
Criptogra�a Aplicada, 2023/2024

RSA� and related subjects

The Magic Words are Squeamish Ossifrage
Guess who contributed a modest amount of computation time to this collaborative e�ort.

Security (spoiler)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
1/93

https://link.springer.com/chapter/10.1007/BFb0000440
https://xkcd.com/538/
https://www.explainxkcd.com/wiki/index.php/538:_Security
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Table of Contents

1. Goals

2. Means

3. Programming languages you may use

4. Modular arithmetic

5. Fast modular multiplication

6. The greatest common divisor

7. Linear maps (Merkle-Hellman cryptosystem)

8. Fermat's little theorem

9. Chinese remainder theorem

10. Fermat's little theorem (revisited)

11. Modular exponentiation

12. Multiplicative order

13. Discrete logarithms (modular arithmetic)

14. Primality tests

15. The Di�e-Hellman key exchange protocol

16. ElGamal public key cryptosystem

17. The Rivest-Shamir-Adleman cryptosystem

18. Finite �elds

19. Elliptic curves

20. Discrete logarithms (elliptic curves)

21. Secret sharing

22. Quadratic residues

23. Zero-knowledge

24. Homomorphic encryption

25. Bibliography

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Table of contents 2/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Goals

� Public-key cryptography

� Sharing secrets

� Doing things without leaking information

Public Key (spoiler)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Goals 3/93

https://xkcd.com/1553/
https://www.explainxkcd.com/wiki/index.php/1553:_Public_Key
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Means

� Number theory.

� In particular, modular arithmetic. Why? Because:

� we will be performing computations with a �nite set of integers (for example, there is
no need to worry about roundo� errors);

� modular arithmetic can be done e�ciently in almost all computing devices;

� and last, but not least, because there exist many number theoretic theorems that have
cryptographic applications.

Mathematics is the queen of the sciences and number theory is the
queen of mathematics.
Carl Friedrich Gauss

The Theory of Numbers has always been regarded as one of the
most obviously useless branches of Pure Mathematics. The ac-
cusation is one against which there is no valid defence; and it is
never more just than when directed against the parts of the the-
ory which are more particularly concerned with primes. A science is

said to be useful if its development tends to accentuate the existing
inequalities in the distribution of wealth, or more directly promotes
the destruction of human life. The theory of prime numbers sat-
is�es no such criteria. Those who pursue it will, if they are wise,
make no attempt to justify their interest in a subject so trivial and
so remote, and will console themselves with the thought that the
greatest mathematicians of all ages have found in it a mysterious
attraction impossible to resist.
Godfrey Harold Hardy

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Means 4/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Programming languages you may use

� C, in particular the GNU MP library, also known as libgmp

� C++, using also the GNU MP library, but with classes and arithmetic operator overloading!

� Python

� Java, in particular the BigInteger class

� pari-gp (get it here), because it has everything we will need

� SageMath (get it here), because it has everything we will need and its interface uses the
Python programming language (but it is a big download)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Programming languages 5/93

https://gmplib.org/
https://pari.math.u-bordeaux.fr/
https://www.sagemath.org/
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Modular arithmetic

notation meaning

m | n m divides n.
m - n m does not divide n.

n ≡ r (mod m) m | (n− r), that is, asm divides n− r, n and r have the same
remainder when divided bym.

bxc �oor function: largest integer not larger than x.

n mod m (binary operator) remainder of n when divided by m (m is called
the modulus, which we assume here to be a positive integer). Equal
to n −m

⌊
n
m

⌋
. Note that 0 6 r < m. In C, Python, Java, and

pari-gp, it can be computed using the % binary operator (applied to
unsigned integers).

gcd(a, b) greatest common divisor of a and b.

lcm(a, b) least common multiple of a and b; equal to ab/ gcd(a, b).

Zm set of equivalence classes modulom; slightly abusing the mathemat-
ical notation for equivalence classes, Zm = { 0, 1, . . . ,m− 1 }.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular arithmetic 6/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Modular arithmetic examples
� 1 | 10, 5 | 20, 7 | 7, 11 | 44, 3 - 5

� 17 ≡ 7 (mod 10), 27 ≡ 17 (mod 10), 27 ≡ 7 (mod 10)

� b1.1c = 1, b7/3c = 2, b−1.1c = −2

� 17 mod 6 = 5, 7 mod 6 = 1, (17× 7) mod 6 = (5× 1) mod 6 = 5

� gcd(15, 25) = 5, gcd(7, 6) = 1, when n is a positive integer, gcd(n, n+ 1) = 1

� lcm(15, 25) = 75, lcm(7, 6) = 42

� modulom, the set of the integers � Z � is partitioned intom equivalence classes; we can
choose as representative for each equivalence class an integer from the set Zm; for example,
form = 5, we have

equivalence class with representative 0: . . . ,−5, 0, 5, 10, . . .
equivalence class with representative 1: . . . ,−4, 1, 6, 11, . . .
equivalence class with representative 2: . . . ,−3, 2, 7, 12, . . .
equivalence class with representative 3: . . . ,−2, 3, 8, 13, . . .
equivalence class with representative 4: . . . ,−1, 4, 9, 14, . . .

The binary mod operator we de�ned in the previous slide computes this representative.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular arithmetic 7/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

More modular arithmetic examples

Tables for addition (on the left) and multiplication (on the right) modulo 7.

+ a\b 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

× a\b 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

� All elements of Z7 have a symmetric value; given any a it is also possible to �nd a b, which
is unique, such that a+ b ≡ 0 (mod m). This is so for any modulus.

� In this case all non-zero elements of Z7 have inverses. However, this is not general. An
element a of Zm has an inverse if and only if gcd(a,m) = 1. The inverse of a, if it exists,
is the (unique in Zm) b such that ab ≡ 1 (mod m). We say that a−1 ≡ b (mod m).
When the modulus is a prime nyumber, as is the case here, only 0 does not have an inverse.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular arithmetic 8/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Modular arithmetic in C

� Addition, for small integers:

long add_mod(long a,long b,long m)

{ // assuming that 0 <= a,b < m, return (a+b) mod m

long r = a + b;

if(r >= m)

r -= m;

return r;

}

� Addition, for arbitrary precision integers (using the GNU MP library):

#include <gmp.h>

void add_mod(mpz_t r,mpz_t a,mpz_t b,mpz_t m)

{ // assuming that 0 <= a,b < m, compute r = (a+b) mod m

mpz_add(r,a,b); // r = a+b

if(mpz_cmp(r,m) >= 0)

mpz_sub(r,r,m); // r -= m

}

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular arithmetic 9/93

https://gmplib.org/
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Modular arithmetic exercises

Use a program (and perhaps brute force) to compute:

� (1122334455× 6677889900) mod 349335433

� 3−1 mod 7 (this one does not require a program but do it anyway, it can be used to check
if your program is working properly)

� 4−1 mod 7 (neither does this one)

� 3−1 mod 10 (neither does this one)

� 271828−1 mod 314159 (just to warm up)

� 271828183−1 mod 314159265 (now we're cooking!)

� 2718281828459−1 mod 3141592653590 (can you handle this one?)

� 27182818284590452353602875−1 mod 31415926535897932384626434 (is the
teacher sane?)

Solutions: 1, 5, 2, 7, 898, 96034192, 1566612579879, 27577365958247392822327707.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular arithmetic 10/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Fast modular multiplication

A modular multiplication requires a remainder operation, which is a slow operation if the modulus is
a general integer. For example, contemporary processors can multiply two 64-bit integers, producing
a 128-bit result, with a latency of 3 or 4 clock cycles. But, dividing a 128-bit integer by a 64-bit
integer, producing a 64-bit quotient and a 64-bit remainder, is considerably slower (tens of clock
cycles). [For more information about how many clock cycles elementary arithmetic operations take
on Intel/AMD processors, take a look at Agner Fog's instruction tables.]

If the modulus is a power of two, say 2n, the remainder operation is very fast; the remainder
is just the last n bits of the number being remaindered. In 1985, Peter Montgomery came up
with a beautiful way to explore this to e�ciently perform general remaindering operations without
performing an expensive division.

Homework: Read Peter's paper Modular Multiplication Without Trial Division. You can get extra
information by searching the internet for �Montgomery modular multiplication�.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Fast modular multiplication 11/93

https://www.agner.org/optimize/
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The greatest common divisor

� Let pk be the k-th prime number, so that p1 = 2, p2 = 3, p3 = 5, and so on.

� Each positive integer can the factored into prime factors in a unique way (this is the funda-
mental theorem of arithmetic).

� Let a =
∏∞
k=1 p

ak
k , where ak is the number of times pk divides a. Since a is a �nite

number, almost all of the ak values will be zero.

� Likewise of b, let b =
∏∞
k=1 p

bk
k .

� Then,

gcd(a, b) =
∏∞

k=1
p

min(ak,bk)
k

and

lcm(a, b) =
∏∞

k=1
p

max(ak,bk)
k

� If gcd(a, b) = 1 then a and b are said to be relatively prime (or coprime).

� The greatest common divison can be generalized to polynomials with integer coe�cients!

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Greatest common divisor 12/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The greatest common divisor (algorithm)

Assume that a > 0 and that b > 0. Then:

� gcd(a, b) = gcd(b, a), and so gcd(a, b) = gcd
(
max(a, b),min(a, b)

)
. Thus, by

exchanging a with b if necessary, we may assume that a > b.

� as any positive integer divides 0 we have gcd(a, 0) = a for a > 0. The mathematicians
say that gcd(0, 0) = 0, and so we can say that gcd(a, 0) = a as long as a > 0.

� If a > b then gcd(a, b) = gcd(a − b, b). We can keep subtracting b from (the
updated) a until it becomes smaller than b, and so gcd(a, b) = gcd(a mod b, b) =
gcd(b, a mod b).

These observations give rise to the following so-called Euclid's algorithm (coded in C, but it can
easily be translated to another programming language):

long gcd(long a,long b)

{

while(b != 0) { long c = a % b; a = b; b = c; } return a;

}

The GNU MP library has a function, mpz_gcd, for this; pari-gp does this with the gcd function.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Greatest common divisor 13/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The greatest common divisor (example)

Goal: to compute gcd(273, 715).

