
Cybersecurity MSc: Applied Cryptography 2023-24

Practical Exercises:
Cycles in OFB cipher mode

September 27, 2023 Due date: no date

Changelog

� v1.0 - Initial version.

Introduction

OFB is a cipher mode where we use a block cipher to implement the generator of a stream cipher. In

this mode, the keystream results from successive sets of n-bit blocks produced by a block cipher when

processing (encrypting or decrypting) an internal state S with a given key K, yielding an output O
(which has a length equal or bigger then n).

These n bits are collected from the least signi�cative bits (lsb) of O. These same n bits are then use

to modify S as follows: S is shifted left n bits, thus discarding its n lsb, and the n bits of O are placed

in the most signi�cative bits (msb) of the resulting S.

The stream cipher operates by executing several iterations, where each produces n bits of keystream.

Thus, in iteration i, we have Si−1, we produce Oi from Si−1 with a block cipher and K, we pick the n
left-most bits of Oi to our keystream, and we use them to produce

Si = (Si � n) + (Oi � (B − n))

where B represents the length (in bits) of the input and output block of the cipher function (e.g., 128
for AES), � a bitwise left shift and � a bitwise right shift.

The OFB generator requires the setup of an initial state S0 that will be used on iteration 1. This

initial state is commonly referred as Initial Vector, or Initialization Vector (IV). Usually, the IV varies

from message to message when the same key K is used for encrypting all those messages. But it does

not need to be secret, and many times it is not.

Usually, it is more practical to work in software with values of n that are a multiple of 8, in order to

perform byte-aligned operations. In such cases, we pick up byte blocks and shift left and right bytes,

instead of bits.

1

1 Implementation of a special OFB mode

Implement an n-bit OFB mode with an AES cipher using 128-bit keys. Allow it to work with the

following values of n: 8, 16, 24 and 32. You do not need to implement a complete n-bit OFB cipher,

just implement the generator (because we will not experiment the encryption or decryption with the

OFB cipher).

In order to reduce the space of values that Si values can take, modify your OFB generator to encrypt

S′i instead of Si, where S
′
i has all the 12 left-most bytes equal to zero, and the 4 right-most bytes equal

to the exact same of Si. The net e�ect of this transformation is that the input of the AES cipher will

only get at most 232 di�erent values. Thus, the internal state of the OFB generator gets reduced to a

manageable amount of di�erent values (232), instead of having 2128 di�erent possibilities.

2 Study the cycles on your special OFB mode

You get an m-long cycle the �rst time you �nd that Si+m = Si, for the minimum possible i. Therefore,
you can study the statistics of m for a given key K.

It is possible, for the same key K, to have di�erent cycles with di�erent m lengths. Try to �nd, for

each key K, how many cycles you may have and their lengths.

To avoid running along dejà vu sequences of S′i values that end up in the same cycle, keep a log of

S′i values observed in previous experiments (for the same key), which should not be used any more.

It takes an amount of 229 bytes, thus 512 megabytes, to implement this log using one single bit to

uniquely represent each value.

The next C program �nds all the cycles for a random key and a given n.

#include <stdint.h>

#include <openssl/crypto.h>

#include <openssl/evp.h>

#include <openssl/aes.h>

#include <openssl/rand.h>

#include <memory.h>

#include <assert.h>

#define KEY_LEN 16 // bytes

typedef struct {

uint8_t S[AES_BLOCK_SIZE];

uint32_t n;

EVP_CIPHER_CTX * ctx;

} OFB_generator_t;

void

init_ofb_generator(OFB_generator_t * g, uint8_t * key , uint32_t iv)

{

EVP_CipherInit(g->ctx , EVP_aes_128_ecb (), key , 0, 1);

// Set S = iv >> 96

memset(g->S, 0, sizeof(g->S) - 4);

*((uint32_t *) (g->S + 12)) = iv;

}

// Since with only use 2^32 values for S,

// the IV can be an unsigned 32-bt integer

void

new_ofb_generator(OFB_generator_t * g, uint8_t * key , uint32_t iv, uint32_t n)

{

assert(key != 0 && (n == 8 || n == 16 || n == 24 || n == 32));

g->ctx = EVP_CIPHER_CTX_new ();

