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PERIODIC PROBLEMS WITH A REACTION OF ARBITRARY

GROWTH

SERGIU AIZICOVICI, NIKOLAOS S. PAPAGEORGIOU, AND VASILE STAICU

Dedicated to the memory of Francesco S. De Blasi

Abstract. We consider nonlinear periodic equations driven by the scalar
p−Laplacian and with a Carathéodory reaction which does not satisfy a global
growth condition. Using truncation-perurbation techniques, variational methods
and Morse theory, we prove a ”three solutions theorem”, providing sign informa-
tion for all the solutions. In the semilinear case (p = 2), we produce a second
nodal solution, for a total of four nontrivial solutions. We also cover problems
which are resonant at zero.

1. Introduction

We consider the following nonlinear periodic problem driven by the scalar p−
Laplacian

(1.1)

 −
(
|u′ (t)|p−2 u′ (t)

)′
= f (t, u (t)) a.e. on T := [0, b]

u (0) = u (b) , u′ (0) = u′ (b) , 1 < p <∞.

The reaction f (t, x) is a Carathéodory function (i.e., for all x ∈ R, t → f (t, x) is
measurable, while for a.a. t ∈ T, x→ f (t, x) is continuous). The interesting feature
in our analysis of problem (1.1) is that we do not impose any global growth condition
on f (t, .). Instead, we assume that f (t, .) admits t−dependent zeros which have
constant sign. Under suitable truncation and perturbation techniques, coupled with
variational methods and Morse theory, we prove a multiplicity theorem producing
three nontrivial solutions, all with sign information.

Recently, the authors proved multiplicity theorems for different classes of scalar
p−Laplacian periodic problems; see Aizicovici-Papageorgiou-Staicu [1], [2], [5], [6],
[7]. In all these works, f (t, .) is required to have polynomial growth.

In the last section, we deal with the semilinear version of problem (1.1) (i.e.,
p = 2). In this case, under additional regularity conditions on f (t, .) , by using
Morse theory (critical groups), we produce four nontrivial solutions, all with sign
information (two of constant sign and two nodal (sign changing)) also covering the
case of equations which are resonant at zero.
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2. Mathematical background

Let (X, ∥.∥) be a Banach space and (X∗, ∥.∥∗) its topological dual. By ⟨., .⟩ we

denote the duality brackets for the pair (X∗, X) . Also
w−→ denotes weak convergence

in X.
Let φ ∈ C1 (X) . A real number c is said to be a critical value of φ if there exists

x∗ ∈ X such that φ′ (x∗) = 0 and φ (x∗) = c.
We say that φ ∈ C1 (X) satisfies the Palais-Smale condition (PS-condition, for

short) if the following holds true:

”every sequence {xn}n≥1 ⊆ X such that {φ (xn)}n≥1 is bounded in
R and

φ′ (xn) → 0 in X∗ as n→ ∞
admits a strongly convergent subsequence.”

Using this compactness-type condition on φ, one can prove the following minimax
theorem, known as the ”mountain pass theorem”.

Theorem 2.1. If X is a Banach space, φ ∈ C1 (X) satisfies the PS-condition, x0,
x1 ∈ X, ρ > 0, ∥x1 − x0∥ > ρ, max {φ (x0) , φ (x1)} < inf {φ (x) : ∥x− x0∥ = ρ} =
ηρ, and c = infγ∈Γmaxt∈[0,1] φ (γ (t)) where

Γ = {γ ∈ C ([0, 1] , X) : γ (0) = x0, γ (1) = x1} ,

then c ≥ ηρ and c is a critical value of φ.

In our analysis of problem (1.1) , we will use the following two spaces Sobolev
space

W :=W 1,p
per (0, b) =

{
u ∈W 1,p (0, b) : u (0) = u (b)

}
,

with 1 < p <∞, and

Ĉ1 (T ) := C1 (T ) ∩W.
Since the spaceW 1,p

per (0, b) is embedded continuously (in fact compactly) into C (T ),

the evaluations at t = 0 and t = b make sense. The Banach space Ĉ1 (T ) is an
ordered Banach space with positive cone

Ĉ+ =
{
u ∈ Ĉ1 (T ) : u (t) ≥ 0 for all t ∈ T

}
.

This cone has a nonempty interior, given by

int Ĉ+ =
{
u ∈ Ĉ+ : u (t) > 0 for all t ∈ T

}
.

Throughout this paper, we denote by ∥.∥ the norm of the Sobolev space W :=

W 1,p
per (0, b) . Recall that

W ↪→ Ĉ (T ) := {u ∈ C (T ) : u (0) = u (b)}

compactly. The norm of Lr (T ) (1 ≤ r ≤ ∞) is denoted by ∥.∥r .
If x ∈ R, we set x+ = max {x, 0} , x− = max {−x, 0} . For u ∈W, we set

u+ (.) := u (.)+ and u− (.) := u (.)− .
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Then u+, u− ∈W and

u = u+ − u−, |u| = u+ + u−.

By |.|1 we denote the Lebesgue measure on R. If k, j ∈ Z+, we will use δk,j to
indicate the Kronecker delta. Finally, if h : T × R → R is a measurable function,
then we set

Nh (u) (.) = h (., u (.)) for all u ∈W

(the Nemytskii or superposition map corresponding to h).
Consider the following nonlinear eigenvalue problem

(2.1)

{
−
(
|u′ (t)|p−2 u′ (t)

)′
= λ |u (t)|p−2 u (t) a.e. on T = [0, b]

u (0) = u (b) , u′ (0) = u′ (b) .

A number λ ∈ R is said to be an eigenvalue of the negative periodic scalar
p−Laplacian, if problem (2.1) has a nontrivial solution u, known as an eigenfunction
corresponding to the eigenvalue λ.

Clearly, a necessary condition for λ ∈ R to be an eigenvalue is that λ ≥ 0. Let

πp =
2π (p− 1)

1
p

p sin π
p

and λ̂n :=

(
2nπp
b

)p
, n ≥ 0.

Then
{
λ̂n

}
n≥0

is the set of eigenvalues of (2.1) . In particular, λ̂0 = 0 is a simple

eigenvalue and the corresponding eigenfunctions are the constant functions.
When p = 2 (linear eigenvalue problem), then π2 = π and the eigenvalues are

λ̂n =

{(
2nπ

b

)2
}
n≥0

.

Every eigenfunction u ∈ C1 (T ) satisfies u (t) ̸= 0 a.e. on T, and in fact it has a

finite number of zeros. Moreover, every eigenvalue λ > λ̂0 = 0 has eigenfunctions
which are nodal (sign changing).

In the sequel, we denote by û0 the L
p− normalized (i.e., ∥û0∥p = 1) eigenfunction

associated with λ̂0 = 0 (recall that λ̂0 is simple). We have

û0 (t) =
1

b
1
p

for all t ∈ T

(hence û0 ∈ int Ĉ+). In the linear case (p = 2), we denote by E
(
λ̂n

)
the eigenspace

corresponding to the eigenvalue λ̂n.We know that E
(
λ̂0

)
= R and dim E

(
λ̂n

)
= 2

for all n ≥ 1. Also

W 1,2
per (0, b) =

⊕
k≥1

E
(
λ̂k

)
.

Next, we recall some basic facts about critical groups. So, let (Y1, Y2) be a
topological pair such that Y2 ⊆ Y1 ⊆ X. For every integer k ≥ 0, we denote
by Hk (Y1, Y2) the kth- relative singular homology group for the pair (Y1, Y2) with
integer coefficients. For k ∈ Z, k < 0, Hk (Y1, Y2) = {0} .
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Given φ ∈ C1 (X) and c ∈ R, we introduce the following sets:

φc = {x ∈ X : φ (x) ≤ c} , Kφ =
{
x ∈ X : φ′ (x) = 0

}
, Kc

φ = {x ∈ Kφ : φ (x) = c} .

Let x ∈ X be an isolated critical point of φ, with c = φ (x) (i.e., x ∈ Kc
φ). The

critical groups of φ at x are defined by

Ck (φ, x) = Hk (φ
c ∩ U, (φc ∩ U) \ {x}) for all k ≥ 0,

where U is a neighborhood of x such thatKφ∩φc∩U = {x} . The excision property of
singular homology implies that the above definition of critical groups is independent
of the particular choice of the neighborhood U .

Suppose that φ ∈ C1 (X) satisfies the PS-condition and inf φ (Kφ) > −∞. Let
c < φ (Kφ) . The critical groups of φ at infinity are defined by

Ck (φ,∞) = Hk (X,φ
c) for all integers k ≥ 0.

The second deformation theorem (see, for example, Gasinski-Papageorgiou [14],
p.628) implies that this definition is independent of the choice of the level c <
inf φ (Kφ) .

Assume that Kφ is finite. We set

M (t, x) =
∑
k≥0

rank Ck (φ, x) t
k for all t ∈ R, all x ∈ Kφ,

and

P (t,∞) =
∑
k≥0

rank Ck (φ,∞) tk for all t ∈ R.

The Morse relation says that

(2.2)
∑
x∈Kφ

M (t, x) = P (t,∞) + (1 + t)Q (t) , t ∈ R,

where Q (t) =
∑
k≥0

βkt
k is a formal series with nonnegative integer coefficients.

Let A :W →W ∗ be the nonlinear map defined by

(2.3) ⟨A (u) , v⟩ =
∫
Ω

∣∣u′∣∣p−2
u′v′dt for all u, v ∈W.

From [7]), we have:

Proposition 2.2. The map A : W → W ∗ defined by (2.3) is continuous, bounded
(that is, it maps bounded sets to bounded sets), maximal monotone and of type (S)+ ,

i.e., if {un}n≥1 ⊆W is such that un
w−→ u in W and

lim sup
n→∞

⟨A (un) , un − u⟩ ≤ 0,

then un → u in W as n→ ∞.
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3. p−Laplacian equations

First we produce nontrivial constant sign solutions. To do this, we impose the
following conditions on the reaction f (t, x) :

H (f)1 : The function f : T ×R →R is a Carathéodory function such that f (t, 0) = 0
for a.a. t ∈ T and
(i) for every ρ > 0, there exists aρ ∈ L1 (T )+ such that

|f (t, x)| ≤ aρ (t) for a.a. t ∈ T , all |x| ≤ ρ;

(ii) there exist functions w+, w− ∈W and constants c−, c+ such that

w− (t) ≤ c− < 0 < c+ ≤ w+ (t) for all t ∈ T,
f (t, w+ (t)) ≤ 0 ≤ f (t, w− (t)) for a.a. t ∈ T,

A (w−) ≤ 0 ≤ A (w+) in W ∗;

(iii) there exists δ0 ∈ (0,min {−c−, c+, 1}) such that

λ̂1 |x|p ≤ f (t, x)x for a.a. t ∈ T , all |x| ≤ δ0;

Remarks. We see that the above hypotheses do not impose any global growth
restriction on f (t, .) (see H (f)1 (i)). Instead we require that f (t, .) exhibits an os-
cillatory behavior near zero (seeH (f)1 (ii) , (iii)). HypothesisH (f)1 (ii) is satisfied
if we can find ξ− < 0 < ξ+ such that

f (t, ξ+) ≤ 0 ≤ f (t, ξ−) a.e. on T.

Hypothesis H (f)1 (iii) allows resonance at zero with respect to any nonprincipal
eigenvalue. In fact, hypothesis H (f)1 (iii) also permits the presence of concave
terms near zero.

Note that hypotheses H (f)1 (i) , (iii) imply that if ρ0 := max {∥w+∥∞ , ∥w−∥∞} ,
then we can find ξ0 > 0 such that

(3.1) f (t, x)x+ ξ0 |x|p ≥ 0 for a.a. t ∈ T , all |x| ≤ ρ0.

Example. Consider the function f (x) (for simplicity we drop the t−dependence)
defined by

f (x) =
ξ
(
|x|p−2 x− |x|r−2 x

)
if |x| ≤ 1

0 if |x| > 1

with ξ > λ̂1 and 1 < p < r <∞. This function satisfies hypotheses H (f)1 .

Proposition 3.1. If hypotheses H (f)1 hold, then problem (1.1) has at least two
nontrivial constant sign solutions

u0 ∈ int Ĉ+ and v0 ∈ −int Ĉ+.
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Proof. First we produce a nontrivial positive solution. For this purpose, we intro-
duce the following truncation-perturbation of the reaction f (t, .) :

(3.2) k+ (t, x) =


0 if x < 0
f (t, x) + xp−1 if 0 ≤ x ≤ w+ (t)

f (t, w+ (t)) + w+ (t)p−1 if w+ (t) < x

This is a Carathéodory function. We set

K+ (t, x) =

x∫
0

k+ (t, s) ds

and introduce the C1-functional φ+ :W → R defined by

φ+ (u) =
1

p

∥∥u′∥∥p
p
+

1

p
∥u∥pp −

b∫
0

K+ (t, u (t)) dt for all u ∈W.

From (3.2) it is clear that φ+ is coercive. Also, using the Sobolev embedding
theorem, we see that φ+ is sequentially weakly lower semicontinuous. So, by the
Weierstrass theorem, we can find u0 ∈W such that

(3.3) φ+ (u0) = inf {φ+ (u) : u ∈W} .

Let ξ ∈ (0, δ0] . Then from (3.2) we have

φ+ (ξ) = −
b∫

0

F (t, ξ) dt < 0,

hence

φ+ (u0) < 0 = φ+ (0) (see (3.3) ),

therefore

u0 ̸= 0.

From (3.3) we have

φ′
+ (u0) = 0,

and this implies

(3.4) A (u0) + |u0|p−2 u0 = Nk+ (u0) .

On (3.4) we act with −u−0 ∈W and obtain∥∥u−0 ∥∥p = 0,

hence

u0 ≥ 0, u0 ̸= 0.

Also, on (3.4) we act with (u0 − w+)
+ ∈W and obtain

⟨
A (u0) , (u0 − w+)

+⟩+ b∫
0

up−1
0 (u0 − w+)

+ dt
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=

b∫
0

[
f (t, w+) + wp−1

+

]
(u0 − w+)

+ dt (see (3.2) )

≤
⟨
A (w+) , (u0 − w+)

+⟩+ b∫
0

wp−1
+ (u0 − w+)

+ dt (see H (f)1 (ii) ),

hence

⟨
A (u0)−A (w+) , (u0 − w+)

+⟩+ b∫
0

(
up−1
0 − wp−1

+

)
(u0 − w+)

+ dt ≤ 0,

therefore

|{u0 > w+}|1 = 0,

and we conclude that

u0 ≤ w+.

So, we have proved that

u0 ∈ [0, w+] := {u ∈W : 0 ≤ u (t) ≤ w+ (t) for all t ∈ T} .