� Step 1: gcd(273, 715) = gcd(715, 273).

� Step 2: gcd(715, 273) = gcd(715− 2× 273, 273) = gcd(169, 273).

� Step 3: gcd(169, 273) = gcd(273, 169) = gcd(273−169, 169) = gcd(104, 169).

� Step 4: gcd(104, 169) = gcd(169, 104) = gcd(169−104, 104) = gcd(65, 104).

� Step 5: gcd(65, 104) = gcd(104, 65) = gcd(104− 65, 65) = gcd(39, 65).

� Step 6: gcd(39, 65) = gcd(65, 39) = gcd(65− 39, 39) = gcd(26, 39).

� Step 7: gcd(26, 39) = gcd(39, 26) = gcd(39− 26, 26) = gcd(13, 26).

� Step 8: gcd(13, 26) = gcd(26, 13) = gcd(26− 2× 13, 13) = gcd(0, 13).

� Step 9: gcd(0, 13) = gcd(13, 0) = 13.

It is known that the computational complexity of computing gcd(a, b) is O
(
log max(a, b)

)
.

Compute gcd(1538099040171999308, 1505213291912594821). Solution: 31415971.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Greatest common divisor 14/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The extended Euclid's algorithm

� The Euclid's algorithm starts a sequence with a and b and proceeds by doing modular
reductions on consecutive terms of the sequence until zero is reached. For example, for
gcd(105, 40) the sequence is 105, 40, 25, 15, 10, 5, 0, so the answer is 5.

� But it is possible to do more!

� Let the sequence begin with x0 = a and x1 = b. At any time, let xk = ska+ tkb. So,
s0 = t1 = 1, and s1 = t0 = 0.

� The next term of the sequence is given by xk = xk−2 mod xk−1. Let qk =
⌊
xk−2

xk−1

⌋
.

Then,

xk = xk−2 − qkxk−1, sk = sk−2 − qksk−1, and tk = tk−2 − qktk−1.

� We have to stop when xk = 0, at which time gcd(a, b) = xk−1. But here we know more:

xk−1 = sk−1a+ tk−1b.

If gcd(a, b) = 1 then xk−1 = 1, and this formula allows us to compute easily

a−1 mod b = sk−1 mod b and b−1 mod a = tk−1 mod a.

Be aware that some of the sk's or tk's may be negative integers.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Greatest common divisor 15/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The extended Euclid's algorithm (example)

Goal: apply the extended Euclid's algorithm to compute gcd(77, 54).

� The following table illustrates the computations done by the extended Euclid's algorithm.

k xk qk sk tk
0 77 1 0
1 54 0 1
2 23 1 1 −1
3 8 2 −2 3
4 7 2 5 −7
5 1 1 −7 10
6 0 7 54 −77

� Because x6 = 0, the information we seek corresponds to the row with k = 5. We have
gcd(77, 54) = 1, 77−1 mod 54 = −7 mod 54 = 47, and 54−1 mod 77 = 10.

The GNU MP library has a function, mpz_gcdext, for this; pari-gp also has a function, gcdext,
for this. Let a = 830150497265848419 and b = 472332647410202896. Compute
a−1 mod b and b−1 mod a. Solutions: 196321609375327131 and 485104516344227716.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Greatest common divisor 16/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Linear maps

� When working modulo m it su�ces to work with integers in the range 0, 1, . . . ,m − 1,
i.e., it su�ces to work with Zm.

� Let

f(x;m,a) = (ax) mod m

be the linear map x 7→ (ax) mod m from Zm into itself.

� Recall that a function f(x) is said to be linear if f(αx + βy) = αf(x) + βf(y) for
all α, β, x, and y.

� For example, for m = 4 the linear map with a = 2 (on the left) is not invertible, but the
linear map with a = 3 (on the right) is invertible.

map form = 4 and a = 2

0 7→ 0
1 7→ 2
2 7→ 0
3 7→ 2

map form = 4 and a = 3

0 7→ 0
1 7→ 3
2 7→ 2
3 7→ 1

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Linear maps 17/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Linear maps (continuation)

� Why are we interested in inverting the map? Because the map scrambles the elements of
Zm and we may be interested in unscrambling them (think in cryptographic terms).

� So, what is the inverse map?

� It turns out that the inverse map, if it exists, is also a linear map.

� More speci�cally, the inverse map of f(x,m, a mod m) is f(x,m, a−1 mod m),
where a−1 mod m is the modular inverse of a mod m. Indeed, if y = f(x;m,a) =
ax mod m then x = a−1y mod m.

� Since the modular inverse of a modulom only exists when gcd(a,m) = 1 the linear map
is invertible if and only if gcd(a,m) = 1.

� Keep in mind that we wish to devise a way to encrypt information by providing public data
to do so (in this case it would bem and a).

� Alas, this way of scrambling information is very easy to unscramble, so useless from a cryp-
tography point of view. A�ne maps, of the form x 7→ (ax+ b) mod m, are not better.

� Modular multiplication scrambles the information but it is easy to undo if we knownm and a.
What about modular exponentiation?

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Linear maps 18/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Linear maps (a failed cryptosystem)

The Merkle-Hellman knapsack cryptosystem keeps the following information secret:

� a setW = {w1, w2, . . . , wn } of n positive integers, such that wk is a super-increasing

sequence, i.e., wk >
∑k−1

i=1 wi for 2 6 k 6 n,

� a modulusm such thatm >
∑n

i=1wi,

� a scrambling integer a such that gcd(a,m) = 1,

and publishes the following information:

� setW ′ = {w′1, w′2, . . . , w′n }, where w′i = (awi) mod m, for 1 6 i 6 n.

Actually, it is much better to publish a random permutation ofW ′. (Homework: why?). To send
a message composed by the n bits αk, 1 6 k 6 n, compute and send

C =
n∑
k=1

αkw
′
k.

This is a hard knapsack problem (in this case a subset sum problem). To decipher transform it into
a trivial knapsack problem by computing a−1C mod m, which is equal to

∑n
k=1αkwk and so

can be solved by a greedy algorithm.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Linear maps 19/93

https://en.wikipedia.org/wiki/Merkle%E2%80%93Hellman_knapsack_cryptosystem
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Linear maps (Merkle-Hellman knapsack example)

The following example shows the Merkle-Hellman cryptosystem in action.

� Secret data: W = { 1, 3, 5, 12, 22, 47 },m = 100, and a = 13.

� Public data: W ′ = { 13, 39, 65, 56, 86, 11 },
� Unencrypted message to be sent: A = { 0, 0, 1, 1, 0, 1 }.
� Encrypted message sent: C = 0×13+0×39+1×65+1×56+0×86+1×11 = 132.

� To decrypt compute 132×13−1 mod 100 = 32×77 mod 100 = 64 and then reason
as follows [greedy algorithm for the easy subset sum problem]:

1. 47 must be used to form the sum because 64 > 47. Hence α6 = 1. The rest of the
sum is 64− 47 = 17.

2. 22 cannot be used to form the sum because 17 < 22. Hence α5 = 0.

3. 12 must be used to form the sum because 17 > 12. Hence α4 = 1. The rest of the
sum is 17− 12 = 5.

4. As so on. In this particular case, the next iteration �nishes the deciphering process.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Linear maps 20/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Fermat's little theorem
� The elements of Zm that have an inverse are called the units of Zm. The set containing all
these units is denoted by Z∗m. Whenm is a prime number, Z∗m = { 1, 2, . . . ,m− 1 }.

� Euler's totient function ϕ(m) counts how many integers in Zm are relatively prime to m,
i.e., it counts the number of elements of Z∗m. It can be computed using the formula

ϕ(m) = m
∏
p|m

(
1−

1

p

)
,

where the product is over the distinct prime factors ofm.

� ϕ(m) can be computed in pari-gp with the eulerphi function.

� Let P =
∏
k∈Z∗m

k. P has to be relatively prime to m because each of its factors is

relatively prime to m. [When m is prime then P + 1 ≡ 0 (mod m) � that's Wilson's
theorem � but we will not use this fact here.]

� Now assume that a ∈ Z∗m, i.e., that gcd(a,m) = 1, and let us now consider what the
map f(x;m,a) does to the elements of Z∗m.

� It scrambles them! Because everything is relatively prime to m, Z∗m is mapped into itself!
[au ≡ av (mod m) implies u ≡ v (mod m).] Furthermore, it is a bijection (a one-to-one map).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Fermat's little theorem 21/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Fermat's little theorem (continuation)

� So, since the map x 7→ ax mod m when applied to Z∗m just reorders its elements (take a
look at the multiplication modulo 7 in a previous slide), it follows that

Q ≡

 ∏
k∈Z∗m

ak

 ≡
aϕ(m)

∏
k∈Z∗m

k

 ≡ (aϕ(m)P) (mod m),

but also that (because of the reordering!)

Q ≡ P (mod m).

� Since gcd(P,m) = 1, P−1 mod m exists, and so we can say that, for any a ∈ Z∗m, we
have (this is Fermat's little theorem)

aϕ(m) ≡ 1 (mod m).

� For a prime number p we have ϕ(p) = p− 1, and Fermat's little theorem takes the form

ap−1 ≡ 1 (mod p), for all a with gcd(a, p) = 1.

We can take care of the case a ≡ 0 (mod p) by multiplying both sides by a:

ap ≡ a (mod p), for all a.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Fermat's little theorem 22/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Fermat's little theorem (examples)

� Let's see what happens for three distinct values of m (all exponentiations are done mod-
ulom):

m = 7, e = ϕ(m) = 6:

k ke ke+1

0 0 0

1 1 1

2 1 2

3 1 3

4 1 4

5 1 5

6 1 6

(The values of k for which

gcd(k,m) = 1 have a gray

background.)

m = 10, e = ϕ(m) = 4:

k ke ke+1

0 0 0

1 1 1

2 6 2

3 1 3

4 6 4

5 5 5

6 6 6

7 1 7

8 6 8

9 1 9

m = 12, e = ϕ(m) = 4:

k ke ke+1

0 0 0

1 1 1

2 4 8

3 9 3

4 4 4

5 1 5

6 0 0

7 1 7

8 4 8

9 9 9

10 4 4

11 1 11

� What happens form = 2× 3× 5?

� It looks like aϕ(m)+1 ≡ a (mod m) whenm does not have repeated prime factors!

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Fermat's little theorem 23/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Chinese remainder theorem

� Supose that you know that x ≡ a (mod m) and that x ≡ b (mod n).

� From the �rst condition x has to be equal to a+ km for some integer k.

� But a+km ≡ b (mod n), and so k ≡ m−1(b−a) (mod n). The modular inverse
exists for sure if gcd(m,n) = 1, which we assume is the case here.

� Therefore, we know that k = ln+c for some integer l, where c = m−1(b−a) mod n.
Note that c = 0 when b = a.

� Finaly, we get x = a+ cm+ lmn, i.e., x ≡ a+ cm (mod mn).

� It is possible to reach the same conclusion more quickly:

x ≡ a(n−1 mod m)n+ b(m−1 mod n)m (mod mn).

� In general, if we know that x ≡ ak (mod mk), for 1 6 k 6 K, with the moduli mk

pairwise coprime (i.e., gcd(mi,mj) = 1 when i 6= j) then, with M =
∏K
k=1mk and

Mk = M/mk, we have

x ≡
∑K

k=1
ak(M

−1
k mod mk)Mk (mod M).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Chinese remainder theorem 24/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Chinese remainder theorem (problems)

Solve the following systems of congruences:{
x ≡ 0 (mod 8)
x ≡ 1 (mod 9) x ≡ 0 (mod 8)
x ≡ 8 (mod 16)
x ≡ 3 (mod 5) x ≡ 2 (mod 3)
x ≡ 2 (mod 5)
x ≡ 2 (mod 7)



x ≡ 1 (mod 2)
x ≡ 2 (mod 3)
x ≡ 4 (mod 5)
x ≡ 6 (mod 7)
x ≡ 10 (mod 11)
x ≡ 12 (mod 13){
x ≡ 12345 (mod 2718281828)
x ≡ 67890 (mod 3141592653)

� Hint: pari-gp groks the chinese remainder theorem (chinese function). For example, the
�rst problem cn be solved in pari-gp by

chinese(Mod(0,8),Mod(1,9))

Solutions: x ≡ 64 (mod 72), x ≡ 8 (mod 80), x ≡ 2 (mod 105), x ≡ 30029 (mod 30030),

x ≡ 505127895641287449 (mod 8539734219628209684).
Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Chinese remainder theorem 25/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Fermat's little theorem (revisited)

� Let p be any prime number. By Fermat's little theorem we know that

xϕ(p) ≡ xp−1 ≡ 1 (mod p), when gcd(x, p) = 1.

� It follows that for any integers r and x we have

xr(p−1)+1 ≡ x (mod p).

For x ≡ 0 (mod p) this is obvious. For the other cases use Fermat's little theorem to
adjust the exponent: xr(p−1)+1 ≡ xp−1x(r−1)(p−1)+1 (mod p).

� Now consider a second prime, q, di�erent from p. We also have, for any integer s,

xs(q−1)+1 ≡ x (mod q).

� Let t be the least common multiple of p− 1 and q − 1. If follows that

xt+1 ≡ x (mod p) and xt+1 ≡ x (mod q).

� By the chinese remainder theorem this implies that

xt+1 ≡ x (mod pq).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Fermat's little theorem 26/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Fermat's little theorem (conclusion)
� The previous result can be generalized to K primes.

� Let p1, p2, . . . , pK be K distinct primes. Here, p1 is not necessarily the �rst prime (two)
and so on.

� Let P be their product: P =
∏K
k=1 pk.

� Let λ(P) be the so-called Carmichael function, given by

λ(P) = λ(p1p2 · · · pK) = lcm(p1 − 1, p2 − 1, . . . , pK − 1).

� Then, for any integers k and x, we have{
xkλ(P)+1 ≡ x (mod P), always,

xλ(P) ≡ 1 (mod P), when gcd(x, P) = 1.

� This result is often presented with λ(P) replaced by ϕ(P) =
∏K
k=1(pk− 1). That is not

really wrong but it is not the best possible result, because when P a product of odd primes,
ϕ(P)/λ(P) is an integer larger than 1.

� This means that in a modular exponentiation we may reduce the exponent modulo λ(P)
when gcd(x, P) = 1. When gcd(x, P) 6= 1 things are more complicated.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Fermat's little theorem 27/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Modular exponentiation

� The modular exponentiation ab mod m can be done recursively using the following two
observations:

a2n mod m = (a2)n mod m and a2n+1 mod m = a(a2)n mod m.

If follows that it can be done using O(logn) modular multiplications.

� Example:

1321 mod 71 = 13× (132)10 mod 71 = 13× 2710 mod 71,
2710 mod 71 = (272)5 mod 71 = 195 mod 71,
195 mod 71 = 19× (192)2 mod 71 = 19× 62 mod 71,
62 mod 71 = 36 mod 71,

backsubstituting. . .

195 mod 71 = 19× 36 mod 71 = 45 mod 71,
2710 mod 71 = 45 mod 71,
13× 2710 mod 71 = 17 mod 71,
1321 mod 71 = 17 mod 71 = 17.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular exponentiation 28/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Modular exponentiation (another way)

� Let the exponent n, with N + 1 bits, be represented in base-2 as follows:

n =
∑N

k=0
nk2

k.

� Then,

an mod m = a
∑N
k=0 nk2k mod m =

∏N

k=0
ank2k mod m.

� Using the example of the previous slide, we have n = 21 = 101012, so N = 4. Thus,

k a2k use in the �nal product?

0 13 yes
1 27 no; note that 27 = 132 mod 71
2 19 yes; note that 19 = 272 mod 71
3 6 no; in general, each number is the square of the previous number
4 26 yes

So, 1321 mod 71 = 13× 19× 26 mod 71 = 17.

� Compute 1234567890 mod 123456789. Solution: 98112762.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular exponentiation 29/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Modular exponentiation (a slightly better way)

� It is possible to do slightly better (Brauer's algorithm). Let the exponent n, with d + 1
base-B digits, be represented in base-B as follows:

n =
∑d

k=0
nkB

k = n0 +B
(
n1 +B

(
n2 +B(. . .+ nd)

))
.

The last equality is the Horner's rule to evaluate a polynomial. Note that 0 6 nk < B.
(Usually, B is a power of 2.)

� Then, an mod m can be evaluated using the following sequence of steps:

r0 = and mod m r1 = rB0 r2 = and−1r1 mod m r3 = rB2
r4 = and−2r3 mod m r5 = rB4 · · · · · ·
r2d = r2d−1a

n0 mod m

� When B = 8, the 8 possible values of ank mod m can be precomputed and stored � in
an interleaved way to avoid side-channel attacks � in memory.

�rst word of a0 �rst word of a1 �rst word of a2 �rst word of a3 �rst word of a4 �rst word of a5 �rst word of a6 �rst word of a7

second word of a0 second word of a1 second word of a2 second word of a3 second word of a4 second word of a5 second word of a6 second word of a7

. .

� To explore further: addition chains.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Modular exponentiation 30/93

https://en.wikipedia.org/wiki/Exponentiation_by_squaring
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Multiplicative order

� Fermat's little theorem says that xλ(m) ≡ 1 (mod m) for any x ∈ Z∗m.

� For a given x ∈ Z∗m what is the least exponent o such that xo mod m = 1?

� This least exponent is called the order of x modulom (the function znorder computes this
in pari-gp).

� The order has to be a divisor of λ(m).

� For a prime number p, λ(p) = ϕ(p) = p− 1.

� It turns out that there are ϕ(p − 1) elements of Z∗p with maximal order p − 1. These
elements are called primitive roots.

� pari-gp has a function, znprimroot, to compute one of them.

� They generate Z∗p multiplicatively. In particular, let r be one primitive root. Then, for

k = 0, 1, 2, . . . , p− 2, rk mod p takes all values of Z∗p (without repetitions).

� We can therefore speak of logarithms (modulo p), with respect to base r. The logarithm
of a = rx mod p in base r is obviously x. This so-called discrete logarithm problem is
currently very hard to solve when p is large.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Multiplicative order 31/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The discrete logarithm problem for Z∗p
� Given a prime p, a primitive root r of p, and a, �nd x such that

a ≡ rx mod p.

� This is a hard problem if p− 1 has large factors:

-2

-1

 0

 1

 2

 3

 4

 5

 60 80 100 120 140 160 180 200

b
a
se

-1
0

 l
o
g
a
ri

th
m

 o
f

th
e

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
co

n
d
s)

number of bits

f(b=10,nt=4)={my(p,r,e,a,x,dt);
dt=getabstime();
p=2^b;
for(i=1,nt,

p=precprime(p-1);
r=znprimroot(p);
a=floor(p/4)+random(floor(p/4));
x=r^a;
e=znlog(x,r);
if(e!=a,quit(1););

);
dt=(getabstime()-dt)/nt;
printf("%4d %8.2f\n",b,0.001*dt);

};
forstep(b=60,200,4,f(b));

� But, if p− 1 only has small factors, the discrete logarithm problem is easy:

while(1,p=1+prod(k=1,80,prime(1+random(25)));\

if(isprime(p),break(););); r=znprimroot(p); % p has about 400 bits

znlog(r^(10^50),r) % milliseconds...

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Discrete logarithms (Z∗p) 32/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Primality tests

� One way to prove that a given numberm is prime is to �nd one of its primitive roots.

� Choose a random a between 2 andm− 2.

� If gcd(a,m) 6= 1, thenm is not prime. Better yet, the greatest common divisor allow us
to partially factorm.

� By Fermat's little theorem we know that am−1 ≡ 1 mod m. If this is not so, then
de�nitelym is not prime.

� Furthermore, when m is an odd number, we must have either a(m−1)/2 ≡ 1 mod m or
a(m−1)/2 ≡ −1 mod m.

� Now, it can be shown that a is a primitive root modulo m if, for every prime divisor d of
m− 1, we have a(m−1)/d mod m 6= 1. If a satis�es these conditions then the order of
a modulom must bem− 1, and thusm must be prime.

� If not, try another a.

� These exist composite numbers, called Carmichael numbers, for which am−1 mod m = 1
for all a which are relatively prime tom. For these numbers, λ(m) | (m− 1).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Primality tests 33/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The Miller-Rabin primality test
� Goal: to test if the odd number n, with n > 3, is a prime number or not.

� Result of the test: either n is de�nitely not prime or it may be prime (a probable prime
number); in the second case, the probability that the test fails to identify a composite number
is at most 0.25.

� How it is done (to increase the con�dence on the result, do steps 2 to 6 several times):

1. Let n − 1 be written as n − 1 = 2rd, with d an odd number (so r is as large as
possible).

2. Select at random an integer a uniformly distributed in the interval 2 6 a 6 n− 2.

3. If gcd(a, n) 6= 1, then n is de�nitely a composite number.

4. Compute x0 = ad mod n. If x0 = 1 or x0 = n− 1 then n is a probable prime.

5. Otherwise, for k = 1, 2, . . . , d− 1, compute xk = x2
k−1 mod n. If xk = n− 1

then n is a probable prime.

6. Finally, if we get here, say that n is de�nitely a composite number (because Fermat's
little theorem failed because a(m−1)/2 ≡ ±1 mod m).

� The composite numbers that pass this test (meaning that the algorithm above says that they
are probable primes) for a given a are called base-a strong pseudo-primes.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Primality tests 34/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The Di�e-Hellman key exchange protocol
� Alice and Bob have never met but wish to exchange a secret key (perhaps to be used in the
initialization stage of a symmetric-key cipher algorithm).

� They agree, on a public channel, on a prime p and on a primitive root r modulo p. (Choose
a prime number with an easy to �nd factorization of p− 1, say a safe prime.)

� Alice generates a random number α between 2 and p− 2, or, better yet, between p0.8 and
p− p0.8, and sends Bob the integer A = rα mod p. She keeps α only to herself.

� Likewise, Bob generates a random number β between 2 and p − 2, and sends Alice the
integer B = rβ mod p. He keeps β only to himself.

�

For extra protection, make sure gcd(α, p− 1) = gcd(β, p− 1) = 1. This forces A and B to be primitive roots.

Alice computes S = Bα mod p = rβα mod p = rαβ mod p.

� Bob computes S = Aβ mod p = rαβ mod p.

� They have arrived at the same number, which is their shared secret. They can now discard
A, B, α, β, and p (do not reuse p many times).

� Anyone eavesdropping their communications (Eve?, Mallory?) has to either infer α from A
or β from B. This is known as the discrete logarithm problem, which is currently a very hard
problem to solve.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Di�e-Hellman key exchange 35/93

https://en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Di�e-Hellman key exchange protocol (exercises)

� Let p = 101 and r = 2. Alice chooses α = 52, and so A = 97. Bob chooses β = 46
and so B = 82. Con�rm that the common secret is S = 58.

� Let p = 3141601 and r = 26. Alice chooses α = 2437429, and so A = 1282989.
Bob chooses β = 2988228 and so B = 2426580. The common secret is S =
1669355. Try to �nd α given A and to �nd β given B.

� Let p = 31415926541 and r = 10. Alice chooses α = 29770170945, and so
A = 5728872032. Bob chooses β = 23956179675 and so B = 22727460975.
The common secret is S = 26991399064. Try to �nd α given A and to �nd β given B.

� Let p = 3141592653589793239 and r = 6. Alice chooses

α = 2459372999633886947, and so A = 2408130236552768716.

Bob chooses

β = 2502449096145193611, and so B = 434542471090467423.

The common secret is S = 1267222359226852228. Can you �nd by yourself α given
A and β given B? Hint: pari-gp does this with the znlog function.
p=3141592653589793239; r=6; znlog(Mod(2408130236552768716,p),Mod(r,p))

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Di�e-Hellman key exchange 36/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Di�e-Hellman key exchange protocol (man-in-the-middle attack)

� Mallory, being a powerful individual, can intercept and replace all messages between Alice and
Bob.

� Here's how he can compromise the Di�e-Hellman key exchange protocol.

� Mallory intercepts all messages coming from Alice in the Di�e-Hellman key exchange protocol
and impersonates Bob. At the end of the key-exchange protocol he will share a secret key
with Alice.

� Likewise, Mallory intercepts all messages coming from Bob in the Di�e-Hellman key exchange
protocol and impersonates Alice. At the end of the key-exchange protocol he will share a secret
key with Bob (di�erent from the one he shares with Alice).

� From this point on, he decrypts all messages between them, using the appropriate shared
secret key, and re-encrypts them using the other shared secret key. He may even modify the
messages.

� But Alice and Bob can counter this if they send their messages in two or more distinct parts
in an interlocked fashion (this assumes that decoding can only be performed after all parts
have been received). Also they can, and should, authenticate themselves to the other.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Di�e-Hellman key exchange 37/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

ElGamal public key cryptosystem

� Alice and Bob agree on a large prime number p and on an element g of F∗p with a large prime
order

� Alice chooses a private key a, with 1 < a < p− 1, and publishes A = ga mod p.

� Bob chooses a random ephemeral key k.

� He uses Alice's public keyA to compute c1 = gk mod p and c2 = mAk mod p, where
m is the plaintext.

� He then sends (c1, c2) to Alice.

� To recover the plaintext m, Alice computes m = (ca1)−1c2 mod p. This works because
(ca1)−1c2 = g−akmgak = m mod p.

� An eavesdropper has to �nd k from c1 (discrete logarithm problem).

� A middle-man can easily manipulate c2; for example, to replacem by 2m all that is necessary
is to replace c2 by 2c2 mod p.

� This public key cryptosystem, implemented exactly as above, has some security problems.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
ElGamal cryptosystem 38/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The Rivest-Shamir-Adleman cryptosystem

� The Rivest-Shamir-Adleman cryptosystem (or RSA for short), invented in 1977 on the MIT
(but previously invented in 1973 by Cli�ord Cocks and kept classi�ed by the GCHQ), is based
on the observation (Fermat's little theorem) that whenN is the product of two distinct prime
numbers, i.e., N = pq, then for any x and any k we have

xkλ(N)+1 ≡ x (mod N).

� In particular, the transformation

y = xe mod N

can be undone using the transformation

x = yd mod N

provided that

ed ≡ 1 (mod λ(N)),

i.e., provided that e = d−1 mod λ(N).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
RSA cryptosystem 39/93

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Rivest-Shamir-Adleman cryptosystem (continuation)

� The key observation is that this is easy to do only when λ(N) is known.

� In turn, λ(N) can be computed easily only when the factorization ofN is known: λ(N) =
λ(pq) = lcm(p− 1, q − 1).

� Since the factorization of a large number is considered to be a hard problem � for example
RSA-250 was factored in 2020 using about 2700 core years � given N and e it is hard to
compute d, and thus to recover y given x.

� It is thus possible to publish N and e without revealing too much information.

� So, anyone using the RSA public key cryptosystem publishes hers/his own N and e.

� Sending a ciphered message to someone entails using that person's public modulus (N) and
exponent (e)

� About the choice of the primes p and q:

1. They should be random (do not reuse primes!)

2. p− 1 and q − 1 should not have small prime factors

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
RSA cryptosystem 40/93

https://eprint.iacr.org/2020/697.pdf
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Rivest-Shamir-Adleman cryptosystem (continuation)

� Alice wants to send a messageM to Bob.

� First, she fetches Bob's public encription data: a modulusNbob and an encryption exponent
ebob.

� Then, she computes the ciphered message C = Mebob mod Nbob, and sends it to Bob.

� Bob knows that Nbob = pbobqbob (the secret information that only he knows), and so he
can compute dbob, the decryption exponent, such that ebobdbob ≡ 1 (mod λ(Nbob)).

� Using dbob he can decipher C: M = Cdbob mod Nbob.

� This works because

Cdbob mod Nbob = Mebobdbob mod Nbob = Mkλ(Nbob)+1 mod Nbob = M

� Note that the decryption can be done more e�ciently using the Chinese remainder theorem
(instead of doing one modular exponentiation moduloN do, perhaps in parallel, two modular
exponentiations, one modulo p and another modulo q, and at the end combine them using
the Chinese remainder theorem) � but, be aware of side-channel attacks. . .

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
RSA cryptosystem 41/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Rivest-Shamir-Adleman cryptosystem (conclusion)

� The RSA cryptosystem can do even more: it is possible to ensure that the message came
from a speci�ed sender (that makes virtually impossible to forge a properly signed message)

� Main idea: Alice computes a message digest (hash) S of the message she wants to send to
Bob and enciphers it using her own modulus and private decryption exponent:

Salice = Sdalice mod Nalice

� Bob can recover S using Alice's public data:

S
ealice
alice mod Nalice = Sealicedalice mod Nalice = Skλ(Nalice)+1 mod Nalice = S

� So, Bob decodes the message Alice sent him, computes its message digest, and compares
it with the S obtained from the Salice data. If they match it is almost certain that it was
indeed Alice that has sent the message. Otherwise, someone else was trying to impersonate
Alice.

� For this to actually work, Bob has to trust Alice's public data. So, that data has to be signed
by a party trusted by everyone. Homework: Find out how certi�cation chains and certi�cation
authorities work.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
RSA cryptosystem 42/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Rivest-Shamir-Adleman cryptosystem (big example)

In August 1977, in his Scienti�c American Mathematical games column, Martin Gardner posed the
following RSA challenge.

� Character encoding: space is 00, A to Z are 01 to 26. Other two digits combinations are
illegal.

� The plain text is obtained by concatenating the two digits of each character encoding; the
result is a large base-10 integerM .

� The plain text was then encoded using the modulus

N=1143816257578888676692357799761466120102182967212423625625618429

35706935245733897830597123563958705058989075147599290026879543541

and the exponent e = 9007. The encoded message is C = Me mod N , given by

C=9686961375462206147714092225435588290575999112457431987469512093

0816298225145708356931476622883989628013391990551829945157815154.

� What isM?

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
RSA cryptosystem 43/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Rivest-Shamir-Adleman cryptosystem (solution of the big example)

� It took more than 10 years until N = pq was factored (in 1977 it was estimated that the
factorization would take much more time!):

p=3490529510847650949147849619903898133417764638493387843990820577

and

q=32769132993266709549961988190834461413177642967992942539798288533.

� That made possible the computation of d = e−1 mod lcm(p− 1, q − 1);

d=2091239505016137369094193634681019577304618409300609087930484232

2045608569697121472257875853682203172258717888678557376735780271.

� Once d was known,M was recovered fromM = Cd mod N :

M=200805001301070903002315180419000118050019172105011309190800151919090618010705.

� 20→ T , 08→ H , 05→ E, and so on. (The complete decryption is in the �rst slide.)

� Any decryption exponent of the form d + k lcm(p − 1, q − 1) works. Try a few values of k to �nd the

exponent with the smallest sideways addition (population count).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
RSA cryptosystem 44/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Rivest-Shamir-Adleman cryptosystem (padding)

Data source: section 7 of RFC 8017 (PKCS #1 RSA Cryptography Speci�cations Version v2.2).

� PKCS #1 v1.5 � avoid:

0
1

2
1

padding string (random non-zero bytes)
> 8, depends on the message size

0
1

message
> 0

� Optimal Asymmetric Encryption Padding (OAEP) � use:

0
1

masked seed
hash length

masked data block

seed

hash(label)
hash length

padding string (zeros)
> 0

depends on the message size

1
1

message
> 0

mask generating function

mask generating function

number of bytes in red

bitwise xor
least signi�cant byte

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
RSA cryptosystem 45/93

https://www.rfc-editor.org/rfc/rfc8017
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Finite �elds

� It is now time to generalize the modular arithmetic concept.

� In the so-called �nite �elds we do arithmetic on integers modulo a prime number p and
we work with polynomials with coe�cients in Zp.

� There is one extra twist: we also work modulo a polynomial!

� So our modular arithmetic will have two di�erent aspects:

� all integer arithmetic is done modulo a prime number p, and

� all polynomial arithmetic is done modulo a polynomial of degree d.

� Not all polynomials of degree d can be used as the modulus: only those that are irreducible
can be used. Just like a prime number, a polynomial is irreducible modulo p if it is not
possible to factor it modulo p.

� The irreducibility of the polynomial modulus is fundamental. It ensures that the only polyno-
mial of degree smaller than that of the modulus polynomial that does not have an inverse is
the zero polynomial (and that is a fundamental property of a �eld).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 46/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Finite �elds (more info)

� The modulus polynomial can (and should) be a monic polynomial; the leading coe�cient of
a monic polynomial is one.

� Indeed, let P (x) be the modulus polynomial, and let A(x) be any polynomial. Then
A(x) mod P (x) is the remainder R(x) of the division of A(x) by P (x). We have
A(x) = Q(x)P (x) +R(x), where Q(x) is the quotient:

A(x) P (x)
R(x) Q(x)

� Now, if we replace P (x) by αP (x), where α belongs to Z∗p � recall that all integer
arithmetic is done modulo p and that all elements of Z∗p are invertible � then we have

A(x) =
(
α−1Q(x)

)(
αP (x)

)
+ R(x), so the remainder is the case no matter how α

was selected.

� When the (irreducible) modulus polynomial has degree k the �nite �eld is usually denoted by
Fpk or by GF(pk); in publications involving �nite �elds, pk is often replaced by the easier
to write q (if so, q has to be the power of a prime).

� For the particular case k = 1 we have that Fp is the same as Zp.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 47/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Finite �elds (example)

� Let us work with the prime p = 5.

� Let us work with the irreducible polynomial (modulo 5):

P (x) = x3 + x2 + 3x+ 4.

This irreducible polynomial was found using the following pari-gp code (tutorial):

x = ffgen([5,3]);

x.mod

(x.p gives the integer modulus, in this case 5).

� Each element of the �nite �eld F(53) is a polynomial of the form

a2x
2 + a1x+ a0

where a0, a1, a2 ∈ F5.

� Addition and subtraction of polynomials is done in the usual way (modulo 5).

� Multiplications is done in the usual way, but replacing x3 by −x2 − 3x − 4, i.e., by
4x2 + 2x+ 1. (Why?)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 48/93

https://pari.math.u-bordeaux.fr/Events/PARI2019/talks/finitefields.pdf
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Finite �elds (example)

� Continuing the example of the previous slide, the quotient of the division of x3 by P (x) is
Q(x) = 1, and so x3 mod P (x) = x3−P (x) = −x2−3x−4 = 4x2 +2x+1.

� In pari-gp, this can be con�rmed by doing

x^3

� Here is a larger example:

1x5 4x4 3x3 0x2 1x1 3x0 1x3 1x2 3x1 4x0

− 1x5 1x4 3x3 4x2 1x2 3x1 2x0

0x5 3x4 0x3 1x2

− 3x4 3x3 4x2 2x1

0x4 2x3 2x2 4x1

− 2x3 2x2 1x1 3x0

0x3 0x2 3x1 0x0

pari-gp con�rmation (the modulo arithmetic is done automatically):

x^5+4*x^4+3*x^3+x+3

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 49/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Finite �elds (useful algorithms)

� Euclid's algorithm works!

� In particular, the extended Euclid's algorithm can be used to compute inverses.

� The modular exponentiation algorithm also works.

� Since in the �nite �eld Fq � recall that q = pk � we have

aq = a for all a ∈ Fq

(this is similar to Fermat's little theorem), the inverse can also be computed using

a−1 = aq−2

� Note that the exponents can be reduced modulo q − 1.

� The factorization of q − 1 is something that is useful to know.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 50/93

https://homes.cerias.purdue.edu/~ssw/cun/index.html
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Finite �elds (primitive elements)

� The invertible elements (the units) of Fq form a set, denoted by F∗q.

� For a �nite �eld we have F∗q = Fq\{0}.

� The order of an element of F∗q is the smallest exponent o for which ao = 1.

� The order has to divide q − 1, which is the number of elements of F∗q.

� A primitive element has maximal order.

� Repeated multiplication by the same primitive element generates F∗q; when that happens
the �eld is said to be a multiplicative cyclic group.

� There exist ϕ(q − 1) primitive elements: if r is a primitive element then re will also be a
primitive element if and only if gcd(e, q − 1) = 1.

� Therefore, there exist lots of primitive elements if q is large, so �nding one is easy (if the
factorization of q − 1 is known, see next slide).

� In pari-gp we can compute a primitive element using the function ffprimroot().

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 51/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Finite �elds (one way to �nd a primitive polynomial)

Just like in standard modular arithmetic, r is a primitive element of F∗q if and only if

� rq−1 = 1, and

� for every prime divisor d of q − 1, we have r(q−1)/d 6= 1.

One way to �nd an irreducible polynomial is to �nd one of the primitive roots of the �nite �eld it
generates. So, to compute an irreducible polynomial of degree k when we are working modulo p
� �nite �eld Fq with q = pk � do the following:

1. Choose a monic polynomial of degree k.

2. Choose a desired primitive element r, say, r = x (that choice is particularly useful, read the
slide about cyclic redundancy checksums).

3. Check if r is a primitive element.

4. If so, the polynomial is irreducible, and we are done.

5. If not, then the polynomial may be irreducible but r is not a primitive element or it is not
irreducible; go back to the beginning and try another polynomial.

6. Since there exist ϕ(q − 1) primitive elements when the polynomial is irreducible, and there
exist 1

k

∑
d|k µ(d)pd irreducible polynomials of degree k modulo p, this procedure �nds one

of them in a reasonable amount of time.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 52/93

https://en.wikipedia.org/wiki/Necklace_polynomial
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Applications of �nite �elds

The Di�e-Hellman key exchange protocol can be trivially extended to �nite �elds.

� Unique di�erence: Alice and Bob, instead of agreeing on a prime and on one of its primitive
roots, have to agree on a �nite �eld (prime p, irreducible monic polynomial of degree k) and
on one of its primitive elements.

� Anyone wishing to infer the shared secret has to solve the discrete logarithm problem, in this
case for �nite �elds.

Elliptic curves (discussed later in this course) also work in �nite �elds.

Shamir's secret sharing scheme also works in �nite �elds (discussed later in this course).

� Unique di�erence: the coe�cients of the polynomials, instead of belonging to Fp, belong to
Fpk. Nice! Here we have polynomials whose coe�cients are other polynomials (in another
variable and subjected to modulo arithmetic in two distinct ways!)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 53/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Finite �elds and Cyclic Redundancy Checksums (CRCs)

� The so-called cyclic redundancy checksum (CRC) is a way to compute a �signature� of a data
set (used at the hardware level as a simple way to perform error detection).

� The data is transformed into a polynomial, and the CRC is just the remainder of that poly-
nomial when divided by a known polynomial.

� Usually, the modulus polynomial is an irreducible polynomial having x as one of its primitive
elements (a so-called primitive polynomial).

� Furthermore, this is done with p = 2, i.e., in the �nite �eld F2k. This is so because in
the base �eld, F2 = Z2, addition and multiplication are particularly simple: addition is the
exclusive-or binary logic operator and multiplication is the and binary logic operator.

� They are not useful (i.e., unsafe) in cryptographic applications as a way to compute message
hashes (due to its linear nature, it is trivial to forge a message having a speci�c message
hash).

� But it can be used as a hash function in an implementation of a hash table.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Finite �elds 54/93

https://en.wikipedia.org/wiki/Cyclic_redundancy_check
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves

� Now we get to play with some weird stu�.

� We will do addition is a strange way.

� The addition operator + is a binary operator; it takes two elements of a group and produces
a third element of the same group.