// Store n as the number of bytes

g->n = n / 8;

2

init_ofb_generator(g, key , iv);

}

void

free_ofb_generator(OFB_generator_t * g)

{

EVP_CIPHER_CTX_free(g->ctx);

}

uint32_t

iterate_ofb_generator(OFB_generator_t * g)

{

uint8_t O[AES_BLOCK_SIZE];

uint32_t o_len = sizeof(O);

// Set to 0 the 12 left -most bytes of S

memset(g->S, 0, sizeof(g->S) - 4);

// Encrypt S, producing O

EVP_CipherUpdate(g->ctx , O, &o_len , g->S, sizeof(g->S));

assert(o_len == sizeof(O));

// Shift S left n bytes

for (int j = 0; j < AES_BLOCK_SIZE - g->n; j++) {

g->S[j] = g->S[j + g->n];

}

// Place the left -most n bytes of O into the right -most bytes of S

for (int j = 0; j < g->n; j++) {

g->S[AES_BLOCK_SIZE - g->n + j] = O[j];

}

return *((uint32_t *) (g->S + 12));

}

uint8_t used_ivs [1 << 29];

uint8_t sequence_generated [1 << 29];

uint64_t unused_ivs;

uint8_t cache [255];

uint32_t

first_zero(uint8_t byte)

{

for (int i = 0; i < 8; i++) {

if (((1 << i) & byte) == 0) return i;

}

}

void

setup()

{

for (int i = 0; i < 255; i++) { // 255 is not necessary because it has no zeros

cache[i] = first_zero(i);

}

}

uint32_t last_iv_idx = 0;

void

reset_ivs ()

{

memset(used_ivs , 0, sizeof(used_ivs));

unused_ivs = (uint64_t) 1 << 32;

last_iv_idx = 0;

}

uint32_t

get_unused_iv ()

{

uint32_t ret;

3

for (;; last_iv_idx ++) {

if (used_ivs[last_iv_idx] != 0xFF) {

ret = last_iv_idx * 8 + cache[used_ivs[last_iv_idx]];

used_ivs[last_iv_idx] |= 1 << (ret % 8);

unused_ivs --;

break;

}

}

return ret;

}

void

find_cycles(uint8_t * key , uint32_t n)

{

uint32_t iv = 0;

OFB_generator_t g;

uint64_t last_percentage = 101;

new_ofb_generator(&g, key , iv , n);

for (; unused_ivs != 0;) {

memset(sequence_generated , 0, sizeof(sequence_generated));

iv = get_unused_iv ();

init_ofb_generator(&g, key , iv);

sequence_generated[iv / 8] |= 1 << (iv % 8);

for (;;) {

uint32_t new;

new = iterate_ofb_generator(&g);

if (used_ivs[new / 8] & (1 << (new % 8))) { // Already used

if (sequence_generated[new / 8] & (1 << (new % 8))) { // In current sequence

// Calculate cycle length starting on the colliding value

init_ofb_generator(&g, key , new);

for (int j = 1;; j++) {

if (new == iterate_ofb_generator(&g)) {

printf("\tcycle , len = %u\n", j);

break;

}

}

}

break;

}

unused_ivs --;

used_ivs[new / 8] |= (1 << (new % 8));

sequence_generated[new / 8] |= (1 << (new % 8));

}

}

}

int

main(int argc , char ** argv)

{

uint8_t key[KEY_LEN];

uint32_t n;

if (argc != 2) {

fprintf(stderr , "usage: %s n\n", argv [0]);

return 1;

}

if (sscanf(argv[1], "%u", &n) == 0) {

fprintf(stderr , "n must be 8, 16, 24 or 32\n");

return 1;

}

if (n != 8 && n != 16 && n != 24 && n != 32) {

fprintf(stderr , "n = %u is not valid; it must be 8, 16, 24 or 32\n", n);

return 1;

}

4

setup();

for (;;) {

RAND_bytes(key , sizeof(key));

reset_ivs ();

printf ("New key\n");

find_cycles(key , n);

}

}

5

	Implementation of a special OFB mode
	Study the cycles on your special OFB mode

