
Cybersecurity MSc: Applied Cryptography 2023-24

Practical Exercises:
Symmetric Cryptography

September 14, 2023 Due date: no date

Changelog

� v1.0 - Initial version.

Introduction

In order to elaborate this laboratory guide it is required to install the Java Development Environment
(JDK), Python 3 or the C compiler and development environment.

Because you will need to visualize binary �les, the ghex application may also be useful. It is available
for installation in the Linux repositories using apt-get install ghex.

The examples provided will use both Java, Python and C. For Python you need to install the
cryptography module. For C we will use the EVP (Digital Envelope) functions from the Crypto
library that is part of OpenSSL, and for that you need to use install the packages libssl1.0-dev and
libssl1.1.

1

1 Elements of interest for each language

1.1 Java

� javax.crypto.Cipher An instance of the Cipher allows to encrypt original contents or decrypt
cryptograms. Some important methods are:

� getInstance: creates an instance of a encryption/decryption engine for a given algorithm;

� init: initializes the engine instance; typically used to set the key to be used, at least;

� update: performs an incremental encryption/decryption with the engine instance. Engines
that work sequentially can keep some internal state across successive calls;

� doFinal: terminates a sequential process (not required for non-sequential processes).

� javax.crypto.KeyGenerator An instance of the class KeyGenerator is a generator of symmetric
keys. Some important methods are:

� getInstance: creates an instance of a generator for producing keys for a given cipher
algorithm;

� init: initializes the key generator with some elements for helping the key production (key
size, when it can vary for a given algorithm, such as AES, randomness source, etc.);

� generateKey e�ectively creates a symmetric key.

� javax.crypto.SecretKey An instance of a class implementing the interface SecretKey contains
a symmetric key for a given cipher algorithm.

1.2 Python

� The cryptography module is both a frontend, high-level interface for dealing with cryptography
and a default backend implementation of the fundamental cryptographic primitives.

� The Python interpreter distinguishes bytes from text characters, and thus byte arrays from
strings. A string is more than a byte array, it has also an encoding (e.g. UTF-8, Unicode, etc.).
You can get the bytes of characters (strings) using the bytes function, and you can convert bytes
to characters (strings) by using the method decode on a byte array (with a target encoding).

By default, in cryptography we always use bits and bytes, nothing else. So, do not attempt to
solve interpreter errors by changing everything to text (characters and strings)!

1.3 C

� Functions EVP_· · ·_ex are functions that can be parameterized with an implementation engine,
whilst functions without the _ex su�x use the default library engine.

� Functions EVP_CipherInit, EVP_CipherUpdate and EVP_CipherFinal form the high-level inter-
face for handling (sequential) encryption and decryption operations.

� Functions EVP_Encrypt· · · are the high-level interface for handling encryptions, whilst EVP_-

Decrypt· · · handle decryptions (using the previous ones).

� Functions EVP_CIPHER_CTX_set· · · help to parameterize a cipher context, possibly with items
not available in the EVP_· · ·Init functions.

� A structure EVP_CIPHER_CTX describes the current context of a cryptographic transformation, and
it is created with EVP_CIPHER_CTX_new and released with EVP_CIPHER_CTX_free. This context
is used to store fundamental data elements (e.g. key and IV) used to process cryptographic
transformations and to bu�er input data across sequential operations for dealing with block
alignment and padding.

2

http://docs.oracle.com/en/java/javase/18/docs/api/java.base/javax/crypto/Cipher.html
http://docs.oracle.com/en/java/javase/18/docs/api/java.base/javax/crypto/KeyGenerator.html
http://docs.oracle.com/en/java/javase/18/docs/api/java.base/javax/crypto/SecretKey.html
https://pypi.org/project/cryptography

� A structure EVP_CIPHER describes generic attributes of a given cryptographic transformation.
Usually it does not need to be �lled manually, one can use prede�ned functions for that (e.g.
EVP_aes_256_cbc returns a pointer to such a structure describing an AES cipher with a 256-bit
key operating in CBC mode).

3

2 Creation of a symmetric key from a password

Develop a program to generate a symmetric key for the AES algorithm, and save it to a �le. The
key should be generated from a password, in order to implement a process known as Password-Based
Encryption (PBE). The password should be provided as the �rst argument of the program and the �le
name as the second.

Tip: you can use less arguments and consider the use of stdout in the absence of �le speci�cations.

The program should generate 128-bit keys, as this is required by the AES algorithm. For dealing with
PBE, we will use a password-to-key transformation function known as PBKDF2 (Password-Based Key
Derivation Function 2). This is a generic, multi-iteration hashing function, which can be parametrized
with another keyed hashing function; we will use HMAC with SHA-1.