� Addition properties (in any group):

commutative law x+ y = y + x

associative law x+ (y + z) = (x+ y) + z

� Idea: suppose we have a plane curve with the following property: any straight line intersects
it in exactly three points, counted with multiplicity. If so, the addition of two points on that
line can be the third point!

� To make this work, it is necessary to treat the point at in�nity as a legitimate point (use
homogeneous coordinates, also known as projective coordinates). The point at in�nity is the
neutral element, and so it plays a fundamental role.

� Three intersection points⇒ cubic equation.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 55/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (cubic equation)

� The cubic equations we will consider have in the following form (Weierstrass parameterization):

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

� Both x and y belong to a �eld F (or are the point at in�nity).

� With a change of variables (which in some cases cannot be done due to divisions by zero),
the equation above can be put in the so-called Weierstrass form

(*) y2 = x3 + ax+ b.

� The so-called discriminant of the curve E, whose points satisfy equation (*), is the quantity

∆(E) = −16(4a3 + 27b2).

To avoid degenerate curves this discriminant cannot be zero.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 56/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (homogeneous coordinates)

� In homogeneous coordinates we add a third coordinate: z.

� (x, y) becomes (X,Y, Z).

� (X,Y, Z), for any Z 6= 0, corresponds to the two-dimensional point
(
X
Z
, Y
Z

)
[it's an

equivalence class].

� Z = 0 represents the �points at in�nity�; X and Y then specify the direction.

� For an elliptic curve in Weierstrass form, y2 = x3 + ax + b, for very large x we have
y ≈ ±x3/2.

� So, very far from the origin, y will be considerably larger than x.

� The homogeneous coordinates of the point at in�nity (there are two but only one gets to be
used) are (0, 1, 0).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 57/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (pari-gp)

� In pari-gp, the general curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

can be speci�ed using the command

E=ellinit([a1,a2,a3,a4,a6]);

� In pari-gp, the special curve

y2 = x3 + ax+ b

can obviously be speci�ed using the command

E=ellinit([0,0,0,a,b]);

The shortcut

E=ellinit([a,b]);

can also be used.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 58/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves over �nite �elds (pari-gp)

� In pari-gp it is also possible to specify the �eld over which all computations will be per-
formed.

� This is speci�ed in a second (optional) argument to ellinit.

� If this second argument

? is missing or is the integer 1, the �eld will be Q
? is the integer p, a prime number, or is a Mod(*,p), the �eld will be Fp
? is the value returned by ffgen([p,k]), the �eld will be the �nite �eld Fpk
? is a real number, the �eld will be C

It may also be a more exotic object.

� The number of points on the elliptic curve can be computed using the ellcard function.

� In the speci�c case of the �eld Fp the number of points on the elliptic curve can also be
computed using the more e�cient ellsea function.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 59/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Playing with elliptic curves (pari-gp)

� To get a list of o�cial pari-gp tutorials consult this web page.

� In particular, read the elliptic curves tutorial.

� Better yet, read the elliptic curves over �nite �elds tutorial.

� You can also look at the list of functions related to elliptic curves.

� Let's play!

/* find an elliptic curve of the form y^2=x^3+x+1 */

/* over Fp which has a prime number of points */

forprime(p=2^100,oo,E=ellinit([1,1],p);\

q=ellsea(E);if(isprime(q),break;);); /* 1 minute */

E.p /* print the modulus */

q=ellsea(E) /* print the number of points of the curve */

G=E.gen;G=G[1] /* get a generator (there is only one) */

ellorder(E,G)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 60/93

https://pari.math.u-bordeaux.fr/tutorials.html
https://pari.math.u-bordeaux.fr/Events/PARI2017b/talks/elliptic.pdf
https://pari.math.u-bordeaux.fr/Events/PARI2017c/talks/ecc_en.pdf
https://pari.math.u-bordeaux.fr/dochtml/html-stable/Elliptic_curves.html
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (adding two points � geometric interpretation)

� elliptic curve over Q:

y2 = x3 − 5x+ 4.

� pari-gp code:

E=ellinit([0,0,0,-5,4]);

P1=[0,2];

P2=[1,0];

ellisoncurve(E,P1)

ellisoncurve(E,P2)

P3=elladd(E,P1,P2);

� Draw the line that passes through P1 and P2

� That line intersects the elliptic curve at a third
point: −P3

� Re�ect it on the x axis to get the sum of P1

and P2
-4 -2 0 2 4

-6

-4

-2

 0

 2

 4

 6

P1

P2

-P3

P3

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 61/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (adding the point at in�nity)

� elliptic curve over Q:

y2 = x3 − 5x+ 4.

� pari-gp code (the point at in�nity is repre-
sented by [0]):

E=ellinit([0,0,0,-5,4]);

P1=[0,2];

ellisoncurve(E,P1)

ellisoncurve(E,[0])

P2=elladd(E,P1,[0]);

� The point of in�nity is the neutral element
(the zero).

� Adding to a point the point at in�nity (intersec-
tion with a vertical line) leaves it unchanged.

� Adding a point to its symmetric (its re�ection
on the x axis) gives rise to the point at in�nity. -4 -2 0 2 4

-6

-4

-2

 0

 2

 4

 6

P1,P2

-P2

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 62/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (adding the same point � geometric interpretation)

� elliptic curve over Q:

y2 = x3 − 5x+ 4.

� pari-gp code:

E=ellinit([0,0,0,-5,4]);

P1=[0,2];

ellisoncurve(E,P1)

P2=ellmul(E,P1,2);

/* same as P2=elladd(E,P1,P1); */

We have

2P1 =

(
25

16
,
−3

64

)

3P1 =

(
96

625
,
−28106

15625

)
4P1 =

(
352225

576
,
209039023

13824

)
-4 -2 0 2 4

-6

-4

-2

 0

 2

 4

 6

P1

-2P1

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 63/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (adding two points � some formulas)

� The equation of a straight line that passes through two distinct points (x1, y1) and (x2, y2)
is

(x− x1)(y2 − y1) = (x2 − x1)(y − y1).

� It can be put in the form Ax+By + C = 0.

� If the inverse of B exists (i.e., the line is not a vertical line), then we can say that

y = Dx+ E.

� Putting this in the cubic equation y2 = x3 + ax + b gives rise to a polynomial equation
of third degree in x of the general form

x3 + αx2 + βc+ γ = 0.

� It has three solutions. Two of them must be x1 and x2. The third one is the x coordinate
of the point we are looking for.

� When we are working with rational numbers (Q) because the sum of the roots is −α it
follows that this third root must also be a rational number!

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 64/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Multiplication by an integer (adding a point to itself several times)

� We can now de�ne the mathematical operation that is useful for cryptographic purposes:
multiplication of a point by an integer.

� This corresponds to adding a point with itself several times.

� In terms of cryptographic applications this corresponds roughly to the modular exponentiation
done in �nite �elds.

� Example: to compute, say, 11P we can proceed as follows:

1. 11 = 1 + 2 + 8

2. compute 2P = P + P

3. compute 4P = (2P) + (2P)

4. compute 8P = (4P) + (4P)

5. �nally, compute 11P = (1P) + (2P) + (8P)

� This multiplication algorithm is similar in spirit to the algorithm presented in the modular
exponentiation slides.

� Hard problem (on some elliptic curves): given P and kP �nd k.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 65/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Elliptic curves (aspect of the �curve� on a �nite �eld)

� elliptic curve over F199:

y2 = x3 − 5x+ 4.

� it has 218 points (including the point �at in�nity�):

 0

 25

 50

 75

 100

 125

 150

 175

 200

 0 25 50 75 100 125 150 175 200

P

Q

R=P+Q

p=199;

E=ellinit([0,0,0,-5,4],p);

N=ellsea(E) /* 218 */

P=Mod([41,57],p);

ellisoncurve(E,P) /* 1 */

Q=Mod([83,131],p);

ellisoncurve(E,Q) /* 1 */

R=elladd(E,P,Q);

lift(Q[1]) /* 167 */

lift(Q[2]) /* 119 */

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 66/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Di�e-Hellman using elliptic curves

� We can now explain how the Di�e-Hellman secret sharing scheme can be done using elliptic
curves.

� Alice and Bob agree on an elliptic curve and on a point P � of large order � of that elliptic
curve.

� Alice chooses a private random integer kA and sends kAP to Bob.

� Bob chooses a private random integer kB and sends kBP to Alice.

� The shared secret S is the point kAkBP ; Alice and Bob can compute it easily using the
private information they have and the information each received from the other one.

� A third party will have to attempt to compute kA from the information Alice sent to Bob
(over a possibly compromised channel) or to compute kB from the information Bob sent to
Alice. This can be a very hard problem (discrete logarithm for elliptic curves).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 67/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Let's play some more with elliptic curves in pari-gp

� Let's see how long it takes to compute k given P and kP :

#

bits=50;

p=nextprime(random([2^(bits-1)+1,2^bits-1]));

E=ellinit([0,0,0,1,1],p);

P=random(E);

o=ellorder(E,P)

k=random([2,o-2])

Q=ellmul(E,P,k);

elllog(E,Q,P)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 68/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Can we do RSA-like things with elliptic curves?

� No. . .

bits=100;

p=nextprime(random([2^(bits-1)+1,2^bits-1]));

E=ellinit([0,0,0,1,1],p);

P=random(E);

o=ellorder(E,P);

k=0;while(gcd(k,o)!=1,k=random([2,o-2]);); /* public multiplier */

Q=ellmul(E,P,k);

kInv=lift(1/Mod(k,o)); /* private multiplier used for decoding */

R=ellmul(E,Q,kInv) /* we recover P */

� But here we do not have any hidden secret.

� We would need a point in an elliptic curve for which it would be extremely di�cult to compute
its order without knowing the �secret�.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 69/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

If you want to know more

� Edwards curves (alternative parameterization of elliptic curves) � paper about them

� �Safe� elliptic curves

� Curve 25519, wikipedia

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Elliptic curves 70/93

https://hal.archives-ouvertes.fr/hal-01942759/document
https://safecurves.cr.yp.to/
https://cr.yp.to/ecdh.html
https://en.wikipedia.org/wiki/Curve25519
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

The discrete logarithm problem for elliptic curves

� Given points P and Q on an elliptic curve, �nd k such that

Q = kP.

