Minimal Time Function and Viscosity Solutions ${ }^{1}$

V. Staicu ${ }^{2}$
Communicated by R. Conti

Abstract

Abstact. Two theorems in Ref. 1 are generalized. It is proved that, if $V(A, \Gamma)$ is the set of points that can be steered to the origin along a solution of the control system $x^{\prime}=A x-c$, if $c(i) \in \Gamma, \Gamma$ is a compact subset of $R^{n}, 0 \in$ intrelco Γ, and if a rank condition holds, then the minimal time function $T(\cdot)$ is a viscosity solution of the Bellman equation

$$
\max \{\langle D T(x), \gamma-A x\rangle: \gamma \in \operatorname{co} \Gamma\}-1=0, \quad x \in V(A, \Gamma) \backslash\{0\},
$$

and of the Hàjek equation

$$
1-\max \{\langle D T(x), \exp [-A T(x)]\rangle ; \gamma \in \operatorname{co} \Gamma\}=0, \quad x \in V(A, \Gamma) .
$$

Key Words. Minimal time function, Bellman equation, Hàjek equation, viscosity solutions, linear control system.

1. Introduction

The concept of viscosity solution of first-order Hamilton-Jacobi equations was introduced by Crandall and Lions in Ref. 2. This work was reformulated and simplified by Crandall et al. in Ref. 3. We refer to Ref. 4 for an extensive reference on the basic aspects of this theory. Lions proved in Ref. 5 that, for a class of optimal control problems, the value function is the unique viscosity solution of the associated Hamilton-Jacobi equation. Neither this result nor the uniqueness results in Refs. 2, 3, 6, and 7 can be applied to the linear minimal time problem, which will be considered in this paper.

[^0]We consider the linear control system

$$
\begin{equation*}
x^{\prime}=A x-c, \tag{1}
\end{equation*}
$$

where the state vector x is a function of $t \geq 0$ with values $x(t)$ in R^{n}, A is a n-square matrix, and the control parameter c is a function of $t \geq 0$ with values in a subset Γ of R^{n}.

Let

$$
C_{\Gamma}=\{c(\cdot):[0, \infty) \rightarrow \Gamma: c(\cdot) \text { is locally integrable }\}
$$

let

$$
\begin{equation*}
V(t, A, \Gamma)=\left\{\int_{0}^{t} \exp (-s A) c(s) d s: c(\cdot) \in C_{\Gamma}\right\} \tag{2}
\end{equation*}
$$

be the set of points in R^{n} that can be steered to the origin along a solution of (1) in time t; and let

$$
\begin{equation*}
V(A, \Gamma)=\bigcup_{t \geq 0} V(t, A, \Gamma) \tag{3}
\end{equation*}
$$

The function $T(\cdot)$, defined by

$$
\begin{array}{ll}
T(x)=\min \{t \geq 0: x \in V(t, A, \Gamma)\}, & \text { if } x \in V(A, \Gamma) \\
T(x)=+\infty, & \text { otherwise } \tag{4b}
\end{array}
$$

is said to be the minimal time function.
We prove that, if Γ is a compact subset of $R^{n}, 0 \in$ intrelco Γ, and the following rank condition holds:

$$
\begin{equation*}
y \in C^{n}, \quad A^{*} y=\lambda y, \quad y^{*} \Gamma=\text { const } \Rightarrow y=0 \tag{5}
\end{equation*}
$$

then $T(\cdot)$ defined in (4) is a viscosity solution of the Bellman equation

$$
\begin{equation*}
\max \{\langle D T(x), \gamma-A x\rangle: \gamma \in \operatorname{co} \Gamma\}-1=0, \quad x \in V(A, \Gamma) \backslash\{0\} \tag{6}
\end{equation*}
$$

and of the Hàjek equation

$$
\begin{align*}
& 1-\max \{\langle D T(x), \exp [-A T(x)]\rangle:\gamma \in \operatorname{co} \Gamma\}=0, \\
& x \in V(A, \Gamma) \tag{7}
\end{align*}
$$

This generalizes Theorem 2 and Theorem 3 in Ref. 1.
We note that, for the case when $T(\cdot)$ is locally Lipschitz, necessary and sufficient conditions of optimality were obtained by Mignanego and Pieri in Refs. 8 and 9, using the Clarke's generalized gradient.

2. Preliminaries

Let R^{n} be the n-dimensional Euclidian space; let $\langle\cdot, \cdot\rangle$ be the scalar product; and let $|\cdot|$ be the norm on R^{n}. For a subset X of R^{n}, we denote by co X the convex hull of X, by ∂X the boundary of X, and by intrelco X the interior of $\operatorname{co} X$ relative to its affine hull.

For $x \in R^{n}$ and $r>0$, we consider

$$
B(x, r)=\left\{y \in R^{n}:|y-x|<r\right\} .
$$

For an open subset $\Omega \subset R^{n}$, we denote

$$
C(\Omega)=\{u(\cdot): \Omega \rightarrow R: u(\cdot) \text { is continuous }\}
$$

Definition 2.1. Let $u(\cdot) \in C(\Omega)$ and $x \in \Omega$.

$$
\partial_{F}^{-} u(x)=\left\{\xi \in R^{n}: \liminf _{h \rightarrow 0} \frac{u(x+h)-u(x)-\langle\xi, h\rangle}{|h|} \geq 0\right\}
$$

is said to be the Fréchet subdifferential of $u(\cdot)$ in x; and

$$
\partial_{F}^{+} u(x)=\left\{\xi \in R^{n}: \limsup _{h \rightarrow 0} \frac{u(x+h)-u(x)-\langle\xi, h\rangle}{|h|} \leq 0\right\}
$$

is said to be the Fréