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Minimal Time Function and Viscosity Solutions ~ 

V.  S T A I C U  2 

Communicated by R. Conti 

Abstact. Two theorems in Ref. 1 are generalized. It is proved that, if 
V(A, F) is the set of points that can be steered to the origin along a 
solution of the control system x ' =  A x - c ,  if c( t )e  F, F is a compact 
subset of R ", 0e  intrelco F, and if a rank condition holds, then the 
minimal time function T( . )  is a viscosity solution of the Bellman 
equation 

max{(DT(x),  y - Ax): 3' e co F} - 1 = O, x e  V(A, F)\{O}, 

and of the Hhjek equation 

1 - max{ (DT(x ) ,  exp[-AT(x)]):  y e co F} = O, x e V(A, F). 

Key Words. Minimal time function, Bellman equation, H~tjek equation, 
viscosity solutions, linear control system. 

1. Introduction 

The concep t  o f  v iscos i ty  so lu t ion  o f  f i rs t -order  H a m i l t o n - J a c o b i  

equa t ions  was i n t roduced  by  Cranda l l  and  Lions  in Ref. 2. This work  was 
r e fo rmu la t ed  and s impl i f ied  by  Cranda l l  et al. in Ref. 3. We  refer  to Ref. 4 
for  an extensive reference  on the bas ic  aspects  o f  this theory.  Lions p roved  
in Ref. 5 that ,  for  a class o f  op t ima l  cont ro l  p rob lems ,  the va lue  func t ion  
is the  un ique  viscosi ty  so lu t ion  o f  the a s soc ia t ed  H a m i l t o n - J a c o b i  equat ion .  
Ne i the r  this  resul t  nor  the  un iqueness  results  in Refs. 2, 3, 6, and  7 can be 
a p p l i e d  to the l inear  min ima l  t ime p rob lem,  which  will  be cons ide red  in 
this paper .  
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U. Dini of the Universit~ di Firenze, Firenze, Italy. The author is indebted to Prof. R. Conti 
for stimulating discussions. 
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We consider the linear control system 

x ' = A x - c ,  (1) 

where the state vector x is a function of t - 0  with values x(t) in R", A is 
a n-square matrix, and the control parameter c is a function of  t - 0  with 
values in a subset F of  R n. 

Let 

Cr = {c(- ) : [0, oo) ~ F: c(. ) is locally integrable}; 

let 

V(t ,A ,F)={f fexp(-sA)c(s)  ds: c(. )~ Cr} (2) 

be the set of points in R n that can be steered to the origin along a solution 
of (1) in time t; and let 

V(A, F) = U v(t, A, F). (3) 
t_>O 

The function T( . ) ,  defined by 

T(x)=min{t>-O: x~ V(t,A,F)}, i f x ~  V(A, F), (4a) 

T(x) = + ~ ,  otherwise, (4b) 

is said to be the minimal time function. 
We prove that, if F is a compact subset of R", 0 ~ intrelco F, and the 

following rank condition holds: 

y ~ C ~, A*y --- Ay, y*F = const ~ y = 0, (5) 

then T(.  ) defined in (4) is a viscosity solution of the Bellman equation 

max{(DT(x), y -Ax) :  y ~ c o F } - I  =0,  x~  V(A,F)\{0}, (6) 

and of the H~tjek equation 

1 -max{(DT(x), exp[-AT(x)]): y ~ co F} = 0, 

x ~ V(A, F). (7) 

This generalizes Theorem 2 and Theorem 3 in Ref. 1. 
We note that, for the case when T ( . )  is locally Lipschitz, necessary 

and sufficient conditions of optimality were obtained by Mignanego and 
Pieri in Refs. 8 and 9, using the Clarke's generalized gradient. 
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2. Preliminaries 

Let R" be the n-dimensional Euclidian space; let (., .) be the scalar 
product; and let 1. [ be the norm on R". For a subset X of R", we denote 
by co X the convex hull of X, by OX the boundary of X, and by intrelco X 
the interior of coX relative to its affine hull. 

For x e  R" and r > 0 ,  we consider 

B(x, r) ={ye R": [y-xl<r}. 

For an open subset ft  C R", we denote 

C(O) = {u(. ) : f~--> R: u(. ) is continuous}. 

Definition 2.1. Let u ( . ) e  C(Ft) and x e O .  