� This is a hard problem if the order of P (number of times we have to add P to itself until
reaching the point at in�nity) is large and has large factors:

-2

-1

 0

 1

 2

 3

 4

 5

 30 35 40 45 50 55 60 65 70

b
a
se

-1
0

 l
o
g
a
ri

th
m

 o
f

th
e

e
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
co

n
d
s)

number of bits

f(b=10,nt=4)={my(p,q,bad,dt,E,G,P,k1,k2);
p=2^b; bad=1;
while(bad>0,

p=precprime(p-1);
E=ellinit([1,1],p); q=ellsea(E);
if(isprime(q)==1,bad=0;);

);
printf("%d %d %d\n",b,p,q);
G=E.gen; G=G[1]; dt=getabstime();
for(i=1,nt,

k1=random([1000,q-1000]);
P=ellmul(E,G,k1); k2=elllog(E,P,G);
if(k2!=k1,quit(1););

);
dt=(getabstime()-dt)/nt;
printf("%4d %8.2f\n",b,0.001*dt);

};
forstep(b=30,68,2,f(b));

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Discrete logarithms for elliptic curves 71/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Secret sharing

Problem:

� n persons what to share a secret.

� Any group of t persons can recover the secret.

� Obviously, n > 1 and 1 6 t 6 n.

� On a computer program, the secret will ultimately be an integer.

How to do it:

� A trusted central entity prepares and distributes part of the secret (a secret share) to each
person.

Hurdle to overcome:

� Knowing t− 1 shares of the secret must not give any information about the secret.

Resilience to tampering:

� To completely destroy the secret n− t+ 1 secret shares have to be corrupted.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Secret sharing 72/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Secret sharing (how to do it, idea 1, when n = t)

� Let the secret be the integer S, and let it have k bits.

� Let the �rst n− 1 shares of the secret, s1 to sn−1, be random integers with k bits.

� Let the last share of the secret be the exclusive-or of the secret with all the other shares of
the secret (⊕ denotes here the bit-wise exclusive-or binary operator):

sn = S ⊕ s1 ⊕ s2 ⊕ · · · ⊕ sn−1.

� To recover the secret it is only necessary to perform an exclusive-or of all secret shares:

S = s1 ⊕ s2 ⊕ · · · ⊕ sn.

� Knowledge of n− 1 secret shares does not give any information about the secret.

� It is possible to replace the bit-wise exclusive-or operations by addition and subtractions
modulom. In this case, the �rst n−1 secret shares are random integers from 0 tom−1,
and the last secret share is (S − s1 − s2 − · · · sn−1) mod m. To recover the secret it
is only necessary to add all secret shares (modulo m, of course). If m is a prime number,
we can replace addition by multiplication.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Secret sharing 73/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Secret sharing (how to do it, idea 2)

Blakley's secret sharing scheme:

� The secret is a point P in a t-dimensional space.

� Each share of the secret is a linear equation (with t unknowns) that has P has one of its
solutions.

� Putting together t equations allows us to �nd P .

� It is necessary to ensure that the system of equations has a unique solution for all possible
Cn
t = n!

t!(n−t)! possible combinations of t equations chosen from the n equations, and that

is cumbersome.

� Each share of the secret is composed by t+ 1 numbers.

� Improved security: the secret is kept only in one of the coordinates of the point P .

� Modular arithmetic should be used (why?).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Secret sharing 74/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Secret sharing (how to do it, idea 3)

Shamir's secret sharing scheme:

� The secret in the independent coe�cient a0 of a polynomial of degree t− 1,

A(x) =
t−1∑
k=0

akx
k.

� Each secret share in the pair
(
xk, A(xk)

)
.

� It is necessary to ensure that distinct values of xk are used.

� Again, modular arithmetic should be used (why?).

� Each share of the secret is composed by only 2 numbers.

Things to think about:

� Can we do it using square matrices for the ak coe�cients?

� And how about for the ak coe�cients and for the xk values?

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Secret sharing 75/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Secret sharing (polynomial interpolation)

Given points (xk, yk), for k = 0, 1, . . . , n, with xi 6= xj for i 6= j, compute the unique
polynomial of degree n that passes through these points.

� Newton's interpolation formula:

P0(x) = y0,

and, for k = 1, 2, . . . , n,

Pk(x) = Pk−1(x) +
(
yk − Pk−1(xk)

) (x− x0) · · · (x− xk−1)

(xk − x0) · · · (xk − xk−1)
.

� Lagrange's interpolation formula:

Pn(x) =
n∑
k=0

yk

n∏
i=0
i6=k

x− xi
xk − xi

.

If arithmetic modulo p is used we must have xi 6≡ xj (mod p) for i 6= j. If so, all modular
inverses needed by Newton's or Lagrange's intepolation formulas exist.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Secret sharing 76/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Quadratic residues

� Let n be a positive integer and let a be an integer such that gcd(a, n) = 1.

� a is said to be a quadratic residue modulo n if and only if there exists a x such that

x2 ≡ a (mod n).

� When n is a prime number (n = p) there exist three cases:

1. either a is a multiple of p, or

2. a is a quadratic residue, or

3. a is a not a quadratic residue (a quadratic nonresidue).

� The Legendre symbol
(
a
p

)
captures this as follows

(
a

p

)
=


0, if p divides a,

+1, if p does not divide a and a is a quadratic residue modulo p,

−1, if p does not divide a and a is a quadratic nonresidue modulo p.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Quadratic residues 77/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Quadratic residues (Legendre symbol)

� For p > 2 the Legendre symbol satis�es the equation(
a

p

)
≡ a

p−1
2 (mod p).

(Recall that from Fermat's little theorem we know that ap−1 ≡ 1 (mod p) when p does
not divide a.)

� So,
(
a
p

)
=
(
a mod p

p

)
and, if a is not divisible by p,

(
a2

p

)
= 1.

� In particular, it is possible to prove that(−1

p

)
= (−1)

p−1
2 , that

(
2

p

)
= (−1)

p2−1
8 , and that

(
ab

p

)
=

(
a

p

)(
b

p

)
.

� If q is an odd prime, we also have (this is the famous law of quadratic reciprocity)(
q

p

)
= (−1)

(p−1)(q−1)
4

(
p

q

)
.

� These properties allow us to easily compute the Legendre symbol for any a and p (if the
factorization of a is known).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Quadratic residues 78/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Quadratic residues (Legendre symbol computation)

� Example: Compute
(−14

73

)
.

�

(−14
73

)
=
(−1

73

)(
2
73

)(
7
73

)
�

(−1
73

)
= (−1)36 = +1.

�

(
2
73

)
= (−1)666 = +1.

�

(
7
73

)
= (−1)108

(
73
7

)
=
(

3
7

)
.

�

(
3
7

)
= (−1)3

(
7
3

)
= −

(
1
3

)
= −1. (Obviously,

(
1
p

)
= +1.)

� So, putting it all together, we have
(−14

73

)
= −1

� pari-gp agrees (in pari-gp the Legendre symbol can be computed with the kronecker

function):

kronecker(-14,73) /* returns -1 */

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Quadratic residues 79/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Quadratic residues (Jacobi symbol)

� The Jacobi symbol is an extension of the Legendre symbol to the case where the modulus
is not a prime number.

� Let n = pm1
1 pm2

2 · · · p
mk
k .

� The Jacobi symbol
(
a
n

)
� yes, it is denoted in exactly the same way as the Legendre symbol

� is given by(
a

n

)
=

(
a

p1

)m1
(
a

p2

)m2

· · ·
(
a

pk

)mk

.

(The right-hand side of this formula uses Legendre symbols!)

� Its properties are similar to those of the Legendre symbol, but we also have(
a

mn

)
=

(
a

m

)(
a

n

)
.

� If
(
a
n

)
= −1 then a is not a quadratic residue modulo nm. But, if

(
a
n

)
= +1 then a

may, or may not, be a quadratic residue modulo nm.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Quadratic residues 80/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Quadratic residues (counts)

� For a prime p, the number of integers belonging to the set { 1, 2, . . . , p − 1 } that are
quadratic residues is exactly (p− 1)/2.

a(n)=local(v,s);v=vector(eulerphi(n));s=0;\

for(k=1,n,if(gcd(k,n)==1,s=s+1;v[s]=k;););return(v);

qr(n)=local(v);v=a(n); /* number (#) of true quadratic residues */\

return(length(Set(vector(length(v),k,(v[k]^2)%n))));

j(n)=local(v,c);v=a(n); /* # of true or fake quadratic residues */\

return(sum(k=1,length(v),kronecker(v[k],n)==1));

f(n)=return([eulerphi(n),qr(n),j(n)]);

f(101) /* returns [100,50,50] */

f(103) /* returns [102,51,51] */

f(107) /* returns [106,53,53] */

f(109) /* returns [108,54,54] */

� How about composite numbers that are the product of two distinct prime numbers?

f(13*17) /* returns [192,48,96] --- half are fakes! */

f(11*13) /* returns [120,30,60] --- half are fakes! */

f(11*19) /* returns [180,45,90] --- half are fakes! */

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Quadratic residues 81/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Quadratic residues (square roots)

� Let p be a prime number of the form 4k + 3 and let a be a quadratic residue modulo p,
i.e.,

(
a
p

)
= +1.

� Then a has two square roots.

� They are given by the formula r = ±a
p+1

4 mod p. This is so because if a is a quadratic residue we

must have, by Fermat's little theorem, that a
p−1
2 = 1 mod p, and so a

p+1
2 = a mod p. But (p+ 1)/2

is an even number so the square roots can be computed easily as stated above.

� If n is the product of two primes p and q of the form 4k + 3 and if a is a quadratic
residue modulo n then a will have four square roots. They can be easily computed using
the Chinese remainder theorem. Two of them will have a Jacobi symbol of +1 and two will
have a Jacobi symbol of −1.

