
Cybersecurity MSc: Applied Cryptography 2023-24

Practical Exercises:
Certi�cate issuing, exploitation and revocation

September 14, 2023 Due date: no date

Changelog

� v1.0 - Initial version.

1 Introduction

This laboratory guide will focus in the setup of a Certi�cation Authority (CA), on the issuing of a
certi�cates for Web servers and on their revocation. Furthermore, we will show the relevance of the
provisioning of complete certi�cation chains for helping certi�cate validators to get complete chains.

For the execution of this guide we will use Linux and the following packages: xca and apache2.

2 Creation of a new certi�cation hierarchy

Certi�cation Authorities are vital for authentication of services across the Internet. They are considered
to be trusted and this trust is inherited by the certi�cates they issue (sign). Although CAs commonly
have a global reach and are to be globally trusted, this is not really a requirement and custom CAs
can be created. If clients install the custom CA and trust it, all certi�cates issued by the CA will also
be trusted, just like any other commercial, widely deployed root CA. This is useful for services which
have a limited number of users accessing it.

In this step we will create a custom CA in order to generate signed certi�cates for a personal Web
server. For this purpose we will rely on the xca software.

The �rst step is to launch the xca application and create a new database. Do not forget to specify a
password!

2.1 Creation of the root CA

Afterwards, generate a new private key for the CA root key pair, named CA root. Usually, CA keys
are considerably stronger that those of server certi�cates. Consider 4096 bits if possible.

Then create a certi�cate for the CA's root key pair by selecting Certi�cates→New Certi�cate. Do not
forget to select the key you just created, as well as the [default] CA template (you must select it and
then choose Apply all. Also, you must �ll the identi�cation data for the CA, de�ne the key usage
extension as critical and de�ne the validity of the CA (a few years). Use as Internal name for the
certi�cate the same name of its private key, CA root.

2.2 Creation of an intermediate CA

After having the root of the CA properly con�gured, we can generate other certi�cates of its hierarchy;
we will start by an intermediate CA.

1



In a normal scenario, a key pair owner would create the CSR for geting a certi�cate to its public
component, a Registration Authority (RA) would validate the CSR (namely, validate the identi�cation
items on it and the requested key usages and certi�cate usage restrictions), and a CA would issue the
certi�cate upon and accepted CSR.

In this experiment we will use the same xca instance (database) to hold the credentials of the inter-
mediate CA. Thus, we will we use it to create a new key pair, create a CSR for it, approve the CSR
(this step is just ignored) and issue the certi�cate (signed by the root private key).

Go to the tab Certi�cate Signing Requests and click New Request. Apply again the [Default] CA
template and �ll the remaining �elds. Do not forget to generate a new key pair in the Subject tab (call
it Sub CA) and de�ne the key usage extension as critical. Also use the key name in the Internal name
�eld of the subject identi�cation.

With the CSR, the certi�cate can be �nally generated by signing the CSR with the CA root key.
Right-click on the CSR and select sign. Please note that the CSR signing credentials are de�ned in the
initial tab, where you select the certi�cate that corresponds to the private key that will be used to issue
the new certi�cate. The pinpointing of the signing certi�cate is required to extract the identi�cation
of the issuing entity.

Verify in the Certi�cates tab that the new certi�cate is hierarchically below the CA root one.

3 Certi�cate issuing for a Web server

After having the intermediate CA up and running, we can generate a certi�cate for our server. For
that, we need �rst to create a Certi�cate Signing Requests (CSR), and sign that request with the
intermediate CA just created (Sub CA). Go to the tab Certi�cate Signing Requests and click New
Request. This time, apply the TLS_server template and �ll the remaining �elds. Use localhost as
the common name, generate a new key and de�ne the key usage extension as critical. You can select
the TLS Web Server Authentication extended key usage (also as critical).

With the CSR, the certi�cate can be �nally generated by signing the CSR with the Sub CA certi�cate.
Right-click on the CSR and select sign. Please make sure you sign the CSR with the Sub CA certi�cate!

Verify in the Certi�cates tab that the new certi�cate is hierarchically below the Sub CA one.

4 Export of keys and certi�cates

The keys and certi�cates produced with xca need to be used by other tools, namely an apache2 HTTP
server and client browsers. For that, we will export selected keys and certi�cates produced with xca.

There are many formats to export keys and certi�cates.

For certi�cates, the most convenient one is PEM, because it allows sets of certi�cates to be concatenated
in a single �le for being uploaded by some tool, which can be more convenient that using directories
with independent �les (though in a single �le an observer of the certi�cates' encoded data looses all
information about which refers to whom).

For private keys, they can be exported isolated or bundled with a certi�cate, or a certi�cate chain.
They can also be exported in cleartext or protected by an encryption layer (with a key derived from a
password).

In this experiment, the private key that needs to be exported is the one of the HTTPS server, and the
apache2 con�guration requires private keys to be provided unprotected. Regarding the certi�cates,
we will do some experiments with certi�cation chains, thus we want all of them to be individually
exported to independent �les.

The location of the �les created with the exports depends on their use. Since we are going to use them in
an apache2 server, we can store all of them, except the root certi�cate, in the /etc/apache2/ssl.crt

2



directory (it should exist only after the installation of the apache2 package; if nonexistent, create it).
The root certi�cate can be exported to the directory were Linux usually keeps the system's trusted
certi�cation roots, the /etc/ssl/certs directory.

Therefore, go to the Private Keys tab, select the HTTPS server private key and export it as an
unencrypted private key in text format (PEM private (*.pem)). Then, go to the Certi�cates tab, and
for each certi�cate, select it, and export them in PEM text format with headers (PEM (*.crt)).

5 Import of certi�cates

Certi�cate validation processes are grounded by the trust is small sets of public keys, which de�ne
(trusted) root certi�cation authorities. Since we have created a new one, and it was used to build a
certi�cation chain down to a server's certi�cate, we need the server's clients to trust on that root in
order to trust on the server's certi�cate.

In this experiment, the browser that will contact the HTTPS server will have to install our self-certi�ed
root certi�cate as a trusted authority. Thus, install the certi�cate of our root CA as a trusted authority
in the browser's list of authorities, and do not forget to allow trusting on it to authenticate Web servers.
You can do this with Firefox, but other browsers should likewise allow it. In Firefox, go to Preferences,
choose the Privacy & Security tab and close to the bottom select View Certi�cates. The list of trusted
authorities is presented in the Authorities tab.

6 Setup of an HTTPS server

For the server we will use the apache2, which must also be installed. Afterwards, the SSL module must
be enabled by issuing:

a2enmod ssl

In the folder /etc/apache2/sites-available there is a �le named default-ssl.conf. Copy this �le
to /etc/apache2/sites-enabled as experiment.conf. This �le de�nes the SSL con�guration that
the server will use, and must be edited in order to consider the cryptographic material just created.
Be sure to modify the following variables:

� SSLCertificateFile: This should refer a PEM �le containing the server certi�cate.

� SSLCertificateKeyFile: This should refer a PEM �le containing the server private key.

� SSLCertificateChainFile: This �le should contain the certi�cation hierarchy of the server's
certi�cate, excluding the root certi�cate.

In a �rst assessment, set this variable with its correct value but leave it commented (line starting
with #). We will see a di�erence upon its activation.

Edit all required variables and restart the server by executing (as administrator):

service apache2 restart

With a Firefox browser access the server by typing the URL https://localhost. You should get
an error, since the server's certi�cate cannot be validated by the browser. This happens because the
intermediate CA certi�cate is not known by the browser, and is not also being provided buy the HTTPS
server. Therefore, the browser cannot build a trust path from the server's certi�cate up to a public
key belonging to a trusted authority.

Uncomment the variable SSLCertificateChainFile in the apache2 con�guration �le and restart the
server. After doing this, you should be able to access the URL above referred. Now everything is
correct, there should be no warning or error, and the page should be secure. The practical result
is that the server is authenticated and the connection is secure. The browser accepts the server's
certi�cate because it was validated up to a trusted but public key. If the common-name �eld of the
certi�cate is di�erent from localhost, the browser would show a warning message.

3



Go to the browsers' certi�cates and edit the trust on our root certi�cate. In particular, remove the
trust on it relatively to Web servers. Restart the server (to delete cached TLS sessions) and repeat the
access to the same URL. This time, you should get an error, as the browser not longer can trust the
server's certi�cate.

7 Revocation of certi�cates

With xca create a new certi�cate for the Sub CA (you can reuse the previous CSR), but this time add
X509v3 CRL Distribution Points in the Extensions tab. Usually CRL distribution points are given
by URLs that belong to CA's Web servers, but for the purpose of demonstration we can use and Web
server. Therefore, add an URL such as http://localhost/RootCA_CRL.pem for distributing the CA

root CRL using our Web server.

Export the new certi�cate, install it in the apache2 server and restart it. Refresh the browser access to
the HTTPS Web page and con�rm that the intermediate certi�cate of the server's certi�cation chain
contains the CRL distribution point. See what happens with the fact that the browser cannot access
the referred CRL. Try to force the browser to verify CRLs (or OCSP servers).

Now go to the Certi�cates tab, select the Sub CA certi�cate and revoke it, selecting CA Compromise as
reason. Then, go to the Revocation lists tab, select New CRL and select the CA root (the revocation
of the Sub CA certi�cate must be published by its issuer). You can use the default values provided for
the CRL. Export the CRL with the name given above, and store it in the directory /var/www/html.

Restart the browser and repeat the access to the HTTPS Web page. You should get an error due to
the revocation referred in the now-available CRL

8 References

� XCA, http://sourceforge.net/projects/xca

� Apache2 ModSSL, http://httpd.apache.org/docs/2.4/mod/mod_ssl.html

4

http://sourceforge.net/projects/xca
http://httpd.apache.org/docs/2.4/mod/mod_ssl.html

	Introduction
	Creation of a new certification hierarchy
	Creation of the root CA
	Creation of an intermediate CA

	Certificate issuing for a Web server
	Export of keys and certificates
	Import of certificates
	Setup of an HTTPS server
	Revocation of certificates
	References