By virtue of (3.2) , equation (3.4) becomes

A (u0) = Nf (u0) .

hence

−
(∣∣u′0 (t)∣∣p−1

u′0 (t)
)′

= f (t, u0 (t)) a.e. on T, u (0) = u (b) , u′ (0) = u′ (b)

therefore u0 ∈ Ĉ+\ {0} is a nontrivial positive solution of (1.1) ; see, e.g., [1].
Let ξ0 > 0 be as postulated in (3.1). We have

−
(∣∣u′0 (t)∣∣p−1

u′0 (t)
)′

+ ξ0u0 (t)
p−1 = f (t, u0 (t)) + ξ0u0 (t)

p−1

≥ 0 a.e. on T

(see (3.1)), hence (∣∣u′0 (t)∣∣p−1
u′0 (t)

)′
≤ ξ0u0 (t)

p−1 a.e. on T,

therefore u0 ∈ int Ĉ+ (see Vazquez [19]).
To produce a nontrivial negative solution, we introduce the Carathéodory func-

tion

k− (t, x) =

 f (t, w− (t)) + |w− (t)|p−2w− (t) if x < w− (t)

f (t, x) + |x|p−2 x if w− (t) ≤ x ≤ 0
0 if 0 < x.

We set

K− (t, x) =

x∫
0

k− (t, s) ds
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and introduce the C1-functional φ− :W → R defined by

φ− (u) =
1

p

∥∥u′∥∥p
p
+

1

p
∥u∥pp −

b∫
0

K− (t, u (t)) dt for all u ∈W.

Working as above, via the direct method, we produce a nontrivial negative solution

v0 ∈ [w−, 0] ∩
(
−int Ĉ+

)
of problem (1.1). □

In fact, we can produce extremal nontrivial constant sign solutions, i.e., we show
that there exists a smallest nontrivial positive solution and a biggest nontrivial
negative solution.

We introduce the following two sets of solutions for problem (1.1):

S+ := {u ∈W : u ̸= 0, u ∈ [0, w+] , u is a solution of (1.1)} ,
S− := {v ∈W : v ̸= 0, v ∈ [w−, 0] , v is a solution of (1.1)} .

From Proposition 3.1 and its proof, we have

∅ ̸= S+ ⊆ int Ĉ+ and ∅ ̸= S− ⊆ −int Ĉ+.

Moreover, from Aizicovici-Papageorgiou-Staicu [7] (see also [4]), we know that the
set of nontrivial positive solutions of (1.1) is downward directed (i.e., if u1, u2 are
nontrivial positive solutions of (1.1) , then we can find another nontrivial positive
solution u of (1.1) such that u ≤ u1, u ≤ u2), while the set of nontrivial negative
solutions of (1.1) is upward directed (i.e., if v1, v2 are nontrivial negative solutions
of (1.1) , then we can find another nontrivial negative solution v of (1.1) such that
v1 ≤ v, v2 ≤ v).

In what follows we use the Carathéodory function k (t, x) defined by

(3.5) k (t, x) =


f (t, w− (t)) + |w− (t)|p−2w− (t) if x < w− (t)

f (t, x) + |x|p−2 x if w− (t) ≤ x ≤ w+ (t)

f (t, w+ (t)) + w+ (t)p−1 if w+ (t) < x.

Note that

k (t, x) |T×[0,∞)= k+ (t, x) |T×[0,∞)

and

k (t, x) |T×(−∞,0]= k− (t, x) |T×[0,∞) .

Hypotheses H (f)1 (i) , (iii) imply that

(3.6) k (t, x)x ≥
(
λ̂1 + 1

)
|x|p − c1 |x|r for a.a. t ∈ T, all x ∈ R,

with r > p and c1 = c1 (r) > 0. This growth estimate leads to the following auxiliary
problem

(3.7)

 −
(
|u′ (t)|p−1 u′ (t)

)′
= λ̂1 |u (t)|p−2 u (t)− c1 |u (t)|r−2 u (t) a.e. on T

u (0) = u (b) , u′ (0) = u′ (b) , 1 < p <∞.
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Proposition 3.2. Problem (3.7) admits a unique nontrivial positive solution u ∈ int

Ĉ+, and a unique nontrivial negative solution since (3.7) is odd v := −u ∈ −int
Ĉ+.

Proof. First, we establish the existence of a nontrivial positive solution of (3.7) . So,
we introduce the Carathéodory function

γ+ (t, x) =

{
0 if x ≤ 0(
λ̂1 + 1

)
xp−1 − c1x

r−1 if 0 < x.

We set

Γ+ (t, x) =

x∫
0

γ+ (t, s) ds

and introduce the C1-functional ξ+ :W → R defined by

ξ+ (u) =
1

p

∥∥u′∥∥p
p
+

1

p
∥u∥pp −

b∫
0

Γ+ (t, u (t)) dt for all u ∈W.

Since r > p, it is easily seen that ξ+ is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find u ∈W such that

(3.8) ξ+ (u) = inf {ξ+ (u) : u ∈W} .
Let θ ∈ (0, 1) . Then

ξ+ (θ) = − λ̂1
p
θpb+

c1
r
θrb.

Since r > p, by choosing θ ∈ (0, 1) small, we have

ξ+ (θ) < 0,

hence
ξ+ (u) < 0 = ξ+ (0) .

(see (3.8)), hence
u ̸= 0.

From (3.8) we have
ξ′+ (u) = 0,

and this implies

(3.9) A (u) + |u|p−2 u = Nγ+ (u) .

On (3.9) we act with −u− ∈W and obtain

u ≥ 0, u ̸= 0.

So (3.9) becomes

A (u) = λ̂1u
p−1 − c1u

r−1,

therefore  −
(
|u′ (t)|p−2 u′ (t)

)′
= λ̂1u (t)

p−1 − c1u (t)
r−1 a.e. on T

u (0) = u (b) , u′ (0) = u′ (b) ,
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and we conclude that u ∈ Ĉ+\ {0} is a solution of (3.7) .
Moreover, we have(∣∣u′ (t)∣∣p−1

u′ (t)
)′

≤ c1u (t)
r−1 a.e. on T

hence

u ∈ int Ĉ+

(see Vazquez [19]). Next we show the uniqueness of u. For this purpose, we introduce
the integral functional β+ : L1 (T ) → R = R∪{+∞} defined by

β+ (u) =

 1
p

b∫
0

[(
u

1
p

)′
]p
dt if u ≥ 0, u

1
p ∈W

+∞ otherwise.

From Diaz-Saa [12] (Lemma 1), we know that β+ is proper, convex and lower
semicontinuous.

If u ∈W is a nontrivial positive solution of (3.7) , then from the first part of the

proof, we have that u ∈ int Ĉ+. Hence up ∈ dom β+ and for all h ∈ C1 (T ) and all
λ ∈ (−1, 1) with |λ| small, we have up + λh ∈ dom β+. So, the Gâteaux derivative
of β+ at up in the direction h exists and via the chain rule, we have

β′+ (up) (h) = −1

p

b∫
0

(
|u′ (t)|p−2 u′ (t)

)′

up−1
hdt for all h ∈ Ĉ1 (T ) .

Similarly, if y is another nontrivial positive solution of (3.7) , then again we have

y ∈ int Ĉ+ and

β′+ (yp) (h) = −1

p

b∫
0

(
|y′ (t)|p−2 y′ (t)

)′

yp−1
hdt for all h ∈ Ĉ1 (T ) .

The convexity of β+ implies the monotonicity of β′+. Hence

0 ≤
b∫

0

−
(
|u′ (t)|p−2 u′ (t)

)′

up−1
+

(
|y′ (t)|p−2 y′ (t)

)′

yp−1

 (up − yp) dt

= c1

b∫
0

(
yr−p − ur−p

)
(up − yp) dt,

therefore u = y. This proves the uniqueness of u ∈ int Ĉ+.