� Example:

p=11; q=19; n=p*q; r=20; a=lift(Mod(r^2,n));

rp=lift(Mod(a,p)^((p+1)/4)); rq=lift(Mod(a,q)^((q+1)/4));

r1=lift(chinese(Mod(rp,p),Mod(rq,q))); /* 20, (r1/p)=+1, (r1/q)=+1 */

r2=lift(chinese(Mod(rp,p),Mod(-rq,q))); /* 75, (r2/p)=+1, (r2/q)=-1 */

r3=lift(chinese(Mod(-rp,p),Mod(rq,q))); /* 134, (r3/p)=-1, (r3/q)=+1 */

r4=lift(chinese(Mod(-rp,p),Mod(-rq,q))); /* 189, (r4/p)=-1, (r4/q)=-1 */

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Quadratic residues 82/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Quadratic residues (square roots and factorization)

� Let n be the product of two primes.

� Let a be a quadratic residue modulo n.

� Then, it will have four square roots.

� Let x and y be two of then.

� Then x2 = y2 mod n, i.e., x2 − y2 = (x− y)(x+ y) = 0 mod n.

� If y = x or y = −x, then the above equation gives us nothing.

� Otherwise, we can factor n. Just compute gcd(x− y, n) and gcd(x+ y, n).

� Example (continuation of the code of the previous slide):

p=11; q=19; n=p*q;

r1=20; r2=75; r3=134; r4=189; /* square roots of 191 */

gcd(r1-r2,n); /* 11 */

gcd(r1+r2,n); /* 19 */

� pari-gp can only compute square roots when the modulus is prime:

sqrt(Mod(5,11)) /* ok (because 5 is a quadratic residue) */

sqrt(Mod(9,14)) /* error (because the modulus is not prime) */

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Quadratic residues 83/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Zero-Knowledge proofs

� In a zero-knowledge proof one party (the prover) proves to another party (the veri�er) that
she/he knows a secret without revealing any information about it.

� Usually, the proof is probabilistic, i.e., the zero-knowledge proof has several rounds. The
larger the number or rounds, the smaller the probability of an impostor faking the proof.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Zero-Knowledge proofs 84/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

One of two oblivious transfer

� Alice holds two items of information, saym0 andm1.

� Bob wants to know one of these two items of information, but does not want Alice to know
which one he wants.

� This problem is known as the oblivious transfer problem (in the case, one of two).

� It can be solved in several ways. We will do it here using RSA techniques.

� N is Alice's public RSA modulus and e is the corresponding public exponent; d is the
corresponding private decryption exponent.

� At Bob's request, Alice generates two random messages x0 and x1 (random numbers smaller
than N) and sends then to Bob.

� Bob wants mb, where b ∈ { 0, 1 }. So, Bob generates a random k and computes and
sends to Alice v = (xb + ke) mod N .

� Alice computesm′0 = m0 + (v−x0)
d mod N andm′1 = m1 + (v−x1)

d mod N
and sends both to Bob. Either (v− x0)

d mod N or (v− x1)
d mod N will be equal to k, but Alice

has no way of knowing which one is the case.

� Bob computesmb = m′b − k mod N . He can not infer m1−b from m
′
1−b.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Zero-Knowledge proofs 85/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Coin �ipping

� Alice and Bob want to �ip a coin (by telephone in Manuel Blum's 1981 paper) to decide who
wins (in Blum's paper, who gets the car after a divorce).

� Actually, each one �ips a coin and if they came out equal (two heads or two tails) Bob wins.

� How can this be done fairly and without cheating when the two are far apart?

� Using computers: square roots of quadratic residues!

1. One of the two, say Bob, selects two large random primes p and q of the form 4k+ 3
(Blum primes!) and then computes n = pq. He then sends n to Alice.

2. Alice chooses a random b and sends a = b2 mod n to Bob.

3. Bob computes the 4 square roots ±x and ±y of a, chooses one of then, let us call it
r, and sends it to Alice.

4. Alice checks if ±r = b. If so, then Bob wins. If not, he looses.

5. Alice proves her claims by disclosing b. (Observe that if Alice does not like the outcome
she may simply do not �nish the execution of this protocol, but that would be cheating.)

� To �ip m coins, do step 2 m times, then step 3 m times and so on. It has to be done in
this way because as soon as Alice receives the square roots from Bob she will likely be able
to factor n (and so be able to change her choice of the b).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Zero-Knowledge proofs 86/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Zero-knowledge proofs of identity (main idea)

� Let us introduce two new protagonists:

1. Peggy, who wishes to prove to Victor that she knows a secret

2. Victor, who wishes to verify that Peggy knows the secret

� The proof will be based on challenge-response pairs and it will be probabilistic in nature.

� The probability that an impersonator is accepted (false proof) decreases as more challenge-
response pairs are used.

� One of the �rst published ways to do it uses (again) the hardness of factoring large integers.

� Again, the underlying problem is computing square roots modulo n = pq.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Zero-knowledge proofs 87/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Zero-knowledge proofs of identity (Feige-Fiat-Shamir scheme)

Preparatory steps (disclosure of public information):

� Peggy chooses a large number n that is the product of two primes of the form 4k+ 3 (such
a number is called a Blum number). The interesting thing here is that −1 is not a quadratic residue

modulo n but its Jacobi symbol has value +1; x2 ≡ −1 (mod pq) implies x2 ≡ −1 (mod p) and

x2 ≡ −1 (mod q), so −1 can only be a quadratic residue modulo pq if it is a quadratic residue modulo

both p and q, which is not the case here because−1 is not a quadratic residue for primes of the form 4k+3.

� She also chooses k large random numbers S1, S2, . . . , Sk coprime to n.

� Finally, she also chooses each Ij (randomly and independently) as ±S−2
j mod n. The

interesting thing here is that no matter which choice was made we always have
(Ij
n

)
= +1, so without

computing square roots an external observer cannot determine which choice was made. The Sj are witnesses

of the quadratic character of the Ij.

� She publishes n and the I = I1, I2, . . . , Ik (but keeps S = S1, S2, . . . , Sk secret).

Instead of publishing n herself, Peggy could have used any Blum integer computed by a trusted
entity (the factors of n are not used anywhere in this scheme.)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Zero-knowledge proofs 88/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Zero-knowledge proofs of identity (Feige-Fiat-Shamir scheme)

To generate and verify a proof of identity, Peggy and Victor execute the following T times (the
higher T is the harder it will be to fake the proof of identity):

� Peggy chooses a randomR and sends to VictorX = ±R2 mod n. Here she also chooses
the sign, either + or − randomly, so X is, or isn't a quadratic residue. (Remember, zero
knowledge leaked!)

� [The challenge] Victor send to Peggy the random vector of bits E = E1, E2, . . . , Ek;
each Ej is either 0 or 1.

� [The reply] Peggy computes and sends to Victor Y = ±R
∏
Ej=1 Sj mod n; here,

again, she chooses the sign in a random way.

� [The veri�cation] Victor checks if X = ±Y 2
∏
Ej=1 Ij mod n, and rejects imme-

diately the proof if this is not so.

� Anyone trying to impersonate Peggy (Eve?) could try to guess the Ej � let the guesses
be E′j � them precompute the next round of the protocol by selecting a random Y and

by presenting X = ±Y 2
∏
E′j=1 Ij when so requested. The probability of success of this

cheating attempt is 2−k per round (so, 2−kT overall).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Zero-knowledge proofs 89/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Schnorr Non-interactive Zero-Knowledge Proof

(To be explained in the next school year, but you can look at it now!)

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Zero-knowledge proofs 90/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Homomorphic encryption

� Idea: do some useful operation, or operations, using only encrypted data

� Example: in the RSA cryptosystem with unpadded messages, multiplication of the ciphertexts
corresponds to multiplication of the plaintexts.

� Using a lot of processing power (and using somewhat cumbersome methods), it is possible to
apply an arbitrary function (a logic function described by a boolean circuit) to the encrypted
data (to know more, search for fully homomorphic encryption schemes and lattice-based
cryptography).

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Homomorphic encryption 91/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Homomorphic encryption (Paillier cryptosystem)

� Choose two large primes p and q. Ensure that p is not a factor of q − 1, and vice-versa.

� Compute n = pq and λ = lcm(p− 1, q − 1).

� Select a random integer g in the interval]0, n2[that is coprime to n.

� Compute u = gλ mod n2. It must be of the form u = vn+ 1.

� Compute µ =
(
(u− 1)/n

)−1
mod n.

� The public key is (n, g).

� The private key is (λ, µ).

� To encrypt the plaintext m, with 0 6 m < n, select a random r such that 0 < r < n,
and compute the ciphertext c = gmrn mod n2.

� To decrypt, compute x = cλ mod n2. Themm =
(
(x− 1)/n

)
µ mod n.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Homomorphic encryption 92/93

mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

Bibliography (work in progress)

1. Eric Bach and Je�rey Shallit, Algorithmic Number Theory, Volume 1, E�cient Algorithms, MIT Press, 1996.

2. Richard Crandall and Carl Pomerance, Prime Numbers. A Computational Perspective, second edition, Springer-Verlag,
2005.

3. Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno, Cryptography Engineering. Design Principles and Practical

Applications, Wiley, 2010.

4. Steven Galbraith, Mathematics of Public Key Cryptography. Version 2.0, 2018.

5. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied Cryptography, �fth printing, CRC
Press, 2001.

6. Richard A. Mollin, Advanced Number Theory with Applications, CRC Press, 2009.

7. Richard A. Mollin, Codes. The Guide to Secrecy from Ancient to Modern Times, Chapman & Hall/CRC, 2005.

8. Bruce Schneier, Applied Cryptography. Protocols, Algorithms, and Source Code in C, second edition, Wiley, 1996.

Tomás Oliveira e Silva
André Zúquete

RSA and related subjects
Bibliography 93/93

https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.pdf
http://cacr.uwaterloo.ca/hac/
mailto:tos@ua.pt
mailto:andre.zuquete@ua.pt