OFU(X)={S~e R": l iminf  u(x + h ) - u ( x ) - ( ~ '  h ) > 0 }  
I h l  - 

is said to be the Fr6chet subditterential of u(.  ) in x; and 

O~u(x)={ ' eRn: l imsupu(x+h) -u (x ) - (~ 'h )  [h I -<0 

is said to be the Fr6chet superditterential of u ( . )  in x. 
For equivalent definitions and basic properties of this Fr6chet semi- 

differentials, we refer to Ref. 10. 
In what follows, we use the following equivalent definitions: 

O~-u(x)={~eR": ( ~ ) r > 0 ,  w ( . ) e  C(R+): w(0)=0,  u(y)>-u(x) 

+ (~, y -  x)+ ly -  xl,o(ly- xl), Vy e B(x, r)}, (8) 

O~u(x) ={~:e R": ( ~ ) r >  O, o9(. )e  C(R+): w(O) =0,  u(y) < - u(x) 

+ (~, y -  x)+ ly -  xlo)fly- xl), r y e  B(x, r)}. (9) 

Let now ~ C R" be open, and let F(-  ) : lq x R x R" ~ R be a continuous 
function. 

Definition 2.2. (Refs. 2 and 3). 
a viscosity solution of the equation 

F(x, u(x), Du(x)) = O, 

if the following inequalities hold: 

F(x,u(x),~)<-O, VxeO, 

F(x, u(x), ~) >- O, Vx e a,  

A function u( . )  e C(O) is said to be 

xef~,  (10) 

va c a;-u(x), (11) 

V~ e OT-u(x). (12) 



84 JOTA: VOL. 60, NO. 1, JANUARY 1989 

Remark 2.1. If u( . )  is Fr6chet differentiable at x, then 

O~u(x) = O~u(x) = {Du(x)} ,  

where Du(x )  denote the differential of u(x)  at x. It follows that a classical 
(i.e., of class C 1) solution of (10) is also a viscosity solution. 

3. Main Results 

We consider the linear control system (1); and, for x ~ R" and c(. ) ~ Cr, 
we denote by w(t, x, c) the solution of (1) corresponding to the control c(. ) 
and the initial condition x(0)= x; that is, 

Io w(t, x, c) = exp ( tA)x  - exp[(t - s)A]c(s)  ds. (13) 

Definition 3.1. Let x ~  V(A, F). A control Cx(')~ Cr is said to be 
optimal relative to x if 

fO T(x) x = exp ( - sA )cx ( s )  ds. 

Principle 3.1. (Ref. 11, p. 355). If  x ~ V(A,  F), then 

(i) for every c ( - ) c  Cr and t~ [0, T(x)], 

T(w(t ,  x, c)) >- T(x )  - t; (14) 

(ii) if cx(') is an optimal control relative to x, then 

T(w(t ,  x, cx)) = T(x )  - t. (15) 

We use this principle to prove the following result. 

Theorem 3.1. If F is a compact subset of R ~, 0~ intrelco F, and (5) 
holds, then T(. ) defined in (4) is a viscosity solution of the Bellman equation 

max{(DT(x ) ,  y - A x ) :  y ~ c o F } - l = 0 ,  x~ V(A,F)\{0}. (16) 

Proof. Since 0~intrelco F and (5) holds, from (1.16.25) in Ref. 12 it 
follows that V(A, F) is open. On the other hand, 0 ~ intrelco F implies that 
0 ~ intrel V(t, A, F), for any t > 0; and, because F is compact, according to 
Theorem II.4.3. in Ref. 12, T(. ) is continuous on V(A,  F). 

Let x ~ V(A,  F)\{0}; let y ~ F; and let 

Io w ( t ) = e x p ( t A ) x -  exp(sA)yds .  
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Then, from (14), we obtain 

T(w(t))  > - T ( x ) - t ,  Vte  (0, T(x)]. (17) 

If  ~ e O~T(x), then from (9) there exist rl > 0 and ~o~(. ) : R +-~ R + such that 

wl(0) = 0, wl(" ) is continuous, (18) 

T ( y )  <- r ( x )  + (t~, y - x) + l y  - xl~oa(I y - x l ) ,  

Vy e B(x, rO. (19) 

Because 

lim w(t) = x, (20) 
t ~ 0 +  

there exist t ie (0 ,  T(x)] such that w ( t ) e B ( x ,  rl), for any re(0,  tl]; and, 
from (17) and (19), we obtain 

-t-<(~, w( t ) -  x) + lw( t ) -  xl,o~(Iw( t ) -  xl), 

hence 

Since 

- 1 -  (~, (1 / t ) lw( t ) -  xlo,,(Iw(t)-xl). 

( 1 / t ) [ w ( t ) - x ] = ( 1 / t ) [ e x p ( t A ) - I J x - ( 1 / t ) ( f / e x p ( s A )  ds )y ,  

(21) 

it follows that 

lim (1/t)[w(t)  - x ]  = Ax - Y. 
t-->O+ 

From (18), (20), and (22), it follows that 

lim (1/t)lw(t) -x lwl ( Iw( t  ) -x i )  = 0; 
t - > 0 +  

and, from (21), (22), and (23), we obtain that 

-1-< (~, A x -  y), for any y e F .  

Then, also 

(~, y - Ax) <- O, for any y e co F; 

hence 

(22) 

(23) 

max{(s c, y - A x ) :  y ~ c o  F}_< 1, V~e a~-T(x). (24) 

Let now Cx(" ) be an optimal control relative to x e V(A, F)\{0}, and let 

Io w*(t) = e x p ( t A ) x -  exp[( t -s)A]c~(s)  ds. 
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Then, from (15), 

T(w*(t))= T ( x ) - t ,  for any t~(0 ,  T(x)]. (25) 

If  ~7 ~ a~T(x) ,  then from (8) there exist r2> 0 and ~%: R + ~  R + such that 

~oz(0) = 0, oJ2(. ) is continuous, (26) 

T(y) >- T(x) +07, Y - x ) +  [y - xlo 2(t y - x l ) ,  

Vy ~ B(x, r2). (27) 

Because 

lim w*(t)=x, (28) 
t ~ O +  

there exists t2 ~ (0, T(x)] such that 

w*(t)eB(x,  r2), for all t e (0, t2]. 

Hence, from (25) and (27), for any t e (0, t2], we have 

-1 >- (rl, (1/t)[w*(t) - x])+ (1/t)lw*(t) - x lo ,= ( lw*( t )  - x l ) .  

Since 

where 

(1/t)[w*(t) -x] 

;o = ( 1 / t ) [ e x p ( t A ) - I ] x - ( 1 / t )  exp[t-s)A]cx(s) ds 

(1/ t)[exp(tA) - I ] x  - (1 / t )  W( t, A, F), 

(29) 

(30) 

lira (1/tk,) fo k" exp[(tkp-s)A]G(s) ds = Yo. 
p--->eo 

(31) 

and 

W ( t , A , F ) = { f f e x p [ ( t - s ) A ] c ( s )  ds: c(. )~ Cr}; 

and since F is compact, from (1.15.2) in ReL 12 it follows that 

lim ( I / t )  W(t, A, F) = co F 
t--~O+ 

in the Pompeiu-Hausdort t  metric. 
Therefore, for any sequence tk ~ 0+ ,  there exist Yo ~ co F and a sub- 

sequence tk, ~ 0+  such that 

tk, ~ (0, t2], for any p ~ N, 
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From (30) and (31), it follows that 

lim (1/ tkp)[ w*( tk~) -- X] = AX - %; 
p ~ e o  

and, from (26), (28), and (32), we obtain 

lim ( 1 /  t )lw*( tkp) - x l o d t w * (  - xl)  = 0. 
p ~ c ~  

From (29), (32), and (33), it follows that 

hence 

and also 

-1  -> (r/, A x -  To), 

1 <- 07, % -  Ax)  <- max{(~?, y - Ax): y e co F}, 

(32) 

(33) 

Remark 3.1. Since x = 0 is a minimum point for T( .  ), it follows that 
0~ apT(0)  (Proposition 4.7 in Ref. 10); and because T( o ) is not differenti- 
able at x = 0 (Lemma 2 in Ref. 1), it follows that a~T(0) = Q. Hence, if (24) 
is trivially satisfied at x = 0, (34) can be not satisfied. 

Remark 3.2. Theorem 3.1 generalizes Theorem 3 in Ref. 1, because if 
T( .  ) is differentiable in x, then 

O-~ T(x)  = o+ r ( x )  = {DT(x)} ,  

and from (24) and (34) it follows that (16) holds. 

Theorem 3.2. If  F is a compact subset of  R n, 0 ~ intrelco F, and if (5) 
holds, then T( .  ) defined by (4) is a viscosity solution of the H&jek equation 

1 - m a x { ( D T ( x ) ,  e x p [ - A T ( x ) ] y ) :  3/e co F} = 0, 

x e V(A,  F). (35) 

Proof. As in the proof  of  Theorem 3.1, V(A, F) is open and T( - )  is 
continuous on V(A, F). Let x e V(A,  F) and let t = T(x) .  

If ~ e OFT(x), then there exist r~ > 0 and ~o1(" ) such that (18) and (19) 
hold. 

From (24) and (34), it follows that T(.  ) is a viscosity solution of (16). [] 

max{(~, y -  Ax): y e c o  F}- - l ,  forany~7~O-~T(x). (34) 
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Let S k " - ) O  , S k Y~ O. From Proposition 2 in Ref. 1, 
V(Sk, A, F) such that 

yk~O, T(yk)=Sk,  

T[X + exp(--At)yk] = T(x) + T(Yk). 