Since (3.7) is odd, v = −u ∈ −int Ĉ+ is the unique nontrivial negative solution
of (3.7) . □

Proposition 3.3. If hypotheses H (f)1 hold, then u ≤ u for all u ∈ S+ and v ≤ v
for all v ∈ S−.
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Proof. Let u ∈ S+ and introduce the following Carathéodory function

(3.10) j+ (t, x) =


0 if x < 0(
λ̂1 + 1

)
xp−1 − c1x

r−1 if 0 ≤ x ≤ u (t)(
λ̂1 + 1

)
u (t)p−1 − c1u (t)

r−1 if u (t) < x.

We set

J+ (t, x) =

x∫
0

j+ (t, s) ds

and introduce the C1-functional µ+ :W → R defined by

µ+ (w) =
1

p

∥∥w′∥∥p
p
+

1

p
∥w∥pp −

b∫
0

J+ (t, w (t)) dt for all w ∈W.

It is clear from (3.10) that µ+ is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find u∗ ∈W such that

(3.11) µ+ (u∗) = inf {µ+ (w) : w ∈W} .

For ξ ∈
(
0,min

T
u

)
(recall that u ∈ int Ĉ+), we have

µ+ (ξ) = − λ̂1
p
ξpb+

c1
r
ξrb.

Since r > p, choosing ξ ∈ (0, 1) small, we see that

µ+ (ξ) < 0,

hence
µ+ (u∗) < 0 = µ+ (0) (see (3.11) )

therefore
u∗ ̸= 0.

From (3.11) we have
µ′+ (u∗) = 0

and this implies that

(3.12) A (u∗) + |u∗|p−2 u∗ = Nj+ (u∗) .

On (3.12) , first we act with −u−∗ ∈W and obtain

u∗ ≥ 0, u∗ ̸= 0

(see (3.11)). Then we act with (u∗ − u)+ ∈W . We have

⟨
A (u∗) , (u∗ − u)+

⟩
+

b∫
0

up−1
∗ (u∗ − u)+ dt

=

b∫
0

[(
λ̂1 + 1

)
up−1 − c1u

r−1
]
(u∗ − u)+ dt (see (3.10) )
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≤
b∫

0

k (t, u) (u∗ − u)+ dt (see (3.6) )

=

b∫
0

[
f (t, u) + up−1

]
(u∗ − u)+ dt (since 0 ≤ u ≤ w+)

=
⟨
A (u) , (u∗ − u)+

⟩
+

b∫
0

up−1 (u∗ − u)+ dt (since u ∈ S+),

hence ⟨
A (u∗)−Au, (u∗ − u)+

⟩
+

b∫
0

(
up−1
∗ − up−1

)
(u∗ − u)+ dt ≤ 0,

therefore

|{u∗ > u}|1 = 0,

and we conclude that

u∗ ≤ u.

So, we have proved that

u∗ ∈ [0, u] \ {0} .
Hence (3.12) becomes

A (u∗) = λ̂1u
p−1
∗ − c1u

r−1
∗ ,

and this implies that

u∗ = u.

(see Proposition 3.2). Therefore

u ≤ u for all u ∈ S+.

Similarly, we show that

v ≤ v for all v ∈ S−.

□

Now we are ready to produce extremal nontrivial constant sign solutions for
problem (1.1) .

Proposition 3.4. If hypotheses H (f)1 hold, then problem (1.1) admits a smallest

nontrivial positive solution u∗ ∈ int Ĉ+ and a biggest nontrivial negative solution

v∗ ∈ −int Ĉ+.

Proof. Let C ⊆ S+ be a chain (i.e., a totally ordered subset of S+). We can find
{un}n≥1 ⊆ C such that

inf C = inf
n≥1

un.

We have

(3.13) A (un) = Nf (un) and u ≤ un for all n ≥ 1
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(see Proposition 3.3). Evidently {un}n≥1 ⊆ W is bounded and so, we may assume
that

un
w→ u in W and un → u in C (T ) .

On (3.13) we act with un − u ∈W and pass to the limit as n→ ∞. Then

lim
n→∞

⟨A (un) , un − u⟩ = 0,

hence
un → u in W

(see Proposition 2.2). So, if in (3.13) we pass to the limit as n→ ∞, then

A (u) = Nf (u) and u ≤ u,

therefore u ∈ S+ and u = inf C. Since C is an arbitrary chain, from the Kuratowski-
Zorn lemma we infer that S+ admits a minimal element u∗ ∈ S+.

Let u be a nontrivial positive solution of (1.1) . Since the set of nontrivial positive
solutions of (1.1) is downward directed, we can find ũ∗ ∈ S+ such that ũ∗ ≤ u∗,
ũ∗ ≤ u. The minimality of u∗ implies that ũ∗ = u∗ and so, u∗ ≤ u for any nontrivial
positive solution u of (1.1) .

Similarly, working with the set S− and using the Kuratowski-Zorn lemma, we

can find v∗ ∈ −int Ĉ+, the biggest nontrivial negative solution of (1.1) . □

Using the extremal nontrivial constant sign solutions and tools from Morse the-
ory we can produce a nodal (sign changing) solution, provided we strengthen our
hypotheses on the reaction f (t, .) near zero.

The new stronger conditions on f (t, x) are the following:

H (f)2: f : T × R →R is a Carathéodory function such that f (t, 0) = 0 for
a.a. t ∈ T and
(i) for every ρ > 0, there exists aρ ∈ L1 (T )+ such that

|f (t, x)| ≤ aρ (t) for a.a. t ∈ T , all |x| ≤ ρ;

(ii) there exist functions w+, w− ∈W and constants c−, c+ such that

w− (t) ≤ c− < 0 < c+ ≤ w+ (t) for all t ∈ T,
f (t, w+ (t)) ≤ 0 ≤ f (t, w− (t)) for a.a. t ∈ T,

A (w−) ≤ 0 ≤ A (w+) in W ∗;

(iii) there exist an integer m ≥ 1, functions η, η̂ ∈ L1 (T )+ and δ0 > 0 such
that

λ̂m ≤ η (t) ≤ η̂ (t) ≤ λ̂m+1a.e. on T , λ̂m ̸= η, λ̂m+1 ̸= η,

η (t) ≤ lim inf
x→0

f (t, x)

|x|p−2 x
≤ lim sup

x→0

f (t, x)

|x|p−2 x
≤ η̂ (t)

uniformly for a.a. t ∈ T,

λ̂1x
2 ≤ f (t, x)x for a.a. t ∈ T , all |x| ≤ δ0;
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Remark. Evidently, hypothesis H (f)2 (iii) is stronger than H (f)1 (iii) since now

we require that asymptotically at zero, the quotient f(t,x)

|x|p−2x
stays in the spectral

interval
[
λ̂m, λ̂m+1

]
with nonuniform nonresonance at the two end points.

The example given for the hypotheses H (f)1 also works here with p = 2 < r.

We will again use the function k (t, x) defined by (3.5) .We set

K (t, x) =

x∫
0

k (t, s) ds

and consider the C1-functional φ :W → R defined by

φ (u) =
1

p

∥∥u′∥∥p
p
+

1

p
∥u∥pp −

b∫
0

K (t, u (t)) dt for all u ∈W.

As we already mentioned, to produce a nodal solution, we will employ tools from
Morse theory. For this reason we will compute the critical groups of φ at the origin.

To this end, let λ ∈
(
λ̂m, λ̂m+1

)
and consider the C1-functional σ :W → R defined

by

σ (u) =
1

p

∥∥u′∥∥p
p
− λ

p
∥u∥pp for all u ∈W.