Tip: you can use less arguments and consider the use of stdout in the absence of �le speci�cations.

Tip: the output should be language-independent, thus you should get exactly the same output using
di�erent programming languages.

Note: functions such as PBKDF2 are often used to compute password transformations used in au-
thentication processes. The �nal goal is to avoid storing passwords in cleartext for matching with the
ones providing by people. However, for preventing exhaustive search attacks looking for a password
suitable for a given stored transformation, such transformations are often randomized with an element
called salt. A salt does not need to be secret, it only needs to be randomly assigned once for a given
password and used to transform it thereafter; that way, we can break massive password guessing at-
tacks, such as the one one can implement with a rainbow tables, because it is infeasible for them to
deal with di�erent salt values.

The following code samples exemplify how to convert a textual password, stored in the string pwd,
into a byte array (key) with PBKDF2 (with HMAC and SHA-1) using Java, Python and C. Note that
when non-ASCII characters are part of the password, the output of all programs will only be equal i�
the encoding used in Java and C is also UTF-8.

4

import javax.crypto.spec.PBEKeySpec;

import javax.crypto.spec.SecretKeySpec;

import javax.crypto.SecretKeyFactory;

import javax.crypto.SecretKey;

// PBKDF2 specifications: password , salt , iterations and output size

//

// salt: a byte array intended to produce different outputs for the same password

// iterations: the number of times the PBKDF2 iterates internally over a generator function

// output size: the number of bits we want to generate from the password (128 for AES)

byte[] salt = new byte [1];

salt [0] = 0; // We need to provide one salt ...

// First , we create a specifications object with all the PBKDF2 parameters we want

PBEKeySpec pbeKeySpec = new PBEKeySpec(pwd.toCharArray (), salt , 1000, 128);

// Then , we create key material (a byte array) using PBKDF2 + HMAC(SHA -1)

SecretKeyFactory skf = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");

byte[] key = skf.generateSecret(pbeKeySpec).getEncoded ();

// Write key in a file

The following code does the same in Python:

import sys

from cryptography.hazmat.primitives import hashes

from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC

from cryptography.hazmat.backends import default_backend

The PBKDF2 generator of Python receives as input the number of bytes to generate ,

instead of bits

salt = b'\x00'

kdf = PBKDF2HMAC(hashes.SHA1(), 16, salt , 1000, default_backend ())

key = kdf.derive(bytes(pwd , 'UTF -8'))

Write key in a file

The following code does the same in C:

#include <stdint.h>

#include <openssl/crypto.h>

#include <openssl/evp.h>

#define KEY_LEN 16 // bytes

char salt = 0;

uint8_t key[KEY_LEN];

// The PBKDF2 generator of OpenSSL receives as input the number of bytes to generate ,

// instead of bits

PKCS5_PBKDF2_HMAC_SHA1(pwd , -1, &salt , 1, 1000, sizeof(key), key);

// Write key in a file

5

3 Ciphering a �le using the AES algorithm

Write a program to encrypt the contents of a �le using the AES cipher and a key previously generated
and stored in a �le. The program should accept three parameters: the key �le, the input and the
output �les.

Tip: you can use less arguments and consider the use of stdin and stdout in the absence of �le
speci�cations.

The following code samples in Java, Python and C exemplify how to encrypt a �le's contents with
AES in CBC mode with a PKCS $7 padding. The encryption key is loaded from a key �le and the IV
is randomly generated and stored in the beginning of the �le with the cryptogram.

Tip: the output should be language-independent, thus you should get exactly the same output using
di�erent programming languages. However, this is only true if you use exactly the same parameters.
In the example provided this does not happens because they use a random IV, but would happen for
a �xed IV.

Check the size of the resulting encrypted �les for each input �le. Explain why they are always bigger
and the actual size increment.

Create a new program performing a similar encryption but without padding and observe the result.
You may �nd that you are constrained in the size of the �les that you are able to cipher. In other
words, your program will not work properly with input �les with a size that is not a multiple of 16
bytes.

6

import javax.crypto.spec.SecretKeySpec;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.SecretKey;

import java.security.SecureRandom;

import javax.crypto.Cipher;

// Read key bytes from key file (into variable keyBytes)

...

// Setup AES key with the key to encrypt

SecretKey key = new SecretKeySpec(keyBytes , "AES");

// Create a cipher engine given the algorithm (AES), the encryption mode (CBC)

// and the padding (PKCS \#5)

Cipher c = Cipher.getInstance("AES/CBC/PKCS5Padding");

// Set the IV parameters (required for CBC) to a random value.

