: 31415971.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Greatest common divisor 13/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The extended Euclidean algorithm (computation of the modular inverse)

� The Euclidean algorithm generates a �nite integer sequence that begins with a and b and

proceeds by doing modular reductions on consecutive terms of the sequence until zero

is reached. For example, for gcd(105, 40) the sequence is 105, 40, 25, 15, 10, 5, 0, so the

answer is 5.

� But it is possible to do more!

� Let the sequence begin with x0 = a and x1 = b. At any time, let xk = ska + tkb. So,

s0 = t1 = 1, and s1 = t0 = 0.

� The next term of the sequence is given by xk = xk−2 mod xk−1. Let qk =
⌊
xk−2
xk−1

⌋
. Then,

xk = xk−2 − qkxk−1, sk = sk−2 − qksk−1, and tk = tk−2 − qktk−1.

� We have to stop when xk = 0, at which time gcd(a, b) = xk−1. But here we know more:

xk−1 = sk−1a+ tk−1b.

If gcd(a, b) = 1 then xk−1 = 1, and this formula allows us to compute easily

a−1 mod b = sk−1 mod b and b−1 mod a = tk−1 mod a.

Be aware that some of the sk's or tk's may be negative integers.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Greatest common divisor 14/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The extended Euclidean algorithm (example)

Goal: apply the extended Euclidean algorithm to compute gcd(77, 54).

� The following table illustrates the computations done by the extended Euclidean algorithm.

k xk qk sk tk
0 77 1 0

1 54 0 1

2 23 1 1 −1

3 8 2 −2 3

4 7 2 5 −7

5 1 1 −7 10

6 0 7 54 −77

� Because x6 = 0, the information we seek corresponds to the row with k = 5. We have

gcd(77, 54) = 1, 77−1 mod 54 = −7 mod 54 = 47, and 54−1 mod 77 = 10.

The GNU MP library has a function, mpz_gcdext, for this; pari-gp also has a function, gcdext,

for this. Let a = 830150497265848419 and b = 472332647410202896. Compute a−1 mod b and

b−1 mod a. Solutions: 196321609375327131 and 485104516344227716.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Greatest common divisor 15/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Curiosity: e�cient computation of several modular inverses

Goal: to compute a−1
k mod m, for k = 1, . . . , n.

� Let A1 = a1 mod m, and for k = 2, 3, . . . , n, let Ak = (Ak−1ak) mod m, i.e., let Ak be the

product of the �rst k numbers we wish to invert:

Ak =
k∏
i=1

ai mod m.

� Note that for k = 2, 3, . . . , n, we have

(*) a−1
k ≡ Ak−1A

−1
k (mod m) and A−1

k−1 ≡ akA
−1
k (mod m).

� Compute A−1
n . If it does not exist then at least one of the ak does not have an inverse.

Otherwise, for k = n, n−1, . . . , 2, use equations (*) to compute a−1
k mod m and A−1

k−1 mod

m. Finally, a−1
1 = A−1

1 , so we are done!

� The entire computation requires (k + 1) + 2(k − 1) = 3(k − 1) multiplications and one

inversion. So, this �trick� is useful when the cost of a modular inversion is higher than

the cost of three modular multiplications, which is usually the case because a modular

inversion requires O(logm) operations using the extended Euclidean algorithm.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Greatest common divisor 16/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Linear maps

� When working modulo m it su�ces to work with integers in the range 0, 1, . . . ,m−1, i.e.,

it su�ces to work with Zm.

� Let

f(x;m,a) = (ax) mod m

be the linear map x 7→ (ax) mod m from Zm into itself.

� Recall that a function f(x) is said to be linear i� f(αx+ βy) = αf(x) + βf(y) for all α,

β, x, and y.

� For example, for m = 4 the linear map with a = 2 (on the left) is not invertible, but the

linear map with a = 3 (on the right) is invertible.

map for m = 4 and a = 2

0 7→ 0

1 7→ 2

2 7→ 0

3 7→ 2

map for m = 4 and a = 3

0 7→ 0

1 7→ 3

2 7→ 2

3 7→ 1

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Linear maps 17/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Linear maps (continuation)

� Why are we interested in inverting the map? Because the map scrambles the elements of

Zm and we may be interested in unscrambling them (think in cryptographic terms).

� So, what is the inverse map?

� It turns out that the inverse map, if it exists, is also a linear map.

� More speci�cally, the inverse map of f(x,m, a mod m) is f(x,m, a−1 mod m), where

a−1 mod m is the modular inverse of a mod m. Indeed, if y = f(x;m,a) = ax mod m

then x = a−1y mod m.

� Since the modular inverse of a modulo m only exists when gcd(a,m) = 1 the linear map

is invertible if and only if gcd(a,m) = 1.

� Keep in mind that we wish to devise a way to encrypt information by providing public data

to do so (in this case it would be m and a).

� Alas, this way of scrambling information is very easy to unscramble, so useless from a

cryptography point of view. A�ne maps, of the form x 7→ (ax+b) mod m, are not better.

� Modular multiplication scrambles the information but it is easy to undo if we known m

and a. What about modular exponentiation?

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Linear maps 18/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Linear maps (a failed cryptosystem)

The Merkle-Hellman knapsack cryptosystem keeps the following information secret:

� a set W = {w1, w2, . . . , wn } of n positive integers, such that wk is a super-increasing

sequence, i.e., wk >
∑k−1

i=1 wi for 2 6 k 6 n (each term is greater that the sum of the

previous terms),

� a modulus m such that m >
∑n

i=1wi,

� a scrambling integer a such that gcd(a,m) = 1,

and publishes the following information:

� set W ′ = {w′1, w′2, . . . , w′n }, where w′i = (awi) mod m, for 1 6 i 6 n.

Actually, it is much better to publish a random permutation of W ′. (Homework: why?). To

send a message composed by the n bits αk, 1 6 k 6 n, compute and send

C =
n∑
k=1

αkw
′
k.

This is a hard knapsack problem (in this case a subset sum problem). To decipher transform it

into a trivial knapsack problem by computing a−1C mod m, which is equal to
∑n

k=1αkwk and

so can be solved by a greedy algorithm because the terms of the sequence are super-increasing.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Linear maps 19/117

https://en.wikipedia.org/wiki/Merkle%E2%80%93Hellman_knapsack_cryptosystem
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Linear maps (Merkle-Hellman knapsack example)

The following example shows the Merkle-Hellman cryptosystem in action.

� Secret data: W = { 1, 3, 5, 12, 22, 47 }, m = 100, and a = 13.

� Public data: W ′ = { 13, 39, 65, 56, 86, 11 },
� Unencrypted message to be sent: A = { 0, 0, 1, 1, 0, 1 }.
� Encrypted message sent: C = 0× 13 + 0× 39 + 1× 65 + 1× 56 + 0× 86 + 1× 11 = 132.

� To decrypt compute 132 × 13−1 mod 100 = 32 × 77 mod 100 = 64 and then reason as

follows [greedy algorithm for the easy subset sum problem]:

1. 47 must be used to form the sum because 64 > 47. Hence α6 = 1. The rest of the

sum is 64− 47 = 17.

2. 22 cannot be used to form the sum because 17 < 22. Hence α5 = 0.

3. 12 must be used to form the sum because 17 > 12. Hence α4 = 1. The rest of the

sum is 17− 12 = 5.

4. As so on. In this particular case, the next iteration �nishes the deciphering process.

Now, imagine a set W with hundreds of elements and numbers with hundreds of bits. Looks hard, doesn't it?
With 100 elements there are 2100 cases to try. Meet-in-the middle techniques reduce this to about 50× 250 cases
but need to store 250 numbers, which is already impractical. With thousands of terms, the original ideia appeared
to be reasonable. Alas, lattice reduction techniques can be used to solve this problem in a reasonable amount of
time. See The Rise and Fall of Knapsack Cryptosystems by Andrew Odlyzko.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Linear maps 20/117

https://www-users.cse.umn.edu/~odlyzko/doc/arch/knapsack.survey.pdf
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Fermat's little theorem

� The elements of Zm that have an inverse are called the units of Zm. The set containing all

these units is denoted by Z∗m. When m is a prime number, Z∗m = { 1, 2, . . . ,m− 1 }.

� Euler's totient function ϕ(m) counts how many integers in Zm are relatively prime to m,

i.e., it counts the number of elements of Z∗m. It can be computed using the formula

ϕ(m) = m
∏
p|m

(
1−

1

p

)
,

where the product is over the distinct prime factors of m.

� ϕ(m) can be computed in pari-gp with the eulerphi function.

� Let P =
∏
k∈Z∗m

k. Clearly, P has to be relatively prime to m because each of its factors

is relatively prime to m. (When m is prime then P + 1 ≡ 0 (mod m) � that's Wilson's

theorem � but we will not use this fact here.)

� Now assume that a ∈ Z∗m, i.e., that gcd(a,m) = 1, and let us now consider what the map

f(x;m,a) does to the elements of Z∗m.

� It scrambles them! Because everything is relatively prime to m, Z∗m is mapped into itself.

Since au ≡ av (mod m) implies u ≡ v (mod m), di�erent elements have di�erent images

(a bijection, also known as a one-to-one map).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Fermat's little theorem 21/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Fermat's little theorem (continuation)

� So, since the map x 7→ ax mod m when applied to Z∗m just reorders its elements (take a

look at the multiplication modulo 7 in a previous slide), it follows that

Q ≡

 ∏
k∈Z∗m

ak

 ≡
aϕ(m)

∏
k∈Z∗m

k

 ≡ (aϕ(m)P) (mod m),

but also that (because of the reordering!)

Q ≡ P (mod m).

� Since gcd(P,m) = 1, P−1 mod m exists, and so we can say that, for any a ∈ Z∗m, we have
(this is Fermat's little theorem)

aϕ(m) ≡ 1 (mod m).

� For a prime number p we have ϕ(p) = p− 1, and Fermat's little theorem takes the form

ap−1 ≡ 1 (mod p), for all a with gcd(a, p) = 1.

We can take care of the case a ≡ 0 (mod p) by multiplying both sides by a:

ap ≡ a (mod p), for all a.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Fermat's little theorem 22/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Fermat's little theorem (examples)

� Let's see what happens for three distinct values of m (all exponentiations are done mod-

ulo m):

m = 7, e = ϕ(m) = 6:

k ke ke+1

0 0 0
1 1 1
2 1 2
3 1 3
4 1 4
5 1 5
6 1 6

(The values of k for which
gcd(k,m) = 1 have a gray
background.)

m = 10, e = ϕ(m) = 4:

k ke ke+1

0 0 0
1 1 1
2 6 2
3 1 3
4 6 4
5 5 5
6 6 6
7 1 7
8 6 8
9 1 9

m = 12, e = ϕ(m) = 4:

k ke ke+1

0 0 0
1 1 1
2 4 8
3 9 3
4 4 4
5 1 5
6 0 0
7 1 7
8 4 8
9 9 9
10 4 4
11 1 11

� What happens for m = 2× 3× 5?

� It looks like aϕ(m)+1 ≡ a (mod m) when m does not have repeated prime factors!

� The Chinese remainder theorem, explained next, will help us prove this.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Fermat's little theorem 23/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Chinese remainder theorem

� Suppose that you know that x ≡ a (mod m) and that x ≡ b (mod n).

� From the �rst condition x has to be equal to a+ km for some integer k.

� But a + km ≡ b (mod n), and so k ≡ m−1(b − a) (mod n). The modular inverse exists

for sure if gcd(m,n) = 1, which we assume is the case here.

� Therefore, we know that k = ln + c for some integer l, where c = m−1(b − a) mod n.

Note that c = 0 when b = a.

� Finally, we get x = a+ cm+ lmn, i.e., x ≡ a+ cm (mod mn).

� If b = a things are simpler: x = a+ lmn, i.e., x ≡ a (mod mn).

� It is possible to reach the same conclusion more quickly:

x ≡ a(n−1 mod m)n+ b(m−1 mod n)m (mod mn).

� In general, if we know that x ≡ ak (mod mk), for 1 6 k 6 K, with the moduli mk pairwise

coprime (i.e., gcd(mi,mj) = 1 when i 6= j) then, with M =
∏K
k=1mk and Mk = M/mk,

we have

x ≡
∑K

k=1
ak(M

−1
k mod mk)Mk (mod M).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Chinese remainder theorem 24/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Chinese remainder theorem (problems)

Solve the following systems of congruences:{
x ≡ 0 (mod 8)

x ≡ 1 (mod 9)


x ≡ 0 (mod 8)

x ≡ 8 (mod 16)

x ≡ 3 (mod 5)
x ≡ 2 (mod 3)

x ≡ 2 (mod 5)

x ≡ 2 (mod 7)



x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 4 (mod 5)

x ≡ 6 (mod 7)

x ≡ 10 (mod 11)

x ≡ 12 (mod 13){
x ≡ 12345 (mod 2718281828)

x ≡ 67890 (mod 3141592653)

� Hint: pari-gp groks the Chinese remainder theorem (chinese function). For example, the

�rst problem can be solved in pari-gp by

chinese(Mod(0,8),Mod(1,9))

Solutions: x ≡ 64 (mod 72), x ≡ 8 (mod 80), x ≡ 2 (mod 105), x ≡ 30029 (mod 30030),

x ≡ 505127895641287449 (mod 8539734219628209684).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Chinese remainder theorem 25/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Fermat's little theorem (revisited)

� Let p be any prime number. By Fermat's little theorem we know that

xϕ(p) ≡ xp−1 ≡ 1 (mod p), when gcd(x, p) = 1.

� It follows that for any integers r and x we have

xr(p−1)+1 ≡ x (mod p).

For x ≡ 0 (mod p) this is obvious. For the other cases use Fermat's little theorem to

adjust the exponent: xr(p−1)+1 ≡ x (xp−1)r ≡ x (1)r (mod p).

� Now consider a second prime, q, di�erent from p. We also have, for any integer s,

xs(q−1)+1 ≡ x (mod q).

� Let t be the least common multiple of p− 1 and q − 1. If follows that

xt+1 ≡ x (mod p) and xt+1 ≡ x (mod q).

� By the Chinese remainder theorem this implies that

xt+1 ≡ x (mod pq).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Fermat's little theorem 26/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Fermat's little theorem (conclusion)

� The previous result can be generalized to K primes.

� Let p1, p2, . . . , pK be K distinct primes. Here, p1 is not necessarily the �rst prime (two)

and so on.

� Let P be their product: P =
∏K
k=1 pk.

� Let λ(P) be the so-called Carmichael function, given by

λ(P) = λ(p1p2 · · · pK) = lcm(p1 − 1, p2 − 1, . . . , pK − 1).

� Then, for any integers k and x, we have{
xkλ(P)+1 ≡ x (mod P), always,

xλ(P) ≡ 1 (mod P), when gcd(x, P) = 1.

� This result is often presented with λ(P) replaced by ϕ(P) =
∏K
k=1(pk − 1). That is not

really wrong but it is not the best possible result, because when P a product of odd primes,

ϕ(P)/λ(P) is an integer larger than 1.

� This means that in a modular exponentiation we may reduce the exponent modulo λ(P)

when gcd(x, P) = 1. When gcd(x, P) 6= 1 things are more complicated.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Fermat's little theorem 27/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Modular exponentiation

� The modular exponentiation ab mod m can be done recursively using the following two

observations:

a2n+0 mod m = (a2)n mod m

and

a2n+1 mod m = a(a2)n mod m.

If follows that it can be done using O(logn) modular multiplications.

� Example:

1321 mod 71 = 13× (132)10 mod 71 = 13× 2710 mod 71,

2710 mod 71 = (272)5 mod 71 = 195 mod 71,

195 mod 71 = 19× (192)2 mod 71 = 19× 62 mod 71,

62 mod 71 = 36 mod 71,

backsubstituting. . .

195 mod 71 = 19× 36 mod 71 = 45 mod 71,

2710 mod 71 = 45 mod 71,

13× 2710 mod 71 = 17 mod 71,

1321 mod 71 = 17 mod 71 = 17.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular exponentiation 28/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Modular exponentiation (another way)

� Let the exponent n, with N + 1 bits, be represented in base-2 as follows:

n =
∑N

k=0
nk2

k.

� Then,

an mod m = a
∑N
k=0 nk2k mod m =

∏N

k=0
ank2k mod m.

� Using the example of the previous slide, we have n = 21 = 101012, so N = 4. Thus,

k a2k use in the �nal product?

0 13 yes

1 27 no; note that 27 = 132 mod 71

2 19 yes; note that 19 = 272 mod 71

3 6 no; in general, each number is the square of the previous number

4 26 yes

So, 1321 mod 71 = 13× 19× 26 mod 71 = 17.

� Compute 1234567890 mod 123456789. Solution: 98112762.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular exponentiation 29/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Modular exponentiation (a slightly better way)

� It is possible to do slightly better (Brauer's algorithm). Let the exponent n, with d + 1

base-B digits, be represented in base-B as follows:

n =
∑d

k=0
nkB

k = n0 +B
(
n1 +B

(
n2 +B(. . .+ nd)

))
.

The last equality is the Horner's rule to evaluate a polynomial. Note that 0 6 nk < B.

(Usually, B is a power of 2.)

� Then, an mod m can be evaluated using the following sequence of steps:

r0 = and mod m r1 = rB0 r2 = and−1r1 mod m r3 = rB2
r4 = and−2r3 mod m r5 = rB4 · · · · · ·
r2d = r2d−1a

n0 mod m

� When B = 8, the 8 possible values of ank mod m can be precomputed and stored � in

an interleaved way to avoid side-channel attacks � in memory.

�rst word of a0 �rst word of a1 �rst word of a2 �rst word of a3 �rst word of a4 �rst word of a5 �rst word of a6 �rst word of a7

second word of a0 second word of a1 second word of a2 second word of a3 second word of a4 second word of a5 second word of a6 second word of a7

. .

� To explore further: addition chains.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular exponentiation 30/117

https://en.wikipedia.org/wiki/Exponentiation_by_squaring
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Modular exponentiation with large numbers (error detection)

� Some large scale computations do many modular exponentiations of large integers (GIMPS,

PrimeGrid). Whay if, due to, say, a memory error or a stray cosmic ray, the computation

produces a wrong result?

� There exists a very cheap (in terms of computational complexity) way to detect with very

high probability an error in this kind of computations.

� Suppose we wish to compute c = ab mod m. The idea is to use a �small� number r.

say a 64-bit number, and compute d = ab mod (mr). The value of c can then be quickly

computed as c = d mod m. The value of d mod r can be compared to (a mod r)b mod r,

which requires only 64-bit arithmetic and is thus fast. If these two last values do not agree,

then there was an error during the computation and it has to be redone.

� As we will see later, this error checking is useful in the context of RSA deciphering (using

the Chinese remainder theorem), because an error in that computation can be used to

factor the RSA modulus (if so, game over. . .).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular exponentiation 31/117

https://www.mersenne.org/
https://www.primegrid.com/
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Modular exponentiation, Fermat's little theorem and time locks

� Suppose you wish to apply a time lock to a given document, that is, you want to give a

document to a person, but you wish that that person can only open the document some

time in the future.

� One way to do it is the following:

� Select two large primes p and q, a random number r between 2 and pq − 2, and a

number t that is related to the time delay; if it is possible to do x modular squaring

operations modulo pq per second with the fastest hardware in the entire planet, and

if you wish a delay of at least s seconds, set t = xs.

� Encrypt the document with a key derived from the value of r2t mod (pq), which you

can compute quickly by reducing the exponent to 2t mod lcm(p − 1, q − 1). Even

better: do the computation modulo p and modulo q and use the Chinese remainder

theorem!

� Send the document, the key derivation details, r, pq, and t.

� Throw away p and q.

� Without p and q, anyone wishing to read the document will be forced to either factor

pq, which is hard, or do t modular squarings, which take at least t/x seconds.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular exponentiation 32/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Fast modular multiplication

A modular multiplication requires a remainder operation, which is a slow operation if the

modulus is a general integer. For example, contemporary processors can multiply two 64-bit

integers, producing a 128-bit result, with a latency of 3 or 4 clock cycles. But, dividing a 128-bit

integer by a 64-bit integer, producing a 64-bit quotient and a 64-bit remainder, is considerably

slower (tens of clock cycles). [For more information about how many clock cycles elementary

arithmetic operations take on Intel/AMD processors, take a look at Agner Fog's instruction

tables.]

If the modulus is a power of two, say 2n, the remainder operation is very fast; the remainder is

just the last n bits of the number being remaindered. In 1985, Peter Montgomery came up with

a beautiful way to explore this to e�ciently perform general remaindering operations without

performing an expensive division. His ideia is useful when many modular multiplications are

performed in tandem; that is exactly what happens in a modular exponentiation.

Peter Montgomery's paper, Modular Multiplication Without Trial Division, explains how that

can be done. For details, see next slide or search for �Montgomery modular multiplication� in

the internet.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Fast modular multiplication 33/117

https://www.agner.org/optimize/
https://www.agner.org/optimize/
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Montgomery multiplication (REDC algorithm)

To perform arithmetic modulo m choose b > m such that gcd(m, b) = 1 and such that

divisions by b are very e�cient (a power of two is an obvious choice). Let m′ be such that

mm′ = −1 mod b. For 0 6 x < bm let

y = x+m(xm′ mod b).

Then 0 6 y < 2bm. Also, y mod m = x mod m and y mod b = 0. So

xb−1 mod m = yb−1 mod m = (y/b) mod m.

The last equality follows because y is a multiple of b. But y/b < 2m, so we have

xb−1 mod m =

{
y/b, if y/b < m;

y/b−m, if y/b 6 m.

To take advantage of this, transform u to ū = (ub) mod m; likewise for v, etc. It follows that

w = (u± v) mod m → w̄ = (ū± v̄) mod m

w = (uv) mod m → w̄ = (ūv̄b−1) mod m.

With x = ūv̄, the computation of ūv̄b−1 mod m can be performed e�ciently using the formula

for xb−1 mod m given above. This is explained in detail in the next page.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Fast modular multiplication 34/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Montgomery multiplication (details)

For a processor with 64-bit words, i.e., b = 264, let the modulus m be odd and smaller that 263.

Given 0 6 ū < m and 0 6 v̄ < m, to compute (ūv̄b−1) mod m:

� compute x = ūv̄ = r1b+ s1; on Intel/AMD processors, this is a single assembly instruction

that produces a 128-bit result split among two registers, one holding r1 and another holding

s1

� compute t1 = xm′ mod b = s1m
′ mod b; on Intel/AMD processors, this is again a single

assembly instruction (here only the 64 lower order bits are necessary)

� compute t2 = mt1 = r2b+ s2; again, one instruction

� add x+ t2; this requires two addition instructions (the second with carry)

� the result we seek is the 64-most signi�cant bits of this addition.

If the result is larger than or equal to b, be must subtract b; two more instructions. On a chain

of multiplications, for m < 262, this last step can be performed only at the end!

It is possible to extend this idea to multi-word integers, also known as multi-precision integers.
asm volatile (

"movq %[r_mu],%[rax]"
"mulq %[r_mv]" // rdx:rax = mu*mv
"movq %[rax],%[r_lo]"
"movq %[rdx],%[r_hi]" // hi:lo = x = mu*mv
"mulq %[r_mi]" // rax = x * mi mod 2^64
"mulq %[r_m]" // rdx:rax = m * (x * mi mod 2^64) [128 bits]
"addq %[rax],%[r_lo]" // lo is now zero
"adcq %[rdx],%[r_hi]" // hi is now smaller than 2*m and is the result we want

: [rdx] "=&d" (tmp1), [rax] "=&a" (tmp2), [r_hi] "=&r" (hi), [r_lo] "=&r" (lo)
: [r_mu] "r" (mu), [r_mv] "r" (mv), [r_m] "r" (m), [r_mi] "r" (mi)
: "cc"

);

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Fast modular multiplication 35/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Montgomery multiplication (example)

To illustrate how the Montgomery multiplication works, we will use b = 103. Let us compute

123× 456 mod 789. We have,

� m = 731, and som′ = 891; note thatmm′ = 702999, which means thatmm′ mod b = −1.

� u = 123, and so ū = (ub) mod m = 705.

� v = 456, and so v̄ = (vb) mod m = 747.

� ūv̄ = 526635, so ūv̄m′ = 469231785, and so ūv̄m′ = 469231785 mod b = 785. This can

be computed with smaller numbers as follows:
(
(ūv̄) mod b)m′

)
mod b = 635m′ mod b =

565785 mod b = 785.

� ūv̄ +m(ūv̄m′ mod b) = 705× 747 + 789× 785 = 1146000.

� The result we seek, w̄, is then 1146−m = 357.

� To get to w we need to compute w̄b−1 mod m, which is similar to what was done above

(with one of the multiplicands set to one). Or, since this is usually a terminal operation

and so done only once, we could compute b−1 mod m and do the operation using normal

arithmetic. Since b−1 mod m = 703, we �nally get 357 × 703 mod m = 69, which is the

correct result.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Fast modular multiplication 36/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Multiplicative order

� Fermat's little theorem says that xλ(m) ≡ 1 (mod m) for any x ∈ Z∗m.

� For a given x ∈ Z∗m what is the least exponent o such that xo mod m = 1?

� This least exponent is called the order of x modulo m (the function znorder computes this

in pari-gp).

� The order has to be a divisor of λ(m).

� For a prime number p, λ(p) = ϕ(p) = p− 1.

� It turns out that there are ϕ(p − 1) elements of Z∗p with maximal order p − 1. These

elements are called primitive roots.

� pari-gp has a function, znprimroot, to compute one of them.

� They generate Z∗p multiplicatively. In particular, let r be one primitive root. Then, for

k = 0, 1, 2, . . . , p− 2, rk mod p takes all values of Z∗p (without repetitions).

� We can therefore speak of logarithms (modulo p), with respect to base r. The logarithm

of a = rx mod p in base r is obviously x. This so-called discrete logarithm problem is

currently very hard to solve when p is large.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Multiplicative order 37/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The discrete logarithm problem for Z∗p
� Given a prime p, a primitive root r of p, and a, �nd x such that

a ≡ rx mod p.

� This is a hard problem if p− 1 has large prime factors:

-2

-1

 0

 1

 2

 3

 4

 5

 60 80 100 120 140 160 180 200

Ryzen 7 2700X 4.34GHz, one thread
pari-gp 2.17.0
gmp 6.3.0
znlog

b
a
se

-1
0

 l
o
g
a
ri

th
m

 o
f

th
e

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
co

n
d
s)

number of bits

Pari-gp code used to compute the �gure data:

do_one(b,seed)={ my(q,p,r,a,x,dt,e);
setrand(seed);
while(1,q=precprime(random([5*2^(b-4),2^(b-1)]));
p=2*q+1; if(isprime(p),break(1);););

r=znprimroot(p); printf("# %d %d\n",p,lift(r));
a=random([floor(p/10),floor(9*p/10)]); x=r^a;
dt=getabstime(); e=znlog(x,r); dt=getabstime()-dt;
if(e!=a,quit(1);); return(0.001*dt); };

do_many(b,nt=5)={ my(dt);
dt=vecsort(vector(nt,k,do_one(b,100*b+k)));
printf("%3d",b); for(k=1,nt,printf(" %.3f",dt[k]););
printf("\n"); return(vecmax(dt)); };

printf("# version=%d\n",version());
forstep(b=60,500,4,if(do_many(b)>90000.0,break(1);););
quit();

� But, if p− 1 only has small factors, the discrete logarithm problem is easy:

while(1,p=1+prod(k=1,160,prime(1+random(25)));\

if(isprime(p),break(););); r=znprimroot(p); % p has about 800 bits

znlog(r^(10^50),r) % milliseconds...

� The same problem but with elliptic curves

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Discrete logarithms (Z∗

p) 38/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The integer factorization problem

� Given an integer n, �nd its factors.

� This problem has countless applications. It is needed, for example, so solve e�ciently the

discrete logarithm problem.

� This is a hard problem if n has large factors:

-2

-1

 0

 1

 2

 3

 4

 5

 160 180 200 220 240 260 280 300 320

Ryzen 7 2700X 4.34GHz, one thread
pari-gp 2.17.0
gmp 6.3.0
factor

b
a
se

-1
0

 l
o
g
a
ri

th
m

 o
f

th
e

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
co

n
d
s)

number of bits

Pari-gp code used to compute the �gure data:

do_one(b,seed)={ my(dt,p,n,f);
setrand(seed); default(realbitprecision,b+10);
p=vector(2); p[1]=nextprime(random([2^(b/2-4),2^(b/2)]));
p[2]=precprime(random(2^(b-3)*[5,8])/p[1]); p=vecsort(p);
n=p[1]*p[2]; printf("# %d %d %d\n",n,p[1],p[2]);
dt=getabstime(); f=factor(n); dt=getabstime()-dt;
if(f[1,1]!=p[1] || f[2,1]!=p[2],quit(1););
return(0.001*dt); };

do_many(b,nt=5)={ my(dt);
dt=vecsort(vector(nt,k,do_one(b,100*b+k)));
printf("%3d",b); for(k=1,nt,printf(" %.3f",dt[k]););
printf("\n"); return(vecmax(dt)); };

printf("# version=%d\n",version());
forstep(b=150,500,5,if(do_many(b)>90000.0,break(1);););
quit();

� However, if all factors are small the problem is easy. Moreover, even with large factors, if

n = pq with p/q very close to a rational number with small numerator and denominator,

the problem is not so hard (Lehmer factorization).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
The integer factorization problem 39/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Primality tests

� One way to prove that a given number m is prime is to �nd one of its primitive roots.

� Choose a random a between 2 and m− 2.

� If gcd(a,m) 6= 1, then m is not prime. Better yet, the greatest common divisor allow us

to partially factor m.

� By Fermat's little theorem we know that am−1 ≡ 1 mod m. If this is not so, then de�nitely

m is not prime.

� Furthermore, when m is an odd number, we must have either a(m−1)/2 ≡ 1 mod m or

a(m−1)/2 ≡ −1 mod m.

� Now, it can be shown that a is a primitive root modulo m if, for every prime divisor d of

m − 1, we have a(m−1)/d mod m 6= 1. If a satis�es these conditions then the order of a

modulo m must be m− 1, and thus m must be prime.

� If not, try another a.

� These exist composite numbers, called Carmichael numbers, for which am−1 mod m = 1

for all a which are relatively prime to m. For these numbers, λ(m) | (m− 1).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Primality tests 40/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The Miller-Rabin primality test

� Goal: to test if the odd number n, with n > 3, is a prime number or not.

� Result of the test: either n is de�nitely not prime or it may be prime (a probable prime

number); in the second case, the probability that the test fails to identify a composite

number is at most 0.25.

� How it is done (to increase the con�dence on the result, do steps 2 to 6 several times):

1. Let n−1 be written as n−1 = 2rd, with d an odd number (so r is as large as possible).

2. Select at random an integer a uniformly distributed in the interval 2 6 a 6 n− 2.

3. If gcd(a, n) 6= 1, then n is de�nitely a composite number.

4. Compute x0 = ad mod n. If x0 = 1 or x0 = n− 1 then n is a probable prime.

5. Otherwise, for k = 1, 2, . . . , d− 1, compute xk = x2
k−1 mod n. If xk = n− 1 then n is

a probable prime.

6. Finally, if we get here, say that n is de�nitely a composite number (Fermat's little

theorem failed to be true because a(m−1)/2 ≡ ±1 mod m).

� The composite numbers that pass this test (meaning that the algorithm above says that

they are probable primes) for a given a are called base-a strong pseudo-primes.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Primality tests 41/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The Di�e-Hellman key exchange protocol

� Alice and Bob have never met but wish to exchange a secret key (perhaps to be used in

the initialization stage of a symmetric-key cipher algorithm).

� They agree, on a public channel, on a prime p and on a primitive root r modulo p. (Choose

a prime number with an easy to �nd factorization of p− 1, say a safe prime.)

� Alice generates a random number α between 2 and p− 2, or, better yet, between, say, p0.8

and p− p0.8, and sends Bob the integer A = rα mod p. She keeps α only to herself.

� Likewise, Bob generates a random number β between 2 and p − 2, and sends Alice the

integer B = rβ mod p. He keeps β only to himself.

�

For extra protection, make sure gcd(α, p− 1) = gcd(β, p− 1) = 1. This forces A and B to be primitive roots.

Alice computes S = Bα mod p = rβα mod p = rαβ mod p.

� Bob computes S = Aβ mod p = rαβ mod p.

� They have arrived at the same number, which is their shared secret. They can now discard

A, B, α, β, and p (do not reuse p many times).

� Anyone eavesdropping their communications (Eve?, Mallory?) has to either infer α from

A or β from B. This is known as the discrete logarithm problem, which is currently a very

hard problem to solve.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Di�e-Hellman key exchange 42/117

https://en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Di�e-Hellman key exchange protocol (exercises)

� Let p = 101 and r = 2. Alice chooses α = 52, and so A = 97. Bob chooses β = 46 and

so B = 82. Con�rm that their common secret is S = 58.

� Let p = 3141601 and r = 26. Alice chooses α = 2437429, and so A = 1282989. Bob

chooses β = 2988228 and so B = 2426580. Their common secret is S = 1669355. Try to

�nd α given A and to �nd β given B.

� Let p = 31415926541 and r = 10. Alice chooses α = 29770170945, and so A =

5728872032. Bob chooses β = 23956179675 and so B = 22727460975. Their common

secret is S = 26991399064. Try to �nd α given A and to �nd β given B.

� Let p = 3141592653589793239 and r = 6. Alice chooses

α = 2459372999633886947, and so A = 2408130236552768716.

Bob chooses

β = 2502449096145193611, and so B = 434542471090467423.

Their common secret is S = 1267222359226852228. Can you �nd by yourself α given A

and β given B? Hint: pari-gp does this with the znlog function.

p=3141592653589793239; r=6; znlog(Mod(2408130236552768716,p),Mod(r,p))

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Di�e-Hellman key exchange 43/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Di�e-Hellman key exchange protocol (man-in-the-middle
attack)

� Mallory, being a powerful individual, can intercept and replace all messages between Alice

and Bob.

� Here's how he can compromise the Di�e-Hellman key exchange protocol.

� Mallory intercepts all messages coming from Alice in the Di�e-Hellman key exchange

protocol and impersonates Bob. At the end of the key-exchange protocol he will share a

secret key with Alice.

� Likewise, Mallory intercepts all messages coming from Bob in the Di�e-Hellman key ex-

change protocol and impersonates Alice. At the end of the key-exchange protocol he will

share a secret key with Bob (di�erent from the one he shares with Alice).

� From this point on, he decrypts all messages between them, using the appropriate shared

secret key, and re-encrypts them using the other shared secret key. He may even modify

the messages.

� But Alice and Bob can counter this if they send their messages in two or more distinct

parts in an interlocked fashion (this assumes that decoding can only be performed after

all parts have been received). Also they can, and should, authenticate themselves to the

other.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Di�e-Hellman key exchange 44/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

ElGamal public key cryptosystem

� Alice and Bob agree on a large prime number p and on an element g of F∗p with a large

prime order

� Alice chooses a private key a, with 1 < a < p− 1, and publishes A = ga mod p.

� Bob chooses a random ephemeral key k.

� He uses Alice's public key A to compute c1 = gk mod p and c2 = mAk mod p, where m is

the plaintext.

� He then sends (c1, c2) to Alice.

� To recover the plaintext m, Alice computes m = (ca1)−1c2 mod p. This works because

(ca1)−1c2 = g−akmgak = m mod p.

� An eavesdropper has to �nd k from c1 (discrete logarithm problem).

� A middle-man can easily manipulate c2; for example, to replace m by 2m all that is

necessary is to replace c2 by 2c2 mod p.

� This public key cryptosystem, implemented exactly as above, has some security problems.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
ElGamal cryptosystem 45/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The Rivest-Shamir-Adleman cryptosystem

� The Rivest-Shamir-Adleman cryptosystem (or RSA for short), invented in 1977 on the MIT

(but previously invented in 1973 by Cli�ord Cocks and kept classi�ed by the GCHQ), is

based on the observation (Fermat's little theorem) that when N is the product of two

distinct prime numbers, i.e., N = pq, then for any x and any k we have

xkλ(N)+1 ≡ x (mod N).

� In particular, the transformation

y = xe mod N

can be undone using the transformation

x = yd mod N

provided that

ed ≡ 1 (mod λ(N)),

i.e., provided that e = d−1 mod λ(N).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
RSA cryptosystem 46/117

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Rivest-Shamir-Adleman cryptosystem (continuation)

� The key observation is that this is easy to do only when λ(N) is known.

� In turn, λ(N) can be computed easily only when the factorization of N is known: λ(N) =

λ(pq) = lcm(p− 1, q − 1).

� Since the factorization of a large number is considered to be a hard problem � for example

RSA-250 was factored in 2020 using about 2700 core years � given N and e it is hard to

compute d, and thus to recover y given x.

� Also, one may try do �nd the decryption exponent d directly by solving a discrete logarithm

problem, which is also a hard problem.

� It is thus possible to publish N and e without revealing too much information.

� So, anyone using the RSA public key cryptosystem publishes hers/his own N and e.

� Sending a ciphered message to someone entails using that person's public modulus (N)

and exponent (e)

� About the choice of the primes p and q:

1. They should be random (do not reuse primes!)

2. p− 1 and q − 1 should not have small prime factors

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
RSA cryptosystem 47/117

https://eprint.iacr.org/2020/697.pdf
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Rivest-Shamir-Adleman cryptosystem (continuation)

� Alice wants to send a message M to Bob.

� First, she fetches Bob's public encryption data: a modulusNbob and an encryption exponent

ebob.

� Then, she computes the ciphered message C = Mebob mod Nbob, and sends it to Bob.

� Bob knows that Nbob = pbobqbob (the secret information that only he knows), and so he

can compute dbob, the decryption exponent, such that ebobdbob ≡ 1 (mod λ(Nbob)).

� Using dbob he can decipher C: M = Cdbob mod Nbob.

� This works because

Cdbob mod Nbob = Mebobdbob mod Nbob = Mkλ(Nbob)+1 mod Nbob = M

� Note that the decryption can be done more e�ciently using the Chinese remainder theorem.

Instead of doing one modular exponentiation moduloN do, perhaps in parallel, two modular

exponentiations, one modulo p and another modulo q, and at the end combine them using

the Chinese remainder theorem. However, be aware of side-channel attacks. . .

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
RSA cryptosystem 48/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Rivest-Shamir-Adleman cryptosystem (signing)

� The RSA cryptosystem can do even more: it is possible to ensure that the message came

from a speci�ed sender (that makes virtually impossible to forge a properly signed message)

� Main idea: Alice computes a message digest (hash) S of the message she wants to send

to Bob and enciphers it using her own modulus and private decryption exponent:

Salice = Sdalice mod Nalice

� Bob can recover S using Alice's public data:

S
ealice
alice mod Nalice = Sealicedalice mod Nalice = Skλ(Nalice)+1 mod Nalice = S

� So, Bob decodes the message Alice sent him, computes its message digest, and compares

it with the S obtained from the Salice data. If they match it is almost certain that it was

indeed Alice that has sent the message. Otherwise, someone else was trying to impersonate

Alice.

� For this to actually work, Bob has to trust Alice's public data. So, that public data has

to be signed by a party trusted by everyone. Homework: Find out how certi�cation chains

and certi�cation authorities work.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
RSA cryptosystem 49/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Rivest-Shamir-Adleman cryptosystem (blind signature)

� A signing entity publishes its public exponent e and its modulus n; it signs a message m

it receives by computing c = md mod n, where d is its decryption exponent. The original

message can be recoved by computing m = ce mod n.

� Alice wants that public entity to sign her message ma, but does not want enyone to know

ma. (Sending ma directly to be signed is a very bad idea, because it could be decrypted

from the signature by using only public information.)

� So, she chooses a random r such that gcd(r, n) = 1 and sends m = mar
e to be signed.

� She receives c = md
ar
ed mod n = mar mod n, and so she can compute the signature as

ca = cr−1 mod n = md
a mod n.

� She can now encrypt ca with her own private key and send it, together with her encrypted

m, to the intended recipient of the message.

� This method is unsafe. At the very least, apply a padding scheme with a reasonably large

random �eld to the message that is to be signed.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
RSA cryptosystem 50/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Rivest-Shamir-Adleman cryptosystem (big example)

In August 1977, in his Scienti�c American Mathematical games column, Martin Gardner posed

the following RSA challenge.

� Character encoding: space is 00, A to Z are 01 to 26. Other two digits combinations are

illegal.

� The plain text is obtained by concatenating the two digits of each character encoding; the

result is a large base-10 integer M .

� The plain text was then encoded using the modulus

N=1143816257578888676692357799761466120102182967212423625625618429

35706935245733897830597123563958705058989075147599290026879543541

and the exponent e = 9007. The encoded message is C = Me mod N , given by

C=9686961375462206147714092225435588290575999112457431987469512093

0816298225145708356931476622883989628013391990551829945157815154.

� What is M?

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
RSA cryptosystem 51/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Rivest-Shamir-Adleman cryptosystem (solution of the big
example)

� It took more than 10 years until N = pq was factored (in 1977 it was estimated that the

factorization would take much more time!):

p=3490529510847650949147849619903898133417764638493387843990820577

and

q=32769132993266709549961988190834461413177642967992942539798288533.

� That made possible the computation of d = e−1 mod lcm(p− 1, q − 1);

d=2091239505016137369094193634681019577304618409300609087930484232

2045608569697121472257875853682203172258717888678557376735780271.

� Once d was known, M was recovered from M = Cd mod N :

M=200805001301070903002315180419000118050019172105011309190800151919090618010705.

� 20→ T , 08→ H, 05→ E, and so on. (The complete decryption is in the �rst slide.)

� Any decryption exponent of the form d+k lcm(p−1, q−1) works. Try a few values of k to �nd the exponent
with the smallest sideways addition (population count).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
RSA cryptosystem 52/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Rivest-Shamir-Adleman cryptosystem (padding)

Data source: section 7 of RFC 8017 (PKCS #1 RSA Cryptography Speci�cations Version v2.2).

� PKCS #1 v1.5 � avoid:

0

1

2

1

padding string (random non-zero bytes)

> 8, depends on the message size

0

1

message

> 0

� Optimal Asymmetric Encryption Padding (OAEP) � use:

0

1

masked seed

hash length

masked data block

seed

hash(label)

hash length

padding string (zeros)

> 0
depends on the message size

1

1

message

> 0

mask generating function

mask generating function

number of bytes in red

bitwise xor
least signi�cant byte

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
RSA cryptosystem 53/117

https://www.rfc-editor.org/rfc/rfc8017.html
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Finite �elds

� It is now time to generalize the modular arithmetic concept.

� In the so-called �nite �elds we do arithmetic on integers modulo a prime number p and we

work with polynomials with coe�cients in Zp.

� There is one extra twist: we also work modulo a polynomial!

� So our modular arithmetic will have two di�erent aspects:

� all integer arithmetic is done modulo a prime number p, and

� all polynomial arithmetic is done modulo a polynomial of degree d.

� Not all polynomials of degree d can be used as the modulus: only those that are irreducible

can be used. Just like a prime number, a polynomial is irreducible modulo p if it is not

possible to factor it modulo p.

� The irreducibility of the polynomial modulus is fundamental. It ensures that the only

polynomial of degree smaller than that of the modulus polynomial that does not have an

inverse is the zero polynomial (and that is a fundamental property of a �eld).

� Complex numbers can be thought of as polynomials ax+ b of degree one for which arith-

metic is done modulo x2 + 1. Indeed, x2 mod (x2 + 1) ≡ −1, and so whenever x2 appears

is an expression it can be replaced by −1.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 54/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Finite �elds (more info)

� The modulus polynomial can (and should) be a monic polynomial; the leading coe�cient

of a monic polynomial is one.

� Indeed, let P (x) be the modulus polynomial, and let A(x) be any polynomial. Then

A(x) mod P (x) is the remainder R(x) of the division of A(x) by P (x). We have A(x) =

Q(x)P (x) +R(x), where Q(x) is the quotient:

A(x) P (x)

R(x) Q(x)

� Now, if we replace P (x) by αP (x), where α belongs to Z∗p � recall that all integer

arithmetic is done modulo p and that all elements of Z∗p are invertible � then we have

A(x) =
(
α−1Q(x)

)(
αP (x)

)
+ R(x), so the remainder is the case no matter how α was

selected.

� When the (irreducible) modulus polynomial has degree k the �nite �eld is usually denoted

by Fpk or by GF(pk); in publications involving �nite �elds, pk is often replaced by the easier

to write q (if so, q has to be the power of a prime).

� For the particular case k = 1 we have that Fp is the same as Zp.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 55/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Finite �elds (example)

� Let us work with the prime p = 5.

� Let us work with the irreducible polynomial (modulo 5):

P (x) = x3 + x2 + 3x+ 4.

This irreducible polynomial was found using the following pari-gp code (tutorial):

x = ffgen([5,3]);

x.mod

(x.p gives the integer modulus, in this case 5).

� Each element of the �nite �eld F(53) is a polynomial of the form

a2x
2 + a1x+ a0

where a0, a1, a2 ∈ F5.

� Addition and subtraction of polynomials is done in the usual way (modulo 5).

� Multiplications is done in the usual way, but replacing x3 by−x2−3x−4, i.e., by 4x2+2x+1.

(Why?)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 56/117

https://pari.math.u-bordeaux.fr/Events/PARI2019/talks/finitefields.pdf
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Finite �elds (example)

� Continuing the example of the previous slide, the quotient of the division of x3 by P (x) is

Q(x) = 1, and so x3 mod P (x) = x3 − P (x) = −x2 − 3x− 4 = 4x2 + 2x+ 1.

� In pari-gp, this can be con�rmed by doing

x^3

� Here is a larger example:

1x5 4x4 3x3 0x2 1x1 3x0 1x3 1x2 3x1 4x0

− 1x5 1x4 3x3 4x2 1x2 3x1 2x0

0x5 3x4 0x3 1x2

− 3x4 3x3 4x2 2x1

0x4 2x3 2x2 4x1

− 2x3 2x2 1x1 3x0

0x3 0x2 3x1 0x0

pari-gp con�rmation (the modulo arithmetic is done automatically):

x^5+4*x^4+3*x^3+x+3

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 57/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Finite �elds (useful algorithms)

� The Euclidean algorithm works!

� In particular, the extended Euclidean algorithm can be used to compute inverses.

� The modular exponentiation algorithm also works.

� Since in the �nite �eld Fq � recall that q = pk � we have

aq = a for all a ∈ Fq

(this is similar to Fermat's little theorem), the inverse can also be computed using

a−1 = aq−2

� Note that the exponents can be reduced modulo q − 1.

� The factorization of q − 1 is something that is useful to know.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 58/117

https://homes.cerias.purdue.edu/~ssw/cun/index.html
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Finite �elds (primitive elements)

� The invertible elements (the units) of Fq form a set, denoted by F∗q.

� For a �nite �eld we have F∗q = Fq\{0}.

� The order of an element of F∗q is the smallest exponent o for which ao = 1.

� The order has to divide q − 1, which is the number of elements of F∗q.

� A primitive element has maximal order.

� Repeated multiplication by the same primitive element generates F∗q; when that happens

the �eld is said to be a multiplicative cyclic group.

� There exist ϕ(q − 1) primitive elements: if r is a primitive element then re will also be a

primitive element if and only if gcd(e, q − 1) = 1.

� Therefore, there exist lots of primitive elements if q is large, so �nding one is easy (if the

factorization of q − 1 is known, see next slide).

� In pari-gp we can compute a primitive element using the function ffprimroot().

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 59/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Finite �elds (one way to �nd a primitive polynomial)

Just like in standard modular arithmetic, r is a primitive element of F∗q if and only if

� rq−1 = 1, and

� for every prime divisor d of q − 1, we have r(q−1)/d 6= 1.

One way to �nd an irreducible polynomial is to �nd one of the primitive roots of the �nite

�eld it generates. So, to compute an irreducible polynomial of degree k when we are working

modulo p � �nite �eld Fq with q = pk � do the following:

1. Choose a monic polynomial of degree k.

2. Choose a desired primitive element r, say, r = x (that choice is particularly useful, read

the slide about cyclic redundancy checksums).

3. Check if r is a primitive element.

4. If so, the polynomial is irreducible, and we are done.

5. If not, then the polynomial may be irreducible but r is not a primitive element or it is not

irreducible; go back to the beginning and try another polynomial.

6. Since there exist ϕ(q− 1) primitive elements when the polynomial is irreducible, and there

exist 1
k

∑
d|k µ(d)pd irreducible polynomials of degree k modulo p, this procedure �nds one

of them in a reasonable amount of time.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 60/117

https://en.wikipedia.org/wiki/Necklace_polynomial
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Applications of �nite �elds

The Di�e-Hellman key exchange protocol can be trivially extended to �nite �elds.

� Unique di�erence: Alice and Bob, instead of agreeing on a prime and on one of its primitive

roots, have to agree on a �nite �eld (prime p, irreducible monic polynomial of degree k)

and on one of its primitive elements.

� Anyone wishing to infer the shared secret has to solve the discrete logarithm problem, in

this case for �nite �elds.

Elliptic curves (discussed later in this course) also work in �nite �elds.

Shamir's secret sharing scheme also works in �nite �elds (discussed later in this course).

� Unique di�erence: the coe�cients of the polynomials, instead of belonging to Fp, belong to
Fpk. Nice! Here we have polynomials whose coe�cients are other polynomials (in another

variable and subjected to modulo arithmetic in two distinct ways!)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 61/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Finite �elds and Cyclic Redundancy Checksums (CRCs)

� The so-called cyclic redundancy checksum (CRC) is a way to compute a �signature� of a

data set (used at the hardware level as a simple way to perform error detection).

� The data is transformed into a polynomial, and the CRC is just the remainder of that

polynomial when divided by a known polynomial.

� Usually, the modulus polynomial is an irreducible polynomial having x as one of its primitive

elements (a so-called primitive polynomial).

� Furthermore, this is done with p = 2, i.e., in the �nite �eld F2k. This is so because in

the base �eld, F2 = Z2, addition and multiplication are particularly simple: addition is the

exclusive-or binary logic operator and multiplication is the and binary logic operator.

� They are not useful (i.e., unsafe) in cryptographic applications as a way to compute message

hashes (due to its linear nature, it is trivial to forge a message having a speci�c message

hash).

� But they can be used as a hash function in an implementation of a hash table.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 62/117

https://en.wikipedia.org/wiki/Cyclic_redundancy_check
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves

� Now we get to play with some weird stu�.

� We will do addition is a strange way.

� The addition operator + is a binary operator; it takes two elements of a group and produces

a third element of the same group.

� Addition properties (in any group):

commutative law x+ y = y + x

associative law x+ (y + z) = (x+ y) + z

� Idea: suppose we have a plane curve with the following property: any straight line intersects

it in exactly three points, counted with multiplicity. If so, the addition of two points on

that line can be the third point!

� To make this work, it is necessary to treat the point at in�nity as a legitimate point (use

homogeneous coordinates, also known as projective coordinates). The point at in�nity is

the neutral element, and so it plays a fundamental role.

� Three intersection points ⇒ cubic equation.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 63/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (cubic equation)

� The cubic equations we will consider have in the following form (Weierstrass parameteri-

zation):

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

� Both x and y belong to a �eld F (or are the point at in�nity).

� With a change of variables (which in some cases cannot be done due to divisions by zero),

the equation above can be put in the so-called Weierstrass form

(*) y2 = x3 + ax+ b.

� The so-called discriminant of the curve E, whose points satisfy equation (*), is the quantity

∆(E) = −16(4a3 + 27b2).

To avoid degenerate curves this discriminant cannot be zero.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 64/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (homogeneous coordinates)

� In homogeneous coordinates we add a third coordinate: z.

� (x, y) becomes (X,Y, Z).

� (X,Y, Z), for any Z 6= 0, corresponds to the two-dimensional point
(
X
Z
, Y
Z

)
� it's an

equivalence class.

� Z = 0 represents the �points at in�nity�; X and Y then specify the direction.

� For an elliptic curve in Weierstrass form, y2 = x3 + ax + b, for very large x we have

y ≈ ±x3/2.

� So, very far from the origin, y will be considerably larger than x.

� The homogeneous coordinates of the point at in�nity (any non-zero Y will do, so we

normalize it to be 1) are (0, 1, 0).

� The equation of an elliptic curve in Weierstrass form in homogeneous coordinates is Y 2Z =

X3 + aXZ2 + bZ3.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 65/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (pari-gp)

� In pari-gp, the general curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

can be speci�ed using the command

E=ellinit([a1,a2,a3,a4,a6]);

� In pari-gp, the special curve

y2 = x3 + ax+ b

can obviously be speci�ed using the command

E=ellinit([0,0,0,a,b]);

The shortcut

E=ellinit([a,b]);

can also be used.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 66/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves over �nite �elds (pari-gp)

� In pari-gp it is also possible to specify the �eld over which all computations will be per-

formed.

� This is speci�ed in a second (optional) argument to ellinit.

� If this second argument

? is missing or is the integer 1, the �eld will be Q
? is the integer p, a prime number, or is a Mod(*,p), the �eld will be Fp
? is the value returned by ffgen([p,k]), the �eld will be the �nite �eld Fpk
? is a real number, the �eld will be C

It may also be a more exotic object.

� The number of points on the elliptic curve can be computed using the ellcard function.

� The order of a point (number of times we have to add the point to itself until we get the

point at in�nity), can be computed using the ellorder function.

� In the speci�c case of the �eld Fp the number of points on the elliptic curve can also be

computed using the more e�cient ellsea function. It is known that the number of points

N of the curve satis�es the so called Hasse bound∣∣N − (p+ 1)
∣∣ 6 2

√
p.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 67/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Playing with elliptic curves (pari-gp)

� To get a list of o�cial pari-gp tutorials consult this web page.

� In particular, read the elliptic curves tutorial.

� Better yet, read the elliptic curves over �nite �elds tutorial.

� You can also look at the list of functions related to elliptic curves.

� Let's play!

/* find an elliptic curve of the form y^2=x^3+x+1 */

/* over Fp which has a prime number of points */

forprime(p=2^100,oo,E=ellinit([1,1],p);\

q=ellsea(E);if(isprime(q),break;);); /* 1 minute */

E.p /* print the modulus */

q=ellsea(E) /* print the number of points of the curve */

G=E.gen;G=G[1] /* get a generator (there is only one) */

ellorder(E,G)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 68/117

https://pari.math.u-bordeaux.fr/tutorials.html
https://pari.math.u-bordeaux.fr/Events/PARI2017b/talks/elliptic.pdf
https://pari.math.u-bordeaux.fr/Events/PARI2017c/talks/ecc_en.pdf
https://pari.math.u-bordeaux.fr/dochtml/html-stable/Elliptic_curves.html
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (adding distinct �nite points � geometric
interpretation)

� elliptic curve over Q:

y2 = x3 − 9x+ 9

� pari-gp code:

E=ellinit([0,0,0,-9,9]);

P1=[0,3];

P2=[1,1];

ellisoncurve(E,P1) /* 1 */

ellisoncurve(E,P2) /* 1 */

P3=elladd(E,P1,P2) /* [3,3] */

� Draw the line that passes through P1 and P2

� That line intersects the elliptic curve at a third

point: −P3

� Re�ect it on the x axis to get the sum of P1

and P2

-4 -2 0 2 4
-6

-4

-2

 0

 2

 4

 6

P1

P2

-P3

P3

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 69/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (adding the point at in�nity)

� elliptic curve over Q:

y2 = x3 − 9x+ 9.

� pari-gp code (the point at in�nity is repre-

sented by [0]):

E=ellinit([-9,9]);

P1=[0,3];

ellisoncurve(E,P1) /* 1 */

ellisoncurve(E,[0]) /* 1 */

P2=elladd(E,P1,[0]) /* [0,3] */

� The point of in�nity is the neutral element (the

zero).

� Adding to a point the point at in�nity (in-

tersection with a vertical line) leaves it un-

changed.

� Adding a point to its symmetric (its re�ection

on the x axis) gives rise to the point at in�nity. -4 -2 0 2 4
-6

-4

-2

 0

 2

 4

 6

P1,P2

-P2

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 70/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (doubling � geometric interpretation)

� elliptic curve over Q:

y2 = x3 − 9x+ 9.

� pari-gp code:

E=ellinit([-9,9]);

P1=[0,3];

ellisoncurve(E,P1)

P2=ellmul(E,P1,2);

/* same as P2=elladd(E,P1,P1); */

We have

2P1 =

(
9

4
,
3

8

)

3P1 =

(
−

8

9
,−

109

27

)
4P1 =

(
1017

16
,−

32397

64

)
5P1 =

(
7848

12769
,
2775711

1442897

)
-4 -2 0 2 4

-6

-4

-2

 0

 2

 4

 6

P1

-2P1

2P1

-3P1

3P1

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 71/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (adding two points � some formulas)

� The equation of a straight line that passes through two distinct points (x1, y1) and (x2, y2)

is

(x− x1)(y2 − y1) = (x2 − x1)(y − y1).

� It can be put in the form Ax+By + C = 0.

� If the inverse of B exists (i.e., the line is not a vertical line), then we can say that

y = Dx+ E.

� Putting this in the cubic equation y2 = x3 + ax+ b gives rise to a polynomial equation of

third degree in x of the general form

x3 + αx2 + βc+ γ = 0.

� It has three solutions. Two of them must be x1 and x2. The third one is the x coordinate

of the point we are looking for. Explicit formulas are cumbersome. See next page or, for

example, Complete addition formulas for prime order elliptic curves.

� When working with rational numbers (Q), because the sum of the roots is −α, it follows
that this third root must also be a rational number!

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 72/117

https://eprint.iacr.org/2015/1060.pdf
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (adding two points � explicit formulas)

� Let P = (x1, y1) and Q = (x2, y2) be two points of the elliptic curve y2 = x3 + ax+ b. Let

O denote the point at in�nity.

� Then

P +Q =


P, if Q = O, otherwise

Q, if P = O, otherwise

O, if x2 = x1 and y2 = −y1, otherwise

(x3, y3)

where (when applicable)

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1,

and where

m =


y2 − y1

x2 − x1

, P 6= Q;

3x2
1 + a

2y1

, P = Q.

� Using homogeneous coordinates it is possible to avoid almost all divisions.

� Warning! Possible side-channel attack (timing attack).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 73/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Multiplication by an integer
(adding a point to itself several times)

� We can now de�ne the mathematical operation that is useful for cryptographic purposes:

multiplication of a point by an integer.

� This corresponds to adding a point with itself several times.

� In terms of cryptographic applications this corresponds roughly to the modular exponenti-

ation done in �nite �elds.

� Example: to compute, say, 11P we can proceed as follows:

1. 11 = 1 + 2 + 8

2. compute 2P = P + P

3. compute 4P = (2P) + (2P)

4. compute 8P = (4P) + (4P)

5. �nally, compute 11P = (1P) + (2P) + (8P)

� This multiplication algorithm is similar in spirit to the algorithm presented in the modular

exponentiation slides.

� Hard problem (on some elliptic curves): given P and kP �nd k.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 74/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (aspect of the �curve� on a �nite �eld)

� elliptic curve over F199:

y2 = x3 − 5x+ 4.

� it has 218 points (including the point �at in�nity�):

 0

 25

 50

 75

 100

 125

 150

 175

 200

 0 25 50 75 100 125 150 175 200

P

Q

R=P+Q

p=199;

E=ellinit([-5,4],p);

N=ellsea(E) /* 218 */

P=Mod([41,57],p);

ellisoncurve(E,P) /* 1 */

Q=Mod([83,131],p);

ellisoncurve(E,Q) /* 1 */

R=elladd(E,P,Q);

lift(Q[1]) /* 167 */

lift(Q[2]) /* 119 */

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 75/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Can we do RSA-like things with elliptic curves?

� No (here we do not have any hidden secret):

bits=100;

p=nextprime(random([2^(bits-1)+1,2^bits-1]));

E=ellinit([0,0,0,1,1],p);

P=random(E);

o=ellorder(E,P);

k=0;while(gcd(k,o)!=1,k=random([2,o-2]);); /* public multiplier */

Q=ellmul(E,P,k);

kInv=lift(1/Mod(k,o)); /* private multiplier used for decoding */

R=ellmul(E,Q,kInv) /* we recover P */

� Finite �elds must have a modulus that is the power of a prime number, so hard-to-factor

moduli cannot be used.

� We would need a point in an elliptic curve for which it would be extremely di�cult to

compute its order without knowing the �secret�.

� However, we can do Di�e-Hellman-like things! Stay tuned.

� We can also scramble the information we want to encrypt using the coordinates of a point

of the elliptic curve, as explained in the next page.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 76/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The Menezes-Vanstone elliptic curve cryptosystem

A simple way to construct a public-key cryptosystem using elliptic curves is the following:

� Choose an elliptic curve on Fp,

� Choose a point P of that elliptic curve. Let n be the order of that point; n should be large

and have large factors.

� Choose a private (secret) integer α such that 2 6 α 6 p− 2.

� Publish the elliptic curve details (formula and p), P , and Q = αP .

� To encrypt (m1,m2), with 0 6 m1,m2 < p, choose a random k such that 1 6 k < n, and

compute C0 = kP and C1 = kQ = (x1, y1). If x1 or y1 is zero or if C1 is the point at

in�nity, then choose another k and recalculate. Send C0, m1x1 mod p, and m2y1 mod p.

� To decrypt, compute αC0 = αkP = kQ = C1 = (x1, y1). The rest is easy because x1 and

y1 have modular inverses modulo p.

To break this cryptosystem one has to �nd the secret α starting from the public P and Q. That

is precisely the discrete-logarithm problem on elliptic curves, which is hard if n is large and has

large factors (there is more information about this hard problem latter on).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 77/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

If you want to know more about elliptic curves

� Edwards curves (alternative parameterization of elliptic curves) � paper about them

� �Safe� elliptic curves

� Curve 25519, wikipedia

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 78/117

https://hal.archives-ouvertes.fr/hal-01942759/document
https://safecurves.cr.yp.to/
https://cr.yp.to/ecdh.html
https://en.wikipedia.org/wiki/Curve25519
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Di�e-Hellman using elliptic curves

� We can now explain how the Di�e-Hellman key exchange protocol (i.e., secret sharing)

scheme can be done using elliptic curves.

� Alice and Bob agree on an elliptic curve and on a point P � of large order � of that

elliptic curve.

� Alice chooses a private random integer kA and sends kAP to Bob.

� Bob chooses a private random integer kB and sends kBP to Alice.

� The shared secret S is the point kAkBP ; Alice and Bob can compute it easily using the

private information they have and the information each received from the other one.

� A third party will have to attempt to compute kA from the information Alice sent to Bob

(over a possibly compromised channel) or to compute kB from the information Bob sent

to Alice. This can be a very hard problem (discrete logarithm for elliptic curves).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Di�e-Hellman using elliptic curves 79/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Let's play some more with elliptic curves in pari-gp

� Let's see how long it takes to compute k given P and kP :

#

bits=50;

p=nextprime(random([2^(bits-1)+1,2^bits-1]));

E=ellinit([0,0,0,1,1],p);

P=random(E);

o=ellorder(E,P) /* a few seconds for 200 bits! */

k=random([2,o-2])

Q=ellmul(E,P,k);

elllog(E,Q,P) /* grows very fast with the number of bits */

� That was fast. The Di�e-Hellman key exchange protocol with this number of bits can be

broken very easily. How about a larger number of bits?

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Di�e-Hellman using elliptic curves 80/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The discrete logarithm problem for elliptic curves

� Given points P and Q on an elliptic curve, �nd k such that

Q = kP.

� This is a hard problem if the order of P has large prime factors:

-2

-1

 0

 1

 2

 3

 4

 5

 30 35 40 45 50 55 60 65 70

Ryzen 7 2700X 4.34GHz, one thread
pari-gp 2.17.0
gmp 6.3.0
elllog

b
a
se

-1
0

 l
o
g
a
ri

th
m

 o
f

th
e

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
co

n
d
s)

number of bits

Pari-gp code used to compute the �gure data:

do_one(b,seed)={ my(p,E,q,G,k1,P,dt,k2);
setrand(seed); p=random([5*2^(b-3),2^b]);
while(1,p=precprime(p-1); E=ellinit([1,1],p);
q=ellsea(E); if(isprime(q)==1,break(1);););

printf("# %d %d %d\n",b,p,q);
G=E.gen; G=G[1]; k1=random([floor(q/10),floor(9*q/10)]);
P=ellmul(E,G,k1); dt=getabstime();
k2=elllog(E,P,G); dt=getabstime()-dt;
if(k2!=k1,quit(1);); return(0.001*dt); };

do_many(b,nt=5)={ my(dt);
dt=vecsort(vector(nt,k,do_one(b,100*b+k)));
printf("%3d",b); for(k=1,nt,printf(" %.3f",dt[k]););
printf("\n"); return(vecmax(dt)); };

printf("# version=%d\n",version());
forstep(b=30,500,2,if(do_many(b)>90000.0,break(1);););
quit();

� However, it turns out that the problem is easy if the order of P does not have large prime

factors or if the number of points of the elliptic curve over Fp is p itself (a prime-anomalous

elliptic curve). Those cases must be avoided.

