Cybersecurity MSc: Applied Cryptography 2020-21

1st Project:
Shuffled AES (S-AES)

November 2, 2021 Due date: November 28, 2021

Changelog

e v1.0 - Initial version.

1 Introduction

Rijndael is the algorithm that won the context to design AES. But the former is much flexible than AES,
namely it could use more data block sizes and key sizes (from 128 up to 256, with 16 bit increments,
for both). Also, the authors of Rijndael stated that its S-Box, which has a special construction, known
as a Nyberg S-Box, is not critical for the security of the algorithm, and it can be replaced by other
S-Boxes. This is a disclaimer that is often given to assure people that there is no special trapdoors
hidden within S-Boxes.

2 Homework

The work consists on implementing a shuffled version of AES (S-AES), which will be similar to AES
but with an extra 128-bit key (shuffling key, SK). For that, you can consider AES-128. Thus, the
resulting algorithm will operate with an overall 256-bit key.

S-AES will operate as AES, but with one modified round. That round will be selected with SK,
and exclusively among the first 9 (encryption) rounds. The last round (10th) cannot be selected
since it is different from the others (otherwise, it would be feasible to get some SK bits from timing
measurements). The round selection should be as equally likely as possibleE].

The modified round should operate as follows:

e In the AddRoundKey step, the SK should be used to add an offset to the index used to select
a byte in one of the matrices. Or, in other words, SK should be used to rotate the bytes of the
Round Key used in this round. A total of 16 offsets are possible;

e The S-Box used in the SubBytes step should be a shuffled variant of the original S-Box. That
shuffling should normally change the relative order of the S-Box bytes with SK. At least one-half
(50%) of the S-Box bytes should change their position;

e In the ShiftRows step, the byte shifts applied to each row should be permuted with SK. A total
of 4! = 24 permutations are possible, and they should be as likely to happen as possibldﬂ;

e In the MixColumns step, the SK should be used to add an offset to the index used to select
the column in one of the matrices. A total of 4 offsets are possible.

Since 9 is not a power of 2, we cannot select any round from SK with an exactly equal probability.
2Since 24 is not a power of 2, we cannot select any permutation from SK with an exactly equal probability.

The new values used in the modified round should be computed only once, during the key set-up, in
order to speed-up encryptions and decryptions. Do not forget that you need to pre-compute as well
the inverse of the modified S-Box (but not from SK, but instead from the modified S-Box).

Besides implementing S-AES in a module (or library), you should implement two applications, encrypt
and decrypt. These should receive two textual passwords as arguments, which will be separately used
to generate the two 128-bit keys of S-AES — the normal AES key and SK, in this order. In the absence
of the second parameter (SK), the program should operate with the normal AES.

The applications should process the input from stdin and produce a result to stdout. S-AES (or
AES) should be used to process the input in ECB mode with a PKCS#7 padding.

Create a third application, speed, to evaluate the relative performance of your S-AES implementation
and one or more library implementation of AES. For that, allocate a 4KB buffer (a memory page), fill
it with random values (you can use /dev/urandom for that), and evaluate the time it takes to encrypt
and decrypt the buffer with AES (from the library) and S-AES (both in ECB mode). Perform at
least 100 000 measurements of each operation, and present the lowest values observed for each (i.e. the
maximum achievable speed). For each measurement, use new, random keys. For accurate timing you
can use the Linux system call clock_gettime function, which provides a nanosecond precision. Note
that the measurements must encompass only encryptions and decryptions, and not AES or S-AES
key-related set-up operations.

2.1 Library implementations of AES in Linux
In C, you can use these library implementations:
e The OpenSSL crypto library;
e The Nettle library.
In C++, you can use this library implementations:
e The Crypto++ library.
In Java, you can use these library implementations:
e The Java Runtime Environment;
e TAIK JCE;
e Bouncy Castle Crypto Library.
In Python, you can use these library implementations:
e Cryptography;
e PyCrypto.

2.2 S-AES implementation with AES-NI

In order to have the minimum possible performance penalty when switching from an AES library version
using AES-NI to S-AES, you can implement the latter using also AES-NI Intel assembly instructions,
which are the following:

AESKEYGENASSIST xmml, xmm2/m128u, imm8 | Assist in round key generation using an 8-bit
constant (imm8) with a 128-bit key specified in
xmm2/m128 and stores the result in xmm1.

This instruction computes a value that needs to be
combined with the key to generate the round key
(presented below).

AESENC xmm1, xmm2/m128 Perform one encryption round (except the last one)
over xmml with the round key xmm2/m128.

AESENCLAST xmml, xmm2/m128 Perform the last encryption round over xmml with
the round key xmm2/m128.