The next result improves Proposition 7 of Aizicovici-Papageorgiou-Staicu [5], where
p ≥ 2 and the proof is different.

Proposition 3.5. C0 (σ, 0) = C1 (σ, 0) = 0.

Proof. Let U :=
{
u ∈W : ∥u′∥pp < λ ∥u∥pp

}
. Evidently, û0 ∈ U and we show that U

is path-connected. To this end, let u ∈ U and let Vu be the path-component of U
containing u. Let

θu = inf

{
∥u′∥pp
∥u∥pp

: u ∈ Vu

}
.

We can find {un}n≥1 ⊆ Vu such that

(3.14) ∥un∥p = 1 for all n ≥ 1 and
∥∥u′n∥∥pp → θu as n→ ∞.

Evidently {un}n≥1 ⊆W is bounded and so, we may assume that

un
w→ v in W and un → v in C (T ) .

Using the Ekeland variational principle and the Lagrange multiplier rule as in
Cuesta-de Figueiredo-Gossez [11] (see the proof of Lemma 2.8, p. 217), we can
find {µn}n≥1 ⊆ R\ {0} such that∣∣∣∣∣∣⟨A (un) , h⟩ − µn

b∫
0

|un|p−2 unh dt

∣∣∣∣∣∣ ≤ εn ∥h∥(3.15)

for all h ∈W, with εn → 0+.
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In (3.15) we choose h = un ∈ W and we see that {µn}n≥1 ⊆ R\ {0} is bounded. It

follows (at least for a subsequence) that

µn → θu.

Next, in (3.15) we choose h = un − v ∈W and pass to the limit as n→ ∞. Then

lim
n→∞

⟨A (un) , un − v⟩ = 0,

therefore

(3.16) un → v in W.

We have

v ∈ Vu ∩ ∂BLp

1

(recall that ∂BLp

1 =
{
u ∈ Lp (T ) : ∥u∥p = 1

}
). The set U ∩ ∂BLp

1 is open in ∂BLp

1

and Vu ∩ ∂BLp

1 is a component of U ∩ ∂BLp

1 . If v ∈ ∂
(
Vu ∩ ∂BLp

1

)
, then by virtue

of Lemma 3.5 of Cuesta-de Figueiredo-Gossez [11], we have v /∈ U ∩ ∂BLp

1 . On the
other hand from (3.14) and (3.16) , we have

∥v∥p = 1 and
∥∥v′∥∥p

p
= θu < λ,

hence

v ∈ U ∩ ∂BLp

1 ,

which is a contradiction. This proves that v ∈ Vu∩∂BLp

1 . So, the path-connectedness
of U will be proved, if we can join û0 and v with a path in U (see Dugundji [13], p.
115).

If v ≤ 0, then v = −û0 (recall that λ̂0 is the only eigenvalue with eigenfunctions
of constant sign). So, the desired path joining û0 and v = −û0 follows from the

minimax characterization of λ̂1 > 0 due to Aizicovici-Papageorgiou-Staicu [5](see
Proposition 1). Next, we assume that v+ ̸= 0. We set

v (s) =
v+ − (1− s) v−

∥v+ − (1− s) v−∥p
for all s ∈ [0, 1] .

From (3.15) and (3.16) , we have

⟨A (v) , h⟩ = θu

b∫
0

|v|p−2 vh dt for all h ∈W.

Choosing h = v+ and h = −v−, we obtain∥∥∥(v+)′∥∥∥p
p
= θu

∥∥v+∥∥p
p
and

∥∥∥(v−)′∥∥∥p
p
= θu

∥∥v−∥∥p
p
,

hence ∥∥(v (s))′∥∥p
p
= θu ∥v (s)∥pp = θu for all s ∈ [0, 1]

(recall that the supports of v+ and v− have disjoint interiors). Therefore v (s) ∈ U
for all s ∈ [0, 1] and

v (1) =
v+

∥v+∥p
= û0
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(as before). Thus s→ v (s) is a continuous path joining v and û0 and remaining in
the set U. This proves the path connectedness of U.

The path connectedness of U implies that

(3.17) H0 (U, z) = 0 with z ∈ U.

Let z ∈ U. Since the functional σ is p-homogeneous, the sublevel set σ0 is con-
tractible in itself. Hence from Granas-Dugundji [15] (p. 389), we have

(3.18) Hk

(
σ0, z

)
= 0 for all k ≥ 0.

The second deformation theorem (see, for example Gasinski-Papageorgiou [14], p.
628), implies that σ0\ {0} and σ−ε (for ε > 0 small) are homotopy equivalent. The
same is true for U = int σ0 and σ−ε (see Granas-Dugundji [15] (p. 407)). So, it
follows that σ0\ {0} and U are homotopy equivalent, hence

(3.19) Hk

(
σ0\ {0} , z

)
= Hk (U, z) for all k ≥ 0.

From (3.17) and (3.19) , it follows that

(3.20) H0

(
σ0\ {0} , z

)
= 0.

We consider the reduced exact homology sequence (see Granas-Dugundji [15] (p.
388))
(3.21)

· · · → Hk

(
σ0\ {0} , z

)
→ Hk

(
σ0, z

) i∗→ Hk

(
σ0, σ0\ {0}

) ∂∗→ Hk−1

(
σ0\ {0} , z

)
→ · · ·

where i∗ is the group homomorphism arising from the corresponding inclusion map
and ∂∗ is the boundary homomorphism. From (3.18) and the exactness of (3.21) , we
have im i∗ = ker ∂∗ = {0} and so we infer that ∂∗ is a group isomorphism between
Hk

(
σ0, σ0\ {0}

)
and a subgroup of Hk−1

(
σ0\ {0} , z

)
. Therefore, by virtue of (3.20)

we have

C1 (σ, 0) = H1

(
σ0, σ0\ {0}

)
= 0.

Finally, from (3.21) it follows that

C0 (σ, 0) = H0

(
σ0, σ0\ {0}

)
= 0.

□

Using this proposition we can compute some critical groups of the functional φ.

Proposition 3.6. If hypotheses H (f)2 hold, then

C0 (φ, 0) = C1 (φ, 0) = 0.

Proof. We consider the homotopy h defined by

h (s, u) = (1− s)φ (u) + sσ (u) for all s ∈ [0, 1] , all u ∈W.

Suppose that we can find {sn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆W such that

(3.22) sn → s ∈ [0, 1] , un → 0 in W and h′u (sn, un) = 0 for all n ≥ 1.

Then we have

A (un) + (1− sn) |un|p−2 un = (1− sn)Nk (un) + snλ |un|p−2 un for all n ≥ 1,
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hence
−
(
|u′n (t)|

p−2 u′n (t)
)′

+ (1− sn) |un (t)|p−2 un (t)

= (1− sn) k (t, un (t)) + snλ |un (t)|p−2 un (t) a.e. on T
un (0) = un (b) , u

′
n (0) = u′n (b) .

As in Aizicovici-Papageorgiou-Staicu [7] (see the proof of Proposition 2) we conclude

that {un}n≥1 ⊆ Ĉ1 (T ) is compact and so, by (3.22) , we have

(3.23) un → 0 in Ĉ1 (T ) .

So, we can find n0 ≥ 1 such that

un (t) ∈ [c−, c+] for all t ∈ T, all n ≥ n0.

Then we have

(3.24) A (un) = (1− sn)Nf (un) + snλ |un|p−2 un for all n ≥ n0 (see (3.5) ).

Let

yn =
un

∥un∥
, n ≥ 1.