� The same problem but with plain modular arithmetic

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Discrete logarithms for elliptic curves 81/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Digital signatures (DSA and ECDSA)

The 1994 Digital Signature Standard (DSS, FIPS PUB 186), explains how to perform a digital

signature (DSA). It uses ideas we have already encountered, viz., modular exponentiation and

Fermat's little theorem. The following �gure explains the top level �ow of information for

signing (on the left), and for verifying a signature (on the right).

private

key

DSA sign
operation

digital

signature

message digest

secure hash algorithm

message

Signature generation

digital

signature

DSA verify
operation

public

key

message digest

yes � signature veri�ed
or

no � signature veri�cation failed

secure hash algorithm

received message

Signature veri�cation

This work�ow remains valid in the lattest version of the standard (FIPS 186-5, February 2023).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Digital signatures 82/117

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Digital signatures (DSA parameters and variables)

DSA parameters and variables:

� A large prime p, with exactly L bits, i.e., 2L−1 < p < 2L.

� A large prime q that divides q − 1 with exactly N bits, considerably smaller than L.

� g = h(p−1)/q mod p, where h is any integer with 2 6 h 6 p−2 such that h(p−1)/q mod p 6= 1;

this implies that the order of g modulo p is exactly q,

� an integer x, with 2 6 x 6 q − 2 � it is best to use one such that gcd(x, p− 1) = 1,

� y = gx mod p,

� an integer k, with 2 6 k 6 q − 2,

� an integer H, which is the numerical value of the message digest of the message being

signed. (The standard states that this has to be truncated to L bits but that is not really

necessary.)

The integers p, q and g can be made public and can be the same for a group of users. They

can also be published by a signing authority. The integer x is the private key of a given user,

and y is the corresponding public key. The integer k must be regenerated for each signature.

Repeating k in the signatures of two di�erent messages allows anyone to recover the secret x.

DSA signatures are now obsolete.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Digital signatures 83/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Digital signatures (DSA sign and verify operations)

To sign a message with message digest H, do:

� Generate a new random k. Compute r = (gk mod p) mod q, and s =
(
k−1(H+xr)

)
mod q.

If either r or s is zero then choose another k and recalculate.

� The signature is the pair of numbers (r, s).

Why repeating k is very bad (all
computations are done modulo q):

� r1 = r2 = r = gk

� s1k = H1 + xr

� s2k = H2 + xr

� (s1 − s2)k = H1 −H2

� k = (s1 − s2)−1(H1 −H2)

� x = g−k(s1k −H1)

� game over!

Idem if k2 = ak1 + b when a and
b are known.

To verify a signature, do:

� Make sure 0 < r < q and 0 < s < q. Reject the signature if not.

� Compute w = s−1 mod q, u1 = Hw mod q, and u2 = rw mod q.

� Finally, compute v = (gu1yu2 mod p) mod q.

� If v = r accept the signature. If not, reject it.

Why it works:

� We have v = (gHwgxrw mod p) mod q = (gw(H+rx) mod p) mod q.

� We also have w = k(H + rx)−1 mod q.

� Since g has order q, and so we must have gq mod p = 1, when the base is g exponents can

be reduced modulo q and so gw(H+rx) mod p = gk mod p. Modulo q this is precisely r.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Digital signatures 84/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Digital signatures (ECDSA parameters and variables)

ECDSA domain parameters and variables:

� An elliptic curve E.

� A point G on E of order n; n must be a (large) prime number.

� a private key d, such that 2 6 q 6 n− 2, and a corresponding public key Q = dG.

� like the DSA, an integer k, with 2 6 k 6 n− 2, and an integer H, which is the numerical

value of the message digest of the message being signed.

To sign a message with message digest H, for an elliptc curve in Fp, do:

� Generate a new random k. Compute r = (kG)x mod n, which is the x coordinate of kG

modulo n, and compute s =
(
k−1(H + rd)

)
mod n. If either r or s is zero then choose

another k and recalculate. The signature is the pair of numbers (r, s).

To verify a signature, do:

� Make sure 0 < r < n and 0 < s < n. Reject the signature if not.

� Compute u = Hs−1 mod n and v = rs−1 mod n, and then compute R = uG+vQ. Reject

the signature if R is the point at in�nity. Accept the signature if (R)x mod n = r. If not,

reject it. Homework: prove that this works. Warning: a bad signature for which R = −kG
is also accepted as valid (same x coordinate)!

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Digital signatures 85/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Secret sharing

Problem:

� n persons what to share a secret.

� Any group of t persons can recover the secret.

� Obviously, n > 1 and 1 6 t 6 n.

� On a computer program, the secret will ultimately be an integer.

How to do it:

� A trusted central entity prepares and distributes part of the secret (a secret share) to each

person.

Hurdle to overcome:

� Knowing t− 1 shares of the secret must not give any information about the secret.

Resilience to tampering:

� To make the secret unrecoverable, n− t+ 1 secret shares have to be corrupted.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Secret sharing 86/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Secret sharing (how to do it when t = n)

� Let the secret be the integer S, and let it have k bits.

� Let the �rst n− 1 shares of the secret, s1 to sn−1, be random integers with k bits.

� Let the last share of the secret be the exclusive-or of the secret with all the other shares

of the secret (⊕ denotes here the bit-wise exclusive-or binary operator):

sn = S ⊕ s1 ⊕ s2 ⊕ · · · ⊕ sn−1.

� To recover the secret it is only necessary to perform an exclusive-or of all secret shares:

S = s1 ⊕ s2 ⊕ · · · ⊕ sn.

� Knowledge of n− 1 secret shares does not give any information about the secret.

� It is possible to replace the bit-wise exclusive-or operations by addition and subtractions

modulo m. In this case, the �rst n− 1 secret shares are random integers from 0 to m− 1,

and the last secret share is (S− s1− s2− · · · sn−1) mod m. To recover the secret it is only

necessary to add all secret shares (modulo m, of course).

� Using modulo arithmetic, it is also possible to replace addition by multiplication, but only

if the secret shares, and the secret itself, are oprime to the modulus. (Why?)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Secret sharing 87/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Secret sharing (how to do it when t 6 n, Blakley)

Blakley's secret sharing scheme:

� The secret is a point P in a t-dimensional space.

� Each share of the secret is a linear equation (with t unknowns) that has P has one of its

solutions.

� Putting together t equations allows us to �nd P .

� It is necessary to ensure that the system of equations has a unique solution for all possible

Cn
t = n!

t!(n−t)! possible combinations of t equations chosen from the n equations, and that

is cumbersome (it is necessary to ensure that the rank of the n× t matrix that stores the

right-hand side of all linear equations is exactly t).

� Each share of the secret is a tuple of t+ 1 numbers.

� Improved security: the secret is kept only in one of the coordinates of the point P .

� Modular arithmetic should be used. (Why?).

� The unknowns may also be points on an elliptic curve (the elliptic curve should have an

appropriate number of points, say, a prime number).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Secret sharing 88/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Secret sharing (t 6 n, Blakley example)

The following example illustrates the need of modular arithmetic. Let t = 3, and let the secret

be the last coordinate of the three-dimensional coordinate (23,−17, 40). The secret shares were

designed so that the coordinates have absolute value smaller that 100, as were the coe�cients

of the linear equations (but but the independent terms). Three of the secret shares are

93x+ 37y − 6z = 1270

83x+ 39y − 69z = −1514

79x+ 48y − 86z = −2439

Now, imagine that the �rst two intities attempt to recover the secret. From the �rst secret

share we have

x =
1270− 37y + 6z

93

and applying that to the second secret share we get

556y − 5919z = −246212,

i.e., (remember, the secret is z)

z =
556y + 246212

5919
.

Since z must be an integer it is easy to �nd it! With modular arithmetic, each y value gives

rise to a valid z value.
Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Secret sharing 89/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Secret sharing (another way to do it when t 6 n, Shamir)

Shamir's secret sharing scheme:

� The secret in the independent coe�cient a0 of a polynomial of degree t− 1,

A(x) =

t−1∑
k=0

akx
k.

� Each secret share in the pair
(
xk, A(xk)

)
.

� It is necessary to ensure that distinct values of xk are used.

� Again, modular arithmetic should be used (why?).

� Each share of the secret is a tuple of only 2 numbers.

Things to think about:

� Can we do it using square matrices for the ak coe�cients?

� And how about for the ak coe�cients and for the xk values?

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Secret sharing 90/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Secret sharing (polynomial interpolation)

Given points (xk, yk), for k = 0, 1, . . . , n, with xi 6= xj for i 6= j, compute the unique polynomial

of degree n that passes through these points.

� Newton's interpolation formula:

P0(x) = y0,

and, for k = 1, 2, . . . , n,

Pk(x) = Pk−1(x) +
(
yk − Pk−1(xk)

) (x− x0) · · · (x− xk−1)

(xk − x0) · · · (xk − xk−1)
.

� Lagrange's interpolation formula:

Pn(x) =
n∑
k=0

yk

n∏
i=0
i 6=k

x− xi
xk − xi

.

If arithmetic modulo p is used we must have xi 6≡ xj (mod p) for i 6= j. If so, all modular

inverses needed by Newton's or Lagrange's intepolation formulas exist.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Secret sharing 91/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Secret sharing (one more, Mignotte and Asmuth�Bloom)

Let us do it using the Chinese remainder theorem!

� In the Mignotte threshold secret sharing scheme n coprime integers m1 < m2 < · · · < mn

are chosen such that β−α is positive and large, where α =
∏t−1
k=1mn+1−k is the product of

the t− 1 largest integers and where β =
∏t
k=1mk is the product of the t smallest integers.

� The secret is a randomly chosen integer s belonging to the interval]α, β[. The secret

shares are the tuples (s mod mk,mk) for 1 6 k 6 n.

� To uniquely recover the secret using the Chinese remainder theorem, the product of the

moduli of the secret shares being used has to be larger that s. This is ensured because

s < β. On the other hand, t − 1 shares cannot be used to recover the secret, and this is

ensured because s > α.

� Example (n = 6, t = 3, s = 774157997):

(s1,m1) (s2,m2) (s3,m3) (s4,m4) (s5,m5) (s6,m6)

(997, 1000) (613, 1001) (471, 1003) (565, 1007) (729, 1009) (923, 1011)

In this example α = 1020099 and β = 1004003000. The two shares with the largest moduli

are not enough to expose the secret, because using them it is only possible to infer that

s = 922955 + 1020099 for some integer 0 6 k < β/α ≈ 984.22. However, if the secret is

just s mod m0 with m0 < β/α coprime with the other moduli, no information is leaked

about that smaller secret. That is precisely the Asmuth�Bloom secret sharing scheme.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Secret sharing 92/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Quadratic residues

� Let n be a positive integer and let a be an integer such that gcd(a, n) = 1.

� a is said to be a quadratic residue modulo n if and only if there exists a x such that

x2 ≡ a (mod n).

� When n is a prime number (n = p) there exist three cases:

1. either a is a multiple of p, or

2. a is a quadratic residue, or

3. a is a not a quadratic residue (a quadratic nonresidue).

� The Legendre symbol
(
a
p

)
captures this as follows

(
a

p

)
=


0, if p divides a,

+1, if p does not divide a and a is a quadratic residue modulo p,

−1, if p does not divide a and a is a quadratic nonresidue modulo p.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Quadratic residues 93/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Quadratic residues (Legendre symbol)

� For p > 2 the Legendre symbol satis�es the equation(
a

p

)
≡ a

p−1
2 (mod p).

(Recall that from Fermat's little theorem we know that ap−1 ≡ 1 (mod p) when p does

not divide a.)

� So,
(
a
p

)
=
(
a mod p

p

)
and, if a is not divisible by p,

(
a2

p

)
= 1.

� In particular, it is possible to prove that(−1

p

)
= (−1)

p−1
2 , that

(
2

p

)
= (−1)

p2−1
8 , and that

(
ab

p

)
=

(
a

p

)(
b

p

)
.

� If q is an odd prime, we also have (this is the famous law of quadratic reciprocity)(
q

p

)
= (−1)

(p−1)(q−1)
4

(
p

q

)
.

� These properties allow us to easily compute the Legendre symbol for any a and p (if the

factorization of a is known).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Quadratic residues 94/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Quadratic residues (Legendre symbol computation)

� Example: Compute
(−14

73

)
.

�

(−14
73

)
=
(−1

73

)(
2
73

)(
7
73

)
�

(−1
73

)
= (−1)36 = +1.

�

(
2
73

)
= (−1)666 = +1.

