Cybersecurity MSc: Applied Cryptography 2023-24

Practical Exercises:
Cryptographic hashing: digests and MACs

September 14, 2023 Due date: no date

Changelog

e v1.0 - Initial version.

Introduction

In order to elaborate this laboratory guide it is required to install the Java Development Environment
(JDK), Python 3 or the C compiler and development environment.

The examples provided will use both Java, Python and C. For Python you need to install the
cryptography module. For C we will use the EVP (Digital Envelope) functions from the Crypto
library that is part of OpenSSL, and for that you need to use install the packages 1ibssl1.0-dev and
libssll.1.



1 Elements of interest for each language

1.1

1.2

1.3

Java

java.security. MessageDigest An instance of the MessageDigest allows to calculate digests of
arbitrary data. Some important methods are: getInstance, update and digest.

javax.crypto.Mac| An instance of the class Mac allows to calculate a MAC of arbitrary data given
a key. Some important methods are: getInstance, init, update and doFinal.

Python

The cryptography module is both a frontend, high-level interface for dealing with cryptography
and a default backend implementation of the fundamental cryptographic primitives. The high-
level interface allows explore a backend other than the default.

The Python interpreter distinguishes bytes from text characters, and thus byte arrays from
strings. A string is more than a byte array, it has also an encoding (e.g. UTF-8, Unicode, etc.).
You can get the bytes of characters (strings) using the bytes function, and you can convert bytes
to characters (strings) by using the method decode on a byte array (with a target encoding).

By default, in cryptography we always use bits and bytes, nothing else. So, do not attempt to
solve interpreter errors by changing everything to text (characters and strings)!

C

Functions EVP_- - -_ex are functions that can be parameterized with an implementation engine,
whilst functions without the _ex suffix use the default library engine.

Functions EVP_DigestInit, EVP_DigestUpdate and EVP_DigestFinal form the high-level inter-
face for handling digest computations.

Functions HMAC_init, HMAC_update and HMAC_final form the high-level interface for handling
HMAC computations.

A structure EVP_MD_CTX describes the current context of a digest computation, and it is created
with EVP_MD_CTX_new and released with EVP_MD_CTX_free. This context is used to store the
current state of the hashing process and to perform padding.

A structure HMAC_CTX describes the current context of an HMAC computation, and it is created
with HMAC_CTX_new and released with HMAC_CTX_free. This context is used to store the current
state of the HMAC process and to perform padding.

A structure EVP_MD describes generic attributes of a given digest computation. Usually it does
not need to be filled manually, one can use predefined functions for that (e.g. EVP_sha256 returns
a pointer to such a structure describing a SHA-256 digest operation).


http://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/security/MessageDigest.html
http://docs.oracle.com/en/java/javase/18/docs/api/java.base/javax/crypto/Mac.html

2 Avalanche effect in digest functions

Develop a program to generate the digest of random byte array. Keep that digest as a reference. Then,
change a single bit in the original data, any bit, compute the digest again, and compute how many
bits have change from the first one. Repeat this process for several other bits, always relatively to the
same original data, and compare the resulting digests with the first one. Produce an histogram with
the percentages of bits modified in each computation (you can use a counter per each percentage unit).

3 Avalanche effect in M AC functions

Change the previous program to do the same with HMAC and with bit modifications in the secret key.

4 Birthday paradox

Develop a program that computes digests from a series of fixed-size random byte arrays. Store the
digests for detecting collisions and count the number of attempts until finding a collision. Compute
the average number of attempts required to find a collision, in order to verify the birthday paradox.

Note: this exercise is infeasible with the current digest sizes, which are above 128 bits. So, parameterize
your program to work only with a given number of bits from the resulting digests.

Tip: the birthday paradox applies to any digest function. Therefore, the results should be independent
from the digest functions used. Verify it.

References

e The Java Tutorial: Security Features in Java SE
https://docs.oracle.com/javase/tutorial/security/index.html

e Java Documentation: Security
http://docs.oracle.com/javase/8/docs/technotes/guides/security/index.html

e Welcome to pyca/cryptography
(https://cryptography.io)

e Libcrypto API
(https://wiki.openssl.org/index.php/Libcrypto_API)


https://docs.oracle.com/javase/tutorial/security/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/index.html
https://cryptography.io
https://wiki.openssl.org/index.php/Libcrypto_API

	Elements of interest for each language
	Java
	Python
	C

	Avalanche effect in digest functions
	Avalanche effect in MAC functions
	Birthday paradox