// The IV must have a size equal to the cipher 's block size

byte[] iv = new byte[c.getBlockSize ()];

SecureRandom random = new SecureRandom ();

random.nextBytes(iv);

// Set the cipher engine to encrypt with the intended key and IV

c.init(Cipher.ENCRYPT_MODE , key , new IvParameterSpec(iv));

// Open input file for reading and output file for writing

...

// Write the IV in the output file

...

while (...) { // Cicle to repeat while there is data left on the input file

// Read a chunk of the input file to the plaintext variable

...

// The length of the plaintext data should be stored in pLen

ciphertext = c.update(plaintext , 0, pLen);

// Store the ciphertext in the output file

...

}

// Perform the encryption of the last plaintext contents + the padding

ciphertext = c.doFinal ();

// Store the ciphertext in the output file

...

7

The following code does the same in Python:

import os

from cryptography.hazmat.primitives.ciphers import Cipher , algorithms , modes

from cryptography.hazmat.primitives import padding

from cryptography.hazmat.backends import default_backend

Read key bytes from key file (into variable key)

...

Setup cipher: AES in CBC mode , w/ a random IV and PKCS #7 padding (similar to PKCS #5)

iv = os.urandom(algorithms.AES.block_size // 8);

cipher = Cipher(algorithms.AES(key), modes.CBC(iv), default_backend ())

encryptor = cipher.encryptor ()

padder = padding.PKCS7(algorithms.AES.block_size).padder ()

Open input file for reading and output file for writing

...

Write the contents of iv in the output file

...

while True: # Cicle to repeat while there is data left on the input file

Read a chunk of the input file to the plaintext variable

...

if not plaintext:

ciphertext = encryptor.update(padder.finalize ())

Write the contents of ciphertext in the output file

break

else:

ciphertext = encryptor.update(padder.update(plaintext))

Write the ciphertext in the output file

8

The following code does the same in C:

#include <stdint.h>

#include <openssl/crypto.h>

#include <openssl/evp.h>

#include <openssl/aes.h>

#include <openssl/rand.h>

#define KEY_LEN 16 // bytes

EVP_CIPHER_CTX * ctx;

uint8_t key[KEY_LEN];

uint8_t iv[AES_BLOCK_SIZE];

// Read key bytes from key file (into variable key)

...

// Setup cipher: AES in CBC mode , w/ a random IV and PKCS #7 padding (similar to PKCS #5)

RAND_bytes(iv, sizeof(iv));

ctx = EVP_CIPHER_CTX_new ();

EVP_CipherInit(ctx , EVP_aes_128_cbc (), key , iv, 1);

// PKCS #7 padding is on by default; use the following call to disable it

// EVP_set_padding(ctx , 0);

// Open input file for reading and output file for writing

...

// Write the contents of iv in the output file

...

while (...) {

uint8_t ciphertext[/* allocate as much bytes as for variable plaintext (>=

AES_BLOCK_SIZE) */];

int cLen;

// Read a chunk of the input file to the plaintext variable

...

// The length of the plaintext data should be stored in pLen

EVP_CipherUpdate(ctx , ciphertext , &cLen , plaintext , pLen);

// Write the first cLen bytes of ciphertext in the output file

...

}

EVP_CipherFinal(ctx , ciphertext , &cLen);

// Write the first cLen bytes of ciphertext in the output file

...

EVP_CIPHER_CTX_free(ctx);

9

4 Deciphering a �le using AES

Develop a program similar to the previous but able to decipher a �le. Three arguments should be sent
to the program: the key �le, �le to decipher and the output �le.

Tip: Try to use a program written in a di�erent language than the one with which you did the
encryption.

5 Ciphering and deciphering a �le using a given algorithm

Modify the previous programs in order to accept an additional parameter stating the algorithm to use.
Consider that two options can be provided: AES and DES. The change should be minimal.

6 Cipher modes

6.1 Initialization Vector

Some cipher modes requiring feedback information (CBC, OFB, CFB and CTR) must use an Initialization
Vector (IV).

Modify the previous programs to accept as argument a �le name, which should contain a de�nition
of the cipher algorithm, the cipher mode and an IV (assume a default padding when required). The
content of this �le should be created by the ciphering application and used by the decryption application
to initialize the decryption engine. The IV in that �le should be a random value generated when
ciphering.

Note: you do not need to store the IV anymore in the beginning of the encrypted �le.

Take in consideration that only the ECB cipher mode does not require the use of an IV.

6.2 Propagation of patterns

In this exercise the goal is to analyze the impact of using ECB and CBC from the perspective of the
propagation of patterns between the plaintext and the corresponding cryptogram.

The approach followed will be to use a BMP �le, cipher it, and visualize the resulting cryptogram.
The BMP format is very simple and as long as the �rst 54 bytes (the header) are kept unchanged, the
remaining content will be shown as an image.