�

(
7
73

)
= (−1)108

(
73
7

)
=
(

3
7

)
.

�

(
3
7

)
= (−1)3

(
7
3

)
= −

(
1
3

)
= −1. (Obviously,

(
1
p

)
= +1.)

� So, putting it all together, we have
(−14

73

)
= −1

� pari-gp agrees (in pari-gp the Legendre symbol can be computed with the kronecker func-

tion):

kronecker(-14,73) /* returns -1 */

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Quadratic residues 95/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Quadratic residues (Jacobi symbol)

� The Jacobi symbol is an extension of the Legendre symbol to the case where the modulus

is not a prime number.

� Let n = pm1
1 pm2

2 · · · p
mk
k .

� The Jacobi symbol
(
a
n

)
� yes, it is denoted in exactly the same way as the Legendre

symbol � is given by(
a

n

)
=

(
a

p1

)m1
(
a

p2

)m2

· · ·
(
a

pk

)mk

.

(The right-hand side of this formula uses Legendre symbols!)

� Its properties are similar to those of the Legendre symbol, but we also have(
a

mn

)
=

(
a

m

)(
a

n

)
.

� If
(
a
n

)
= −1 then a is not a quadratic residue modulo nm. But, if

(
a
n

)
= +1 then a may,

or may not, be a quadratic residue modulo nm.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Quadratic residues 96/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Quadratic residues (counts)

� For a prime p, the number of integers belonging to the set { 1, 2, . . . , p − 1 } that are

quadratic residues is exactly (p− 1)/2.

a(n)=local(v,s);v=vector(eulerphi(n));s=0;\

for(k=1,n,if(gcd(k,n)==1,s=s+1;v[s]=k;););return(v);

qr(n)=local(v);v=a(n); /* number of true quadratic residues */\

return(length(Set(vector(length(v),k,(v[k]^2)%n))));

tf(n)=local(v,c);v=a(n); /* number of true or fake quadratic residues */\

return(sum(k=1,length(v),kronecker(v[k],n)==1));

f(n)=return([eulerphi(n),qr(n),tf(n)]);

f(101) /* returns [100,50,50] */

f(103) /* returns [102,51,51] */

f(107) /* returns [106,53,53] */

f(109) /* returns [108,54,54] */

� How about composite numbers that are the product of two distinct prime numbers?

f(11*13) /* returns [120,30, 60] --- half are fakes! */

f(11*17) /* returns [160,40, 80] --- half are fakes! */

f(11*19) /* returns [180,45, 90] --- half are fakes! */

f(13*17) /* returns [192,48, 96] --- half are fakes! */

f(13*19) /* returns [216,54,108] --- half are fakes! */

f(17*19) /* returns [288,72,144] --- half are fakes! */

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Quadratic residues 97/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Quadratic residues (square roots)

� Let p be a prime number of the form 4k + 3 and let a be a quadratic residue modulo p,

i.e.,
(
a
p

)
= +1.

� Then a has two square roots.

� They are given by the formula r = ±a
p+1
4 mod p. This is so because if a is a quadratic residue we

must have, by Fermat's little theorem, that a
p−1
2 = 1 mod p, and so a

p+1
2 = a mod p. But (p + 1)/2 is an

even number so the square roots can be computed easily as stated above.

� If n is the product of two primes p and q of the form 4k+ 3 and if a is a quadratic residue

modulo n then a will have four square roots. They can be easily computed using the

Chinese remainder theorem. Two of them will have a Jacobi symbol of +1 and two will

have a Jacobi symbol of −1 (recall that
(−1
p

)
= −1 for primes of this form).

� Example:
p=11; q=19; n=p*q; /* the modulus */

r=20; /* one of the the square roots */

a=lift(Mod(r^2,n)); /* the square, a=191 */

rp=lift(Mod(a,p)^((p+1)/4)); /* the square roots modulo p are +rp and -rp */

rq=lift(Mod(a,q)^((q+1)/4)); /* the square roots modulo q are +rq and -rq */

f(rp,rq)=r=lift(chinese(Mod(rp,p),Mod(rq,q))); /* r is a square root modulo n */ \

printf("r=%3d, (r/p)=%+d, (r/q)=%+d r^2=%3d\n",r,kronecker(r,p),kronecker(r,q),r^2%n);

f(+rp,+rq); /* r= 20, (r/p)=+1, (r/q)=+1 r^2=191 */

f(+rp,-rq); /* r= 75, (r/p)=+1, (r/q)=-1 r^2=191 */

f(-rp,+rq); /* r=134, (r/p)=-1, (r/q)=+1 r^2=191 */

f(-rp,-rq); /* r=189, (r/p)=-1, (r/q)=-1 r^2=191 */

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Quadratic residues 98/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Quadratic residues (square roots and factorization)

� Let n be the product of two primes.

� Let a be a quadratic residue modulo n.

� Then, it will have four square roots.

� Let x and y be two of then.

� Then x2 = y2 mod n, i.e., x2 − y2 = (x− y)(x+ y) = 0 mod n.

� If y = x or y = −x, then the above equation gives us nothing.

� Otherwise, we can factor n. Just compute gcd(x− y, n) and gcd(x+ y, n).

� Example (continuation of the code of the previous slide):

p=11; q=19; n=p*q;

r1=20; r2=75; r3=134; r4=189; /* square roots of 191 */

gcd(r1-r2,n); /* 11 */

gcd(r1+r2,n); /* 19 */

� pari-gp can only compute square roots when the modulus is prime:

sqrt(Mod(5,11)) /* ok (because 5 is a quadratic residue) */

sqrt(Mod(9,14)) /* error (because the modulus is not prime) */

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Quadratic residues 99/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Zero-Knowledge

� A cryptographic protocol is said to be zero knowledge if it does not disclose any data.

� For example, someone wants to retrieve an item of information somebody else has, but

she/he does not want to disclose which item she/he wants. The one of two oblivious

transfer protocol can do that when there are two items of information.

� In another example, two parties want to generate a random number is a fair and veri�able

way. The coin �ipping protocol does that.

� In a zero-knowledge proof of identity one party (the prover) proves to another party (the

veri�er) that she/he knows a secret without revealing any information about it. Usually,

the proof is probabilistic, i.e., the zero-knowledge proof has several rounds. The larger the

number or rounds, the smaller the probability of an impostor faking the proof.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Zero-Knowledge 100/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

One of two oblivious transfer

� Alice holds two items of information, say m0 and m1.

� Bob wants to know one of these two items of information, but does not want Alice to

know which one he wants.

� This problem is known as the oblivious transfer problem (in the case, one of two).

� It can be solved in several ways. We will do it here using RSA techniques.

� N is Alice's public RSA modulus and e is the corresponding public exponent; d is the

corresponding private decryption exponent.

� At Bob's request, Alice generates two random messages x0 and x1 (random numbers

smaller than N) and sends then to Bob.

� Bob wants mb, where b ∈ { 0, 1 }. So, Bob generates a random k and computes and sends

to Alice v = (xb + ke) mod N .

� Alice computes m′0 = m0 + (v − x0)
d mod N and m′1 = m1 + (v − x1)

d mod N and sends

both to Bob. Either (v − x0)
d mod N or (v − x1)

d mod N will be equal to k, but Alice has no way of

knowing which one is the case.

� Bob computes mb = m′b − k mod N . He can not infer m1−b from m′1−b.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Zero-Knowledge 101/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Coin �ipping

� Alice and Bob want to �ip a coin (by telephone in Manuel Blum's 1981 paper) to decide

who wins (in Blum's paper, who gets the car after a divorce).

� Actually, each one �ips a coin and if they came out equal (two heads or two tails) Bob

wins.

� How can this be done fairly and without cheating when the two are far apart?

� Using computers: square roots of quadratic residues!

1. One of the two, say Bob, selects two large random primes p and q of the form 4k+ 3

(Blum primes!) and then computes n = pq. He then sends n to Alice.

2. Alice chooses a random b and sends a = b2 mod n to Bob.

3. Bob computes the 4 square roots ±x and ±y of a, chooses one of then, let us call it

r, and sends it to Alice.

4. Alice checks if ±r = b. If so, then Bob wins. If not, he looses.

5. Alice proves her claims by disclosing b. (Observe that if Alice does not like the outcome

she may simply do not �nish the execution of this protocol, but that would be cheating.)

� To �ip m coins, do step 2 m times, then step 3 m times and so on. It has to be done

in this way because as soon as Alice receives the square roots from Bob she will likely be

able to factor n (and so be able to change her choice of the b).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Zero-Knowledge 102/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Zero-knowledge proofs of identity (main idea)

� Let us introduce two new protagonists:

1. Peggy, who wishes to prove to Victor that she knows a secret

2. Victor, who wishes to verify that Peggy knows the secret

� The proof will be based on challenge-response pairs and it will be probabilistic in nature.

� The probability that an impersonator is accepted (false proof) decreases as more challenge-

response pairs are used.

� One of the �rst published ways to do it uses (again) the hardness of factoring large integers.

� Again, the underlying problem is computing square roots modulo n = pq.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Zero-knowledge proofs 103/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Zero-knowledge proofs of identity (Feige-Fiat-Shamir scheme)

Preparatory steps (disclosure of public information):

� Peggy chooses a large number n that is the product of two primes of the form 4k+3 (such

a number is called a Blum number). The interesting thing here is that −1 is not a quadratic residue

modulo n but its Jacobi symbol has value +1; x2 ≡ −1 (mod pq) implies x2 ≡ −1 (mod p) and x2 ≡ −1

(mod q), so −1 can only be a quadratic residue modulo pq if it is a quadratic residue modulo both p and q,

which is not the case here because −1 is not a quadratic residue for primes of the form 4k + 3.

� She also chooses k large random numbers S1, S2, . . . , Sk coprime to n.

� Finally, she also chooses each Ij (randomly and independently) as ±S−2
j mod n. The

interesting thing here is that no matter which choice was made we always have
(Ij
n

)
= +1, so without

computing square roots an external observer cannot determine which choice was made. The Sj are witnesses

of the quadratic character of the Ij.

� She publishes n and the I = I1, I2, . . . , Ik (but keeps S = S1, S2, . . . , Sk secret).

Instead of publishing n herself, Peggy could have used any Blum integer computed by a trusted

entity (the factors of n are not used anywhere in this scheme.)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Zero-knowledge proofs 104/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Zero-knowledge proofs of identity (Feige-Fiat-Shamir scheme)

To generate and verify a proof of identity, Peggy and Victor execute the following T times (the

higher T is the harder it will be to fake the proof of identity):

� Peggy chooses a random R and sends to Victor X = ±R2 mod n. Here she also chooses

the sign, either + or − randomly, so X is, or isn't a quadratic residue. (Remember, zero

knowledge leaked!)

� [The challenge] Victor send to Peggy the random vector of bits E = E1, E2, . . . , Ek; each

Ej is either 0 or 1.

� [The reply] Peggy computes and sends to Victor Y = ±R
∏
Ej=1 Sj mod n; here, again,

she chooses the sign in a random way.

� [The veri�cation] Victor checks if X = ±Y 2
∏
Ej=1 Ij mod n, and rejects immediately the

proof if this is not so.

� Anyone trying to impersonate Peggy (Eve?) could try to guess the Ej � let the guesses

be E′j � them precompute the next round of the protocol by selecting a random Y and

by presenting X = ±Y 2
∏
E′j=1 Ij when so requested. The probability of success of this

cheating attempt is 2−k per round (so, 2−kT overall).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Zero-knowledge proofs 105/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Schnorr Non-interactive Zero-Knowledge Proof (RFC 8235)

Interactive proof of knowledge using discrete logarithms:

� Let p be a large prime, q a large factor of p− 1, and g an element of Z∗p of multiplicative

order q (the �rst positive solution of gx = 1 mod p is x = q); p, q and g are public.

� Alice (the prover) publishes her public key A = ga mod p; a ∈ [2, q − 2] is her private key.

� To prove she really knowns a, she chooses a random v ∈ [0, q−1], computes V = gv mod p,

and sends V to Bob.

� Bob chooses a challenge c ∈ [0, 2t−1], where t is the bit length of the challenge and sends

c to Alice.

� Alice computes r = v − ac mod q and sends it to Bob.

� Bob checks that A ∈ [1, p− 1], that Aq = 1 mod p, and that V = grAc mod p.

Non-interactive zero-knowledge proof:

� Apply a Fiat-Shamir transformation to de�ne c, thus avoiding interaction with Bob as he

will be able to compute it himself.

� Using the Fiat-Shamir transformation c will be the output of a secure cryptographic hash

function that hashes g, V , A, and other public information (say, Alice's public user id).

This protocol can be adapted to use arithmetic in elliptic curves. See the RFC for details.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Zero-knowledge proofs 106/117

https://www.rfc-editor.org/rfc/rfc8235.html
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Homomorphic encryption

� Idea: do some useful operation, or operations, using only encrypted data

� Example: in the RSA cryptosystem with unpadded messages, multiplication of the cipher-

texts corresponds to multiplication of the plaintexts.