Then ∥yn∥ = 1 for all n ≥ 1 and so, we may assume that

(3.25) yn
w→ y in W and yn → y in C (T ) .

From (3.24) it follows

(3.26) A (yn) = (1− sn)
Nf (un)

∥un∥p−1 + snλ |yn|p−2 yn for all n ≥ n0.

On (3.26) we act with yn−y ∈ W, pass to the limit as n→ ∞ and use (3.25) . Then

lim
n→∞

⟨A (yn) , yn − y⟩ = 0,

which implies that

(3.27) yn
w→ y in W, hence ∥y∥ = 1.

Note that
{
Nf (un)

∥un∥p−1

}
⊆ L1 (T ) is uniformly integrable (see hypotheses H (f)2 (i) ,

(ii)). So, using the Dunford-Pettis theorem and hypothesis H (f)2 (iii) (see (3.23)),
we infer that (at least for a subsequence)

(3.28)
Nf (un)

∥un∥p−1

w→ η0 |y|p−2 y in L1 (T ) , with η (t) ≤ η0 (t) ≤ η̂ (t) a.e. on T.

So, if in (3.26) we pass to the limit as n→ ∞ and use (3.27) and (3.28) , we obtain

A (y) = [(1− s) η0 + sλ] |y|p−2 y,

therefore

(3.29)

{
−
(
|y′ (t)|p−2 y′ (t)

)′
= ηs (t) |y (t)|p−2 y (t) a.e. on T

y (0) = y (b) , y′ (0) = y′ (b) .

where

ηs (t) = (1− s) η0 (t) + sλ.
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Note that

(3.30) λ̂m ≤ ηs (t) ≤ λ̂m+1 a.e. on T , λ̂m ̸= ηs, λ̂m+1 ̸= ηs.

Then from (3.29) , (3.30) and Aizicovici-Papageorgiou-Staicu [1] (see also [5],
Proposition 2), we deduce that y = 0, which contradicts (3.27) . This proves that
(3.22) cannot occur. Hence, by the homotopy invariance of critical groups (see for
example Chang [10], p. 334), we have

Ck (φ, 0) = Ck (σ, 0) for all k ≥ 0,

hence

C0 (φ, 0) = C1 (φ, 0) = 0

(see Proposition 3.5). □

Now we are ready to generate a nodal (sign changing) solution.

Proposition 3.7. If hypotheses H (f)2 hold, then problem (1.1) admits a nodal
solution

y0 ∈ [v∗, u∗] ∩ Ĉ1 (T ) .

Proof. Let u∗ ∈ int Ĉ+ and v∗ ∈ −int Ĉ+ be the two extremal nontrivial constant
sign solutions produced in Proposition 3.4. We introduce the following truncation-
perturbation of the reaction f (t, .) :

(3.31) β̃ (t, x) =


f (t, v∗ (t)) + |v∗ (t)|p−2 v∗ (t) if x < v∗ (t)

f (t, x) + |x|p−2 x if v∗ (t) ≤ x ≤ u∗ (t)

f (t, u∗ (t)) + u∗ (t)
p−1 if u∗ (t) < x.

Clearly this is a Carathéodory function. We set

B (t, x) =

x∫
0

β̃ (t, s) ds

and consider the C1-functional ψ :W → R defined by

ψ (u) =
1

p

∥∥u′∥∥p
p
+

1

p
∥u∥pp −

b∫
0

B (t, u (t)) dt for all u ∈W.

In addition, we introduce the positive and the negative truncations of β̃ (t, .) , namely
the Carathéodory functions

β̃± (t, x) = β̃
(
t,±x±

)
.

We set

B± (t, x) =

x∫
0

β̃± (t, s) ds
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and consider the C1-functionals ψ± :W → R defined by

ψ± (u) =
1

p

∥∥u′∥∥p
p
+

1

p
∥u∥pp −

b∫
0

B± (t, u (t)) dt for all u ∈W.

Reasoning as in the proof of Proposition 3.3, we can show that

(3.32) Kψ ⊆ [v∗, u∗] , Kψ+ = {0, u∗} , Kψ− = {v∗, 0} .

Claim. u∗ ∈ int Ĉ+ and v∗ ∈ −int Ĉ+ are both local minimizers of ψ.
From (3.31) it is clear that ψ+ is coercive. Also, it is sequentially weakly lower

semicontinuous. So,we can find ũ∗ ∈W such that

(3.33) ψ+ (ũ∗) = inf {ψ+ (u) : u ∈W} .
Hypothesis H (f)2 (iii) implies that

(3.34) F (t, x) > 0 for a.a. t ∈ T, all x ∈ (0, δ0] .

Therefore, if ξ ∈
(
0,min

{
δ0,min

T
u∗

})
(recall that u∗ ∈ int Ĉ+), then from (3.31)

and (3.34) we have

ψ+ (ξ) = −
b∫

0

F (t, ξ) dt < 0.

Then

ψ+ (ũ∗) < 0 = ψ+ (0) (see (3.33) ),

hence

ũ∗ ̸= 0.

From (3.33) , we have

ũ∗ ∈ Kψ+\ {0} ,
hence

ũ∗ = u∗ ∈ int Ĉ+ (see (3.32) ).

But note that ψ+ |
Ĉ+

= ψ |
Ĉ+

. Hence u∗ is a local Ĉ1 (T )−minimizer of ψ. From

Aizicovici-Papageorgiou-Staicu [7] (see Proposition 2) we infer that u∗ ∈ int Ĉ+ is
a local W−minimizer of ψ.

Similarly for v∗ ∈ −int Ĉ+, using this time ψ−. This proves the Claim.
We may assume that ψ (v∗) ≤ ψ (u∗) (the analysis is similar if the opposite

inequality holds).

Since u∗ ∈ int Ĉ+ is a local minimizer of ψ (see the Claim), we can find ρ ∈ (0, 1)
small such that

(3.35) ψ (v∗) ≤ ψ (u∗) < inf {ψ (u) : ∥u− u∗∥ = ρ} =: ηρ, ∥v∗ − u∗∥ > ρ

(see Aizicovici-Papageorgiou-Staicu [3], p.57). Note that ψ is coercive (see (3.31)),
hence it satisfies the PS-condition. This fact and (3.35) permit the use of Theorem
2.1 (the mountain-pass theorem). So, we can find y0 ∈W such that

(3.36) y0 ∈ Kψ and ηρ ≤ ψ (y0) .
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From (3.35) and (3.36) , it follows that y0 ̸= u∗, y0 ̸= v∗. Also, by (3.31) , (3.32) and

(3.36) we infer that y0 ∈ [v∗, u∗]∩ Ĉ1 (T ) is a solution of (1.1) . Since y0 is a critical
point of mountain pass type, we have

(3.37) C1 (ψ, y0) ̸= 0 (see Chang [10]).

On the other hand, note that φ |[v∗,u∗]= ψ |[v∗,u∗] (see (3.5) and (3.31)). Since

u∗ ∈ int Ĉ+ and v∗ ∈ −int Ĉ+, and Ĉ1 (T ) is dense in W, we have

Ck (φ, 0) = Ck (ψ, 0) for all k ≥ 0

(see Palais [17]), hence

(3.38) C1 (ψ, 0) = C1 (φ, 0) = 0

(see Proposition 3.6). Comparing (3.37) and (3.38) , we conclude that y0 ̸= 0.

The extremality of u∗ and v∗ implies that y0 ∈ [v∗, u∗]∩Ĉ1 (T ) is a nodal solution
of (3.37) . □

Therefore, we can state the following multiplicity theorem for problem (1.1) .