Thus, there exists k0 6 N such that 

x + exp(--At)yk ~ B(x, r0,  for all k - ko; 

and from (19) and (36), we obtain, for k -  > ko, 

1 <-(~, [1/T(yk)] exp(--At)yk) 

+ [[1/T(yk)] exp(-At)yk[tOl(lexp(-At)Ykl).  

Since F is compact, 

lim (1/ t )V( t ,  A, F) = c o  F 
t~O 

(Proposition 1 in Ref. 1), and there exist 
Ykp/T(ykp) such that 

lim yk./ T( yk.) = ~o. 
p-~OO 

From (18), (36), and (38), it follows that 

lim l exp( -At  )[ykJ T( yk,) ]lto~(lexp(-At) Yk~]) = 0; 
p --~ oo 

and, from (37), (38), and (39), we obtain 

1 - (~, exp ( -A t )  ~o). 

Hence, 

that is, 

there exist Yk E 

(36a) 

(36b) 

(37) 

7o~ co F and a subsequence 

-1  >- (-~, exp(-At)yo)  >- min{(-~, exp( -A t )y ) :  Y ~ co F} 

= -max{(~, exp ( -At )y ) :  3' ~ co F}; 

(38) 

(39) 

1 - max{(~:, exp ( -At )y ) :  2'~ co F}-<0, 

for any s ¢ ~ a~ T(x). (40) 

If r/~ aFT(x) ,  then there exist r2> 0 and o~2(- ) such that (26) and (27) 
hold. 
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Let y e 0  co F. Then, from Proposition 1 in Ref. 1, there exist Yk e 
V(A, F) such that 

Yk --> O, Yk ~ O, l im[yk/T(yk)]  = 3'. (41) 

From (27), (41), and the inequality 

T[x + e x p ( - A t ) y k ]  < - T ( x ) +  T(yk)  

(Proposition 2 in Ref. 1), it follows that there exist ko~ N such that, for 
any k - ko, 

1 - (~7, exp(--At)[yk/r(yk)]> 

+ lexp(-At)[  Yk/T(yk)]lto2(lexp(--At)yk[); (42) 

and, from (41) and (42), we obtain 

1 -  (T/, exp ( -At )  y), for any y e 0  co F. (43) 

From the convexity of co F, it follows that (43) holds for any y ~ co F, hence 

- 1  -< min{(-'q, e x p ( - A t ) y ) :  y e co F} 

= -max{(r/, exp( -At )y ) :  y c  co F}. 

Therefore, 

1 - max{(r/, e x p [ - A T ( x ) ] 7 ) :  7~ co F}->0, 

for any r/~ 07eT(x); (44) 

and, from (40) and (44), it follows that T(. ) is a viscosity solution of (35). 
[] 

Remark 3.3. Theorem 3.2 generalizes Theorem 2 in Ref. 1, because if 
T(. ) is differentiable in x, then 

OFT(x) = O+vT(x) = {DT(x)};  

and, from (40) and (44), it follows that the H~jek equation 

max{(DT(x) ,  e x p [ - A T ( x )  ]): y ~ co F} = 1 

is satisfied. 
In general, T(. ) is not the unique viscosity solution of Eqs. (16) and 

(35) as the following example proves. 

Example 3.1. Let 

a = [ ~  10] , F = { [ Y l ] e R 2 : ' Y i ] - < l ' i = l ' 2 }  " 7 2  



90 JOTA: VOL. 60, NO. t, JANUARY 1989 

Obviously, the assumptions in Theorems 3.1 and 3.2 are satisfied; hence, 
Y(. ) defined by (4) is a viscosity solution of Eqs. (16) and (35). 

We prove that u(. ) : R 2 ~  R defined by u(x)= x2, x2 the second com- 
ponent of x, is also a viscosity solution of (16) and (35). We note first that 
u(- ) is not the minimal time function T(- ): 

x = [ i ] c v ( a , F )  , u ( x ) =  1, but T ( x ) ~  1; 

see Ref. 9. Since u(. ) is differentiable on R 2 and its differential is 

it follows that 

max{(Du(x),  3, - Ax): 3  ̀e F} 

1 
= 1, 2} = m a x ( ( [ 0 1 ] ,  [ ~ : ] - [ :  0][12]):11 ]3`it_ < 1, i 

= max{3`2:3'2 ~ [ -1 ,  1]} = 1, 

max{(Du(x),  exp[ -Au(x )  ]3`: 3  ̀c F} 

-- max{([01],  [~ -u(x)][3`l]):13`,]<<-l, i=l,2} 
0 JLy2J 

= max{y2: 3`2~ [ -1 ,  t ]}= 1. 

Therefore, u(- )  is a classical solution, hence also a viscosity solution, of  
Eqs. (16) and (35), which is different from T(. ) .  

The uniqueness problem of the minimal time function as viscosity 
solution of Bellman equation was studied in Ref. 13. 
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