### **ARM TrustZone**



Secure Execution Environments

### **SoC and IP**

- ⊳ SoC (System-on-Chip)
  - Tackles the provisioning of complex and application-specific, multifunctional processors
  - The major functional components of a complete end-product are integrated into a single chip
- - Pre-designed, reusable electronic components for hardware chips



Secure Execution Environments

## **SoC structure**

- > An SoC usually contains
  - Processors
  - IPs
    - · Namely security IPs
  - Memory elements (RAM, ROM, etc.)
  - Buses



Secure Execution Environments

3

### **ARM TrustZone**

- Set of technologies for packing special security features into a SoC
  - Extra security-related features on processor cores
    - Instructions
    - Bus lines
    - · Execution levels
    - Extra logic for dealing with interruptions
  - Security-related IPs



Secure Execution Environments

## **ARM TrustZone: goal**

- > TEE for ARM-powered embedded systems
  - Providing hardware-based isolation
- ▷ It allows to run a trusted system in parallel with the main operation system
  - Rich OS
    - · Where most applications will run
  - Secure (or Trusted) OS
    - · Where secure (or trusted) applications will run
    - It can be a simple library, and not a full-fledged OS



Secure Execution Environments



### Worlds

- ▷ Isolation is achieved by exploring the same CPU in two different worlds (or states)
  - Normal world → for running the Rich OS
  - Secure world → for running the Secure OS
- > A CPU flag bit defines the current world
  - NS bit of the SCR (Secure Configuration Register)
  - 0 Secure state
  - 1 Non-secure state



Secure Execution Environments



## ARM (v8) exception levels

- ▷ Similar to run levels
- > TrustZone introduces one EL more
  - Secure monitor (EL3)
- > Combination of exception levels and states



 $\underline{\text{https://embeddedbits.org/introduction-to-trusted-execution-environment-tee-arm-trustzone}}$ 



Tomás Oliveira e Silva

Secure Execution Environments

9

#### **Access to the Secure world**

- - SMC (Secure Monitor Call)
  - · Typically implemented by Rich OS drivers
- ▷ Interrupts from the Secure hardware
  - Must be handled by the Secure OS
- - · Then are dispatched to the Secure world



Tomás Oliveira e Silva

Secure Execution Environments









## Architectural details: TZMA (TZ memory Adapter)



- - ROM or SRAM
- Non-secure accesses cannot access secured memory areas
- ▷ Controlled by the Secure world



Secure Execution Environments

15

# **Architectural details: TZPC (TZ Protection Controller)**



- Allows to dynamically set the security of a peripheral connected to the APB (Advanced Peripheral Bus)
  - Protects non-secure access requests to reach peripherals marked as secure



Secure Execution Environments



- - · Once set, cannot be changed
- - Secure interrupts usually have higher priority
- ▷ Interrupts with a security classification different from the current world force the switching to Monitor (EL3)
- Controlled by the Secure world



Secure Execution Environments

17

## TrustZone bootstrap

- ▷ A TZ-enable ARM SoC boots on the secure world
  - It allows a the Secure world to configure the TZ-related components to enforce a given security policy
- > The configuration data can be
  - Embedded in the SoC ROM
  - Provided by external peripherals and validated with information in SoC ROM
    - e.g. must contain a signature validated with a in-SoC public key



Secure Execution Environments