AESDEC xmm1, xmm2/m128 Perform one decryption round (except the last one)
over xmml with the round key xmm2/m128.

AESDECLAST xmml, xmm2/m128 Perform the last decryption round over xmml with
the round key xmm2/m128.

AESIMC xmml, xmm2/m128 Perform a transformation of a round key (1 to 9) to

prepare it to be used in a decryption flow.

xmml and xmm2 are 128-bit registers, m128 is the address of a 128-bit value and imm8 is an 8-bit constant
integer.

The GCC compiler has inline C functions for wrapping these AES-NI instructions. Those functions
become available with the -maes compilation flag, and their prototype is the following:

// __m128i is a 128-bit integer type.

_ml128i _mm_aeskeygenassist_si128 (
_m128i _mm_aesenc_sil128 (

m128i key, uint8_t const index);
m128i rk);

_ __-m128i input, __

_-m128i _mm_aesenclast_sil128 (__m128i input, __m128i rk);
__m128i _mm_aesdec_si128 (__m128i input, __ml128i rk);
_-m128i _mm_aesdeclast_sil128 (__m128i input, __m128i rk);

__m128i _mm_aesimc_sil28 (__m128i input);

The prototype of these functions is provided by the wmmintrinc.h file which exists under the GCC
installation directory (at /usr/1lib/gcc/x86_64-1linux-gnu/[GCC major version]/include).

The AES encryption flow with AES-NI is as follows:

x ~ RK[0];
aesenc (x, RK[1]);
aesenc (x, RK[2]);

el
nonon

aesenc (x, RK[9]);
aesenclast (x, RK[10]);

// aesenc = AddRoundKey(MixColumns (ShiftRows (SubBytes(x))), RK)

and the inverse, decryption flow is as follows:

// RK?’[i] = aesimc(RK[i]) for i in [1-9]

x = RK[10];
aesdec (x, RK’[9]);
aesdec (x, RK’[8]);

X
X
X

aesdec (x, RK’1]);
aesdeclast (x, RK[0]);

X
X

// aesdec = AddRoundKey(InvMixColumns(InvSubBytes(InvShiftRows(x))), RK?)

The setup of round keys is performed from the original key and the output of AESKEYGENASSIST, and
can be implemented in C with intrinsic functions as follows:

// key is the main key
// index 1is the output of AESKEYGENASSIST

// _mm_shuffle_epi32, _mm_slli_sil128 and _mm_xor_sil28 are GCC internal, inline functions
__m128i get_round_key (__m128i key, __mi128i index)
1{

__m128i tmp;

index = _mm_shuffle_epi32(index, Oxff);

tmp = _mm_slli_si128(key, 0x4);

key = _mm_xor_sil128(key, tmp);

tmp = _mm_slli_si128(tmp, 0x4);

key = _mm_xor_sil128(key, tmp);

tmp = _mm_slli_si128(tmp, 0x4);

key = _mm_xor_sil128(key, tmp);

key = _mm_xor_sil28(key, index);

return key; // Round key

3 Evaluation

The project will be evaluated as follows:
e Implementation of S-AES (in any language): 35%;
e Implementation of the applications: 5% for encrypt, 5% for decrypt, 10% for speed;
e Implementation of S-AES with AES-NI assembly instructions: 15%;

e Written report, with a complete explanations of the strategies followed and the results achieved:
30%

4 Homework delivery

Send your code to the course teachers through Elearning (a submission link will be provided). Include
a small report, with no more than 6 pages, describing the implementation (not a complete copy of the
code developed!). Code snippets may be used to illustrate your implementation.

Every piece of code imported from anywhere must be stated in the report and in the code itself. Failure
to do so will be penalised.
5 References

o Intel® Advanced Encryption Standard (AES) New Instructions Set, Shay Gueron, White
Paper, 2012, https://www.intel.com/content/dam/develop/external/us/en/documents/

https://www.intel.com/content/dam/develop/external/us/en/documents/aes-wp-2012-09-22-v01-165683.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/aes-wp-2012-09-22-v01-165683.pdf

aes-wp-2012-09-22-v01-165683.pdf

e Advanced Encryption Standard (AES), Morris J. Dworkin, Elaine B. Barker, James R. Nechvatal,
James Foti, Lawrence E. Bassham, E. Roback, James F. Dray Jr., NIST FIPS 197, 2001, https:
//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

https://www.intel.com/content/dam/develop/external/us/en/documents/aes-wp-2012-09-22-v01-165683.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/aes-wp-2012-09-22-v01-165683.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

	Introduction
	Homework
	Library implementations of AES in Linux
	S-AES implementation with AES-NI

	Evaluation
	Homework delivery
	References