Theorem 3.8. If hypotheses H (f)2 hold, then problem (1.1) has at least three
nontrivial solutions

u∗ ∈ int Ĉ+, v∗ ∈ −int Ĉ+, and y0 ∈ [v∗, u∗] ∩ Ĉ1 (T ) nodal.

4. Semilinear equations

In this section, we deal with the semilinear case (i.e., p = 2). So, the problem
under consideration is now the following:

(4.1)

{
−u′′ (t) = f (t, u (t)) a.e. on T := [0, b]

u (0) = u (b) , u′ (0) = u′ (b) .

By strengthening the regularity of f (t, .) , we can improve Theorem 3.8 and produce
a second nodal solution, for a total of four nontrivial solutions with a definite sign.

The new stronger conditions on f (t, x) are the following:

H (f)3: f : T × R →R is a measurable function such that for a.a. t ∈ T
f (t, 0) = 0, f (t, .) ∈ C1 (R) and
(i) for every ρ > 0, there exists aρ ∈ L1 (T )+ such that∣∣f ′x (t, x)∣∣ ≤ aρ (t) for a.a. t ∈ T , all |x| ≤ ρ;

(ii) there exist functions w+, w− ∈W and constants c−, c+ such that

w− (t) ≤ c− < 0 < c+ ≤ w+ (t) for all t ∈ T,
f (t, w+ (t)) ≤ 0 ≤ f (t, w− (t)) a.e. on T,

A (w−) ≤ 0 ≤ A (w+) in W ∗;

(iii) f ′x (t, 0) = lim
x→0

f(t,x)
x uniformly for a.a. t ∈ T and there exist an integer

m ≥ 1 and δ0 > 0 such that

λ̂m ≤ f ′x (t, 0) ≤ λ̂m+1a.e. on T , λ̂m ̸= f ′x (t, 0) , λ̂m+1 ̸= f ′x (t, 0) ,

λ̂1x
2 ≤ f (t, x)x for a.a. t ∈ T , all |x| ≤ δ0;
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(iv) if ρ0 := max {∥w+∥∞ , ∥w−∥∞} , then there exists ξ0 > 0 such that for
a.a. t ∈ T, the function x→ f (t, x)+ξ0x is nondecreasing on [−ρ0, ρ0].

In this case

φ (u) =
1

2

∥∥u′∥∥2
2
+

1

2
∥u∥22 −

b∫
0

K (t, u (t)) dt for all u ∈W (see (3.5) )

ψ (u) =
1

2

∥∥u′∥∥2
2
+

1

2
∥u∥22 −

b∫
0

B (t, u (t)) dt for all u ∈W (see (3.31) )

σ (u) =
1

2

∥∥u′∥∥2
2
− λ

2
∥u∥22 for all u ∈W (with λ ∈

(
λ̂m, λ̂m+1

)
).

Note that φ, ψ ∈ C2−0 (W ) and σ ∈ C2 (W ) . Moreover, since λ ∈
(
λ̂m, λ̂m+1

)
,

u = 0 is a nondegenerate critical point of σ of Morse index dm = dim
m⊕
i=0

E
(
λ̂i

)
.

Hence

(4.2) Ck (σ, 0) = δk,dmZ for all k ≥ 0.

Then, as in the proof of Proposition 3.6, using the homotopy invariance of critical
groups, we arrive at:

Proposition 4.1. If hypotheses H (f)3 hold, then

Ck (φ, 0) = δk,dmZ for all k ≥ 0.

Now, we can state and prove a multiplicity theorem for problem (4.1) .

Theorem 4.2. If hypotheses H (f)3 hold, then problem (4.1) has at least four non-
trivial solutions

u0 ∈ int Ĉ+, v0 ∈ −int Ĉ+, and y0, ŷ ∈ int
Ĉ1(T )

[v0, u0] nodal.

Proof. From Theorem 3.8 we already have three nontrivial solutions

u0 ∈ int Ĉ+, v0 ∈ −int Ĉ+, and y0 ∈ [v0, u0] ∩ Ĉ1 (T ) nodal.

Without any loss of generality, we may assume that u0 and v0 are extremal (i.e.,

u0 = u∗ ∈ int Ĉ+ and v0 = v∗ ∈ −int Ĉ+, see Proposition 3.4). Let ξ0 > 0 be as
postulated by hypothesis H (f)3 (iv) . Then

−u′′0 (t) + ξ0u0(t) = f (t, u0(t)) + ξ0u0(t)

≥ f (t, y0(t)) + ξ0y0(t) (see H (f)3 (iv) and recall that y0 ≤ u0)

= −y′′0 (t) + ξ0y0(t) a.e. on T,

hence

(u0 − y0)
′′ (t) ≤ ξ0 (u0 − y0) (t) a.e. on T,
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and this implies that

u0 − y0 ∈ int Ĉ+

(see Vazquez [19]). Similarly, we show that

y0 − v0 ∈ int Ĉ+,

therefore
y0 ∈ int

Ĉ1(T )
[v0, u0] .

Let h ∈ W. Since u0 − y0 ∈ int Ĉ+, we see that for t ∈ (−1, 1) with |t| small, we
have

(y0 + th) (t) < u0 (t) .

Hence ψ′′ (y0) exists in the direction h and we have

(4.3)
⟨
ψ′′ (y0) (h) , w

⟩
=

b∫
0

h′w′ dt+

b∫
0

hw dt−
b∫

0

β̃′x (t, y0)hw dt for all h,w ∈W

(recall that W is dense in Ĉ1 (T )). Note that since u0 − y0 ∈ int Ĉ+, we can find
ρ > 0 small such that for every

u ∈ BĈ(T )
ρ :=

{
w ∈ Ĉ (T ) : ∥w − y0∥Ĉ(T )

< ρ
}

we have u0 − u ∈ int Ĉ+. Since W ↪→ Ĉ (T ) continuously (in fact compactly), we
can find ρ1 ∈ (0, ρ) small such that

Bρ1 (y0) := {w ∈W : ∥w − y0∥ < ρ1} ⊆ BĈ(T )
ρ .

Then from (4.3) it follows that ψ ∈ C2 (Bρ1 (y0)) . Recall that

C1 (ψ, y0) ̸= 0 (see (3.37) )

hence

(4.4) Ck (ψ, y0) = δk,1Z for all k ≥ 0 (see Bartsch [8]).

From Proposition 4.1, we have

(4.5) Ck (ψ, 0) = δk,dmZ for all k ≥ 0.

Recall (see the Claim in the proof of Proposition 3.7) that u0 and v0 are local
minimizers of ψ. Hence

(4.6) Ck (ψ, u0) = Ck (ψ, v0) = δk,0Z for all k ≥ 0.

Finally, note that ψ is coercive (see (3.31)). Hence

(4.7) Ck (ψ,∞) = δk,0Z for all k ≥ 0.

Suppose that Kψ = {0, u0, v0, y0}. From Morse relation (see (2.2)) with t = −1,
we have

(−1)dm + 2 (−1)0 + (−1)1 = (−1)0

hence
(−1)dm = 0,

which is a contradiction. Therefore there exists ŷ ∈ Kψ, ŷ /∈ {0, u0, v0, y0} ,
ŷ ∈ [v0, u0] (see (3.33) and recall that u0, v0 are extremal solutions). Hence ŷ ∈
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[v0, u0]∩ Ĉ1 (T ) is a nodal solution of (1.1) . As we did for y0, using H (f)3 (iv) ,
we show that ŷ ∈ int

Ĉ1(T )
[v0, u0] . □

In Theorem 4.2, at zero, we assumed nonuniform nonresonance with respect to the

spectral interval
[
λ̂m, λ̂m+1

]
, m ≥ 1. It is natural to ask whether such a multiplicity

theorem (”four solutions theorem”) is still valid when resonance occurs at zero. The
answer to this question is affirmative provided we further strengthen the conditions
on f (t, .) near zero.