With the program you developed, and using the ECB mode, with any encryption algorithm, cipher the
�le security.bmp to another �le, named security-ecb.bmp. Then restore the BMP header of the
ciphered �le with the original one. This will allow for any graphics application to interpret the �le as
a BMP �le, even if the picture data is ciphered.

The following command can be used to �x the header from the encrypted contents to the original ones:

dd if=security.bmp of=security -ecb.bmp bs=1 count =54 conv=notrunc

Open both �les with any BMP viewer, and compare the results.

Repeat the same operation with the same algorithm and over the same �le security.bmp, but now
using the CBC mode. You should produce a �le named security-cbc.bmp. Restore the header, view
both images and compare the result.

Repeat the above steps for other algorithms and cipher modes. What can you conclude?

10

6.3 Error propagation

In this exercise we will analyze the impact of errors in the ciphertext. That is, the e�ect of modi�cations
to one or more bits in the ciphertext, and then deciphering the ciphertext into the clear text, when
using ECB, CBC, OFB and CFB.

Using the program developed, with any cipher algorithm, and the ECB cipher mode, cipher the image
that was provided with this assignment. Do not restore the header!

Using an hex editor, such as ghex, select a random byte and take notice of this byte. Then �ip one
bit to the opposite value. As an example, you can use address 0xec00 which encodes the lower right
pixel of the dot in the exclamation mark, after the word RSA.

Decipher the �le you just modi�ed using the same algorithm and mode. View both the original image,
and the one you just obtained. Then compare their content using an hex editor. In particular, focus in
the byte that you just changed, and the surrounding bytes. You can also use the cmp -bl firstFile

secondFile command.

Repeat these steps with the remaining cipher modes, and for each �nd what is the impact of errors in
the ciphertext. Also, de�ne which cipher modes are more and less sensitive to errors in the ciphertext
(considering the amount of errors in the �nal image).

7 Triple DES

The DES algorithm uses keys with 56 bits, and was considered insecure some time after its creation.
However, it was created a method to increase its security by doubling or tripling the key size. This
method is frequently called TripleDES or 3DESede. What this method introduces is the notion of
multiple operations over the text, using di�erent keys and is a good example of a cipher reinforcement
method.

When using two keys (112 bits), TripleDES is implemented by calculating:

Ek1 (Dk2 (Ek1 (text)))

When using three keys (168 bits), TripleDES is implemented by calculating:

Ek3 (Dk2 (Ek1 (text)))

Where ki is a key, D is a decipher operation, and E is a cipher operation. This method is based on
the fact that deciphering a cryptogram with a wrong key is equivalent to cipher it again.

Implement a program which applies this method to the DES cipher. Please take in consideration
that, when ciphering, only the �rst cipher operation should use padding! When deciphering, the last
operation should use padding1.

8 Cipher performance

An important aspect of the di�erent ciphers is their performance in common hardware, which varies
by a great amount. Taking in consideration the ciphers available in Java (Blowfish, AES, DES, RC2,
RC4, ARCFOUR, and 3DESede) implement a program to benchmark each cipher. Consider blocks with
size ranging from 16 bytes to 8192 bytes. In order to run the benchmark, consider the method
System.currentTimeMillis() and see how many time it takes to do 10, 000, 000 cipher operations.

Tip: do not consider for timing the �rst cipher/decipher operation, as it will �warm� data and code
caches.

Tip: For more accurate timming, consider performing some loop unrolling (repeat the same instruction
several times in the loop body). This is more relevant for accurately evaluate fast ciphers than slow
ones.

1Java, Python and C support 3DESede natively, but you should not use it unless you wish to test your implementation.

11

References

� The Java Tutorial: Security Features in Java SE
https://docs.oracle.com/javase/tutorial/security/index.html

� Java Documentation: Security
http://docs.oracle.com/javase/8/docs/technotes/guides/security/index.html

� PKCS #5: Password-Based Cryptography Speci�cation Version 2.0
(https://tools.ietf.org/html/rfc2898)

� Welcome to pyca/cryptography
(https://cryptography.io)

� Libcrypto API
(https://wiki.openssl.org/index.php/Libcrypto_API)

12

https://docs.oracle.com/javase/tutorial/security/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/index.html
https://tools.ietf.org/html/rfc2898
https://cryptography.io
https://wiki.openssl.org/index.php/Libcrypto_API

	Elements of interest for each language
	Java
	Python
	C

	Creation of a symmetric key from a password
	Ciphering a file using the AES algorithm
	Deciphering a file using AES
	Ciphering and deciphering a file using a given algorithm
	Cipher modes
	Initialization Vector
	Propagation of patterns
	Error propagation

	Triple DES
	Cipher performance