� Using a lot of processing power (and using somewhat cumbersome methods), it is possible

to apply an arbitrary function (a logic function described by a boolean circuit) to the

encrypted data (to know more, search for fully homomorphic encryption schemes and

lattice-based cryptography).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Homomorphic encryption 107/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Homomorphic encryption (Paillier cryptosystem)

� Choose two large primes p and q. Ensure that p is not a factor of q − 1, and vice-versa.

� Compute n = pq and λ = lcm(p− 1, q − 1).

� Select a random integer g in the interval]0, n2[that is coprime to n.

� Compute u = gλ mod n2. It must be of the form u = 1 + vn (Fermat's little theorem).

� Compute µ = v−1 mod n.

� The public key is (n, g).

� The private key is (λ, µ).

� To encrypt the plaintext m, with 0 6 m < n, select a random r such that 0 < r < n that

is coprime to n, and compute the ciphertext c = gmrn mod n2.

� To decrypt, compute x = cλ mod n2. Again, it must be of the form x = 1 + sn. Then

m = sµ mod n.

� Let rλ mod n2 = 1 + tn. The decryption works because (all operations are modulo n2)

x = 1 + sn = gmλrnλ = (1 + vn)m(1 + tn)n = 1 +mnv
(1 + nx)k = 1 + k

1
nx +

k(k−1)
2

(nx)2 + · · ·

and so s = mv mod n, i.e., m = sµ mod n.

� If m1 gives rise to c1 and m2 to c2 (di�erent r can be used here) then ck11 c
k2
2 is a valid

encryption of k1m1 + k2m2 (multiplication of the cyphertexts corresponds to addition of

the plaintexts). This is the homomorphic property.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Homomorphic encryption 108/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Lattice-based cryptography (what is a lattice)

What is a lattice?

� In geometry a lattice is the in�nite set of points obtained from an integer linear combination

of linearly independent vectors.

� Mathematically, if the vectors are denoted by v̄1, v̄2, . . . , v̄k and the coe�cients of the

linear combination by a1, a2, . . . , ak, the points of the lattice are given by p =
∑k

i=1 aiv̄i.

This can also be written as

p =
[
v̄1 · · · v̄k

]︸ ︷︷ ︸
V

 a1
...

ak


︸ ︷︷ ︸

a

= Va.

The coordinates of each v̄i can be real numbers or more exotic things but each ai must

be an arbitrary integer (i.e., ai ∈ Z).

� Adding lattice points always gives rise to another lattice point: Va+ V b = V (a+ b). The

lattice points thus form a group under addition. Multiplying a lattice point by an integer

also gives rise to a lattice point: k(Va) = V (ka).

� The lattice basis is not unique. Let T be a square matrix with integer coe�cients and

determinant ±1. We have p = Va = (V T−1)(Ta), so V T−1 is also a basis for the lattice.

Note that Ta is an invertible linear transformation for vectors with integer elements. It

transform any vector of integers into another vector of integers and vice versa.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Lattice-based cryptography 109/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Lattice-based cryptography (illustration)

Some extra de�nitions:

� The fundamental region of a lattice is given by
∑k

i=1 aiv̄i with 0 6 ai < 1 for all i.

� The size of the fundamental region is given by | det(V)|. It does not depent of the basis

used to de�ne the lattice.

A bidimensional example (k = 2):

v̄1

v̄2

V =

[
1 0
0 1

]
T =

[
1 0
0 1

]

v̄′1

v̄′2

V ′ =

[
1 1
0 1

]
T−1 =

[
1 0
1 1

]
v̄′1 = v̄1 v̄′2 = v̄1 + v̄2

How about

v1 =

[
7
13

]
and

v2 =

[
8
15

]
?

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Lattice-based cryptography 110/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Lattice-based cryptography (hard problems)

Two hard problems (there are more):

� The Shortest Vector Problem (SVP) asks for the shortest non-zero vector that is the

di�erence of two distinct lattice points. This is the same as asking for the point that is

closest to the origin of the lattice (ignoring the origin itself, of course).

� The Closest vector Problem (CVP) asks for the lattice vector that is closest to a given

vector. As in the previous item, this can be formulated as asking for the lattice point that

is closest to a given point.

� These two problems as believed to be NP-hard.

� SVP challenges.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Lattice-based cryptography 111/117

https://www.latticechallenge.org/svp-challenge/
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Lattice-based cryptography (lattice basis reduction)

� Given the vectors that describe a lattice, can we �nd a �better� basis?

� By �better� we mean smaller coe�cients and as near orthogonal vectors as we can make

them.

� The Lenstra�Lenstra�Lovász (LLL) algorithm gives a reasonable solution to this problem.

The block Korkine-Zolotarev algorithm (BKZ) is another possibility.

� These algorithms have many uses. For example, the LLL algorithm was used to break the

Merkle-Hellman knapsack cryptosystem described earlier. Pari-gp has the function qflll

to compute it.

� For example, the basis on the left hand side has a fundamental region of size 366. Because

of this small size, we can expect that a basis with small vectors exist. That is the case (on

the right-hand size).

V =


−71 386 517 −142

662 696 943 −249

719 826 986 −360

533 −252 832 659

 ⇒ qflll(V,3) ⇒ V ′ =


0 3 −4 3

1 −1 −3 0

3 2 2 −1

1 −2 1 5



Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Lattice-based cryptography 112/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Lattice-based cryptography (learning with errors)

� Solving the system of equations Ax = b is easy when we have at least as many equations

as unknowns.

� If we add unknown noise, things can become more di�cult: Ax + e = b is much harder

to solve when e is unknown. (We will have much more equations than unknowns, so a

brute force search over all possible error vectors will uncover the solution if the number of

equations is su�ciently large).

� However, if all numbers are real numbers and we have many more equations that unknowns,

a least squares solution is usually good. It is given by x = A+b, where A+ is the pseudo-

inverse of A, and it will usually be close to the true solution. (In matlab or octave, we just

do x=pinv(A)*b).

� Fortunately, if we switch to modular arithmetic, the pseudo-inverse is useless and the

problem becomes indeed very hard.

� It will be necessary to try all possible values of the error vector until a consistent system

of equations is found (and solved).

� As an alternative, since when x is a vector with integer entries Ax is a lattice point, what

we want is the x vector for which the lattice point Ax is closest to the point b, and that

is also hard.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Lattice-based cryptography 113/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Lattice-based cryptography (learning with errors, Regev)

� This can be turned into a public key encryption method (Regev, 2009):

1. Choose a modulus q, a secret size n and a pool size m. All arithmetic will be done

modulo q.

2. Choose n random integer values s1, s2, . . ., sn. They are the secret key.

3. Choose m random integer vectors ai, each with n elements.

4. Compute the vector b with m elements, where bi = b′i + ei, ei is a small error term,

and where b′i =
∑n

j=1 sjaij; aij is the j-th element of ai. We should have |ei| <
⌊
q

4m

⌋
.

Each element of b corresponds to one equation (with error) of the system of equations.

5. Publish the ai and b. They are the public key.

6. To encrypt a single bit B, select at random a subset S of the set 1, 2, . . . ,m, and send

u =
∑

i∈S ai and v = B
⌊
q
2

⌋
+
∑

i∈S bi.

7. To decrypt, compute v−
∑n

i=1 siui. If it is closer to zero than to q/2, a zero was sent,

otherwise a 1 was sent.

8. This works because
∑n

i=1 siui =
∑

i∈S b
′
i, and because the absolute sum of the errors

cannot be larger than q/4.

� The number of bits of the public key can be drastically reduced if the vectors ai are

chosen in a special way: all but the �rst are computed from the previous one using a

prede�ned formula. This gives rise to the Ring Learning With Errors (RLWE) method

(more information).
Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Lattice-based cryptography 114/117

https://arxiv.org/abs/2401.03703
https://summerschool-croatia.cs.ru.nl/2018/slides/Introduction%20to%20post-quantum%20cryptography%20and%20learning%20with%20errors.pdf
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Lattice-based cryptography (learning with errors, pari-gp)

� The following pari-gp code implements a simple LWE public key scheme.

q=2^10; /* the modulus */

n=5; /* secret size */

m=50; /* sample size */

max_e=floor((5*q)/(12*m)); /* maximum error */

s=vector(n,i,random([0,q])); /* the secret */

A=vector(m,i,vector(n,j,random([0,q]))); /* the public matrix */

b=vector(m,i,(sum(j=1,n,s[j]*A[i][j])+random(round([-max_e,max_e+1])))%q); /* the public vector */

encode(bit)=my(c1,c2);c1=vector(n,i,0);c2=bit*floor(q/2);\

for(i=1,random(round([2*m/5,3*m/5])),j=1+random(m);c1+=A[j];c2+=b[j];);return([c1,c2]%q);

decode(c)=return((c[2]-sum(i=1,n,s[i]*c[1][i]))%q);

� It is possible to modify the method to send more that one bit at a time; it will necessary,

though, the reduce the amplitude of the errors.

� Also, instead of the o�sets 0 and
⌊
q
2

⌋
, the o�sets

⌊
q
4

⌋
and

⌊
3q
4

⌋
could have been chosen.

� Instead of an uniform distribution, Regev suggested the use of a normal distribution.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Lattice-based cryptography 115/117

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Quantum-resistant cryptography

Quantum computers and cryptography.

� Quantum-resistant cryptography, also known as Post-Quantum Cryptography (PQC), aims

to develop algorithms that remain safe when quantum computers become powerful enough

to tackle integer factorization and discrete logarithm problems (if ever, see this 2018 essay

against quantum computing).

� In August 2024, three Post-Quantum Cryptography standards were published by NIST:

FIPS 203 (key-encapsulation mechanism), FIPS 204 (lattice-based digital signatures), and

FIPS 205 (stateless hash-based digital signatures).

� What NSA said about it in 2021: link.

But, is quantum computing feasible?

� What the USA National Academy of Sciences has to say about quantum computing in

2018: link.

� What an article in Nature said about it in 2023: link. (Executive summary: for now, abso-

lutely nothing. But researchers and �rms are optimistic about the applications.) However,

see also this 2024 IEEE article (link).

� And what a Communications of the ACM article said about it also in 2023: link. (Just

take a look at the key insights. . .)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Quantum-resistant cryptography 116/117

https://spectrum.ieee.org/the-case-against-quantum-computing
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/pubs/fips/203/final
https://csrc.nist.gov/pubs/fips/204/final
https://csrc.nist.gov/pubs/fips/205/final
https://media.defense.gov/2021/Aug/04/2002821837/-1/-1/1/Quantum_FAQs_20210804.PDF
https://nap.nationalacademies.org/catalog/25196/quantum-computing-progress-and-prospects
https://www.nature.com/articles/d41586-023-01692-9
https://spectrum.ieee.org/what-are-quantum-computers-used-for
https://cacm.acm.org/research/disentangling-hype-from-practicality-on-realistically-achieving-quantum-advantage/#R5
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Bibliography (work in progress)

1. Eric Bach and Je�rey Shallit, Algorithmic Number Theory, Volume 1, E�cient Algorithms, MIT Press, 1996.

2. Henri Cohen. A Course in Computational Algebraic Number Theory, Springer, 1996.

3. Richard Crandall and Carl Pomerance, Prime Numbers. A Computational Perspective, second edition,
Springer-Verlag, 2005.

4. Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno, Cryptography Engineering. Design Principles and
Practical Applications, Wiley, 2010.

5. Steven Galbraith, Mathematics of Public Key Cryptography. Version 2.0, 2018.

6. Darrel Hankerson, Alfred Menezes, and Scott Vanstone, Guide to Elliptic Curve Cryptography, Springer, 2004.

7. Yang Li, Kee Siong Ng, and Michael Purcell, A Tutorial Introduction to Lattice-based Cryptography and
Homomorphic Encryption.

8. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied Cryptography, �fth
printing, CRC Press, 2001.

9. Richard A. Mollin, Advanced Number Theory with Applications, CRC Press, 2009.

10. Richard A. Mollin, Codes. The Guide to Secrecy from Ancient to Modern Times, Chapman & Hall/CRC,
2005.

11. Bruce Schneier, Applied Cryptography. Protocols, Algorithms, and Source Code in C, second edition, Wiley,
1996.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Bibliography 117/117

https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.pdf
https://arxiv.org/abs/2208.08125
https://arxiv.org/abs/2208.08125
http://cacr.uwaterloo.ca/hac/
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

	Title page
	Table of contents
	Goals
	Means
	Programming languages you may use
	Modular arithmetic
	The greatest common divisor
	Linear maps
	Fermat's little theorem
	Chinese remainder theorem
	Fermat's little theorem (revisited)
	Modular exponentiation
	Fast modular multiplication
	Multiplicative order
	The discrete logarithm problem for Zp
	The integer factorization problem
	Primality tests
	Diffie-Hellman key exchange
	ElGamal public key cryptosystem
	The Rivest-Shamir-Adleman cryptosystem
	Finite fields
	Elliptic curves
	Diffie-Hellman using elliptic curves
	The discrete logarithm problem for elliptic curves
	Digital signatures (DSA and ECDSA)
	Secret sharing
	Quadratic residues
	Zero-Knowledge
	Homomorphic encryption
	Lattice-based cryptography
	Quantum-resistant cryptography
	Bibliography