Now we assume that the reaction in the problem (4.1) has the form

(4.8) f (t, x) = λ̂mx+ f0 (t, x) , where m ≥ 1.

The hypotheses on the perturbation f0 (t, x) are the following:

H (f)4: f0 : T × R →R is a measurable function such that, for a.a. t ∈ T,
f0 (t, 0) = 0, f0 (t, .) ∈ C1 (R) and
(i) for every ρ > 0, there exists aρ ∈ L1 (T )+ such that∣∣(f0)′x (t, x)∣∣ ≤ aρ (t) for a.a. t ∈ T , all |x| ≤ ρ;

(ii) there exist functions w+, w− ∈W and constants c−, c+ such that

w− (t) ≤ c− < 0 < c+ ≤ w+ (t) for all t ∈ T,

λ̂mw+ (t) + f0 (t, w+ (t)) ≤ 0 ≤ λ̂mw− (t) + f0 (t, w− (t))

a.e. on T,

A (w−) ≤ 0 ≤ A (w+) in W ∗;

(iii) there exist r > 2, constants c2, c3 > 0 and δ0 ∈ (0,min {c+,−c−, 1})
such that

f0 (t, x)x ≥ 0, c2 |x|r−1 ≤ |f0 (t, x)| ≤ c3 |x|r−1

for a.a. t ∈ T , all |x| ≤ δ0;

(iv) if ρ0 := max {∥w+∥∞ , ∥w−∥∞} , then there exists ξ0 > 0 such that for
a.a. t ∈ T, the function x→ f0 (t, x)+ξ0x is nondecreasing on [−ρ0, ρ0].

Remark. Note that if in hypotheses H (f)3 (i) and H (f)4 (i) we assume aρ ∈
L∞ (T )+ , then conditions H (f)3 (iv) and H (f)4 (iv) automatically hold.

In what follows, we set

H0 = E
(
λ̂m

)
and H̃ =

(
H0

)⊥
.

We have the following orthogonal direct sum decomposition

W = H0 ⊕ H̃.

Proposition 4.3. If hypotheses H (f)4 hold, then there exist ρ > 0 and ξ ∈ (0, 1)
such that⟨

φ′ (u) , u0
⟩
≤ 0 for all u = u0 + ũ ∈ H0 ⊕ H̃, ∥u∥ ≤ ρ, ∥ũ∥ ≤ ξ ∥u∥ .
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Proof. We have

(4.9)
⟨φ′ (u) , h⟩ = ⟨A (u) , h⟩+

b∫
0

u (t)h (t) dt−
b∫
0

k (t, u (t))h (t) dt

for all u, h ∈W

For ρ > 0 and ξ ∈ (0, 1) (to be specified in the process of the proof), we introduce
the set

Dρ,ξ :=
{
u ∈W : u = u0 + ũ, ∥u∥ ≤ ρ, ∥ũ∥ ≤ ξ ∥u∥

}
.

Since W is embedded continuously (in fact compactly) in C (T ) , we can find c4 > 0
such that

∥u∥∞ ≤ c4 ∥u∥ for all u ∈W.

So, by choosing ρ ∈ (0, 1) small, we have

|u (t)| ≤ c4 ∥u∥ ≤ c4ρ ≤ δ0 for all u ∈W, all t ∈ T.

Then for all u ∈W with ∥u∥ ≤ ρ, because of (3.5) and (4.8) , equation (4.9) becomes

(4.10)
⟨
φ′ (u) , h

⟩
= −

b∫
0

f0 (t, u (t))h (t) dt for all h ∈ H0.

So, we choose such a small ρ ∈ (0, 1). Moreover, we can always choose ξ ∈ (0, 1)
small so that ∥∥u0∥∥ ≥ 1

2
∥u∥ for all u ∈ Dρ,ξ.

Also, from Motreanu-Motreanu-Papageorgiou [16], we know that given δ ∈ (0, b) ,
we can find µδ > 0 such that if I0 :=

{
t ∈ T :

∣∣u0 (t)∣∣ < µδ
∥∥u0∥∥} then |I0|1 ≤ δ, for

all u0 ∈ H0.
We have

(4.11)

b∫
0

f0 (t, u)u
0dt =

b∫
0

f0 (t, u)u dt−
b∫

0

f0 (t, u) ũ dt

(since u = u0 + ũ). For t ∈ T\I0 and u ∈ Dρ,ξ, we obtain

|u (t)| ≥
∣∣u0 (t)∣∣− |ũ (t)| ≥ µδ

∥∥u0∥∥− c4 ∥ũ∥ ≥
(µδ
2

− c4ξ
)
∥u∥ .

Choosing ξ ∈ (0, 1) even smaller if necessary, we have

(4.12) |u (t)| ≥ c5 ∥u∥ for some c5 > 0, all t ∈ T\I0, all u ∈ Dρ,ξ.

Therefore∫
T\I0

f0 (t, u)u dt =

∫
T\I0

|f0 (t, u)| |u| dt (see H (f)4 (iii) )

≥ c2

∫
T\I0

|u|r dt (see H (f)4 (iii) )

≥ c2c
r
5 |T\I0|1 ∥u∥

r (see (4.12) )(4.13)

≥ c6 (b− δ) ∥u∥r with c6 = c2c
r
5 > 0, for all u ∈ Dρ,ξ.
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So, by (4.13) and H (f)4 (iii) we get

b∫
0

f0 (t, u)u dt =

∫
T\I0

f0 (t, u)u dt+

∫
I0

f0 (t, u)u dt

≥
∫

T\I0

f0 (t, u)u dt(4.14)

≥ c7 ∥u∥r for all u ∈ Dρ,ξ

with
c7 = c6 (b− δ) > 0.

Also, we have

b∫
0

f0 (t, u) ũdt ≤
b∫

0

|f0 (t, u)| |ũ| dt

≤
b∫

0

c3 |u|r−1 |ũ| dt (see H (f)4 (iii) )

≤ c8 ∥u∥r−1 ∥ũ∥ for some c8 > 0(4.15)

≤ c8ξ ∥u∥r for all u ∈ Dρ,ξ.

Returning to (4.11) , using (4.14) , (4.15) and choosing ξ ∈ (0, 1) even smaller if
necessary, we arrive at

b∫
0

f0 (t, u)u
0dt ≥ c9 ∥u∥r for some c9 > 0, all u ∈ Dρ,ξ.

Then from (4.10) it follows that⟨
φ′ (u) , u0

⟩
≤ 0 for all u ∈ Dρ,ξ.

□

This proposition implies that the angle condition of Bartsch-Li [9] is satisfied.
So, invoking Proposition 2.5 of [9], we have:

Proposition 4.4. If hypotheses H (f)4 hold, then

Ck (ψ, 0) = δk,dmZ for all k ≥ 0, with dm = dim

m⊕
i=0

E
(
λ̂i

)
.

Then the proof of Theorem 4.2 remains valid, and we can state the following
multiplicity theorem:

Theorem 4.5. If hypotheses H (f)4 hold, then problem (4.1) has at least four non-
trivial solutions

u0 ∈ int Ĉ+, v0 ∈ −int Ĉ+, and y0, ŷ ∈ int
Ĉ1(T )

[v0, u0] nodal.
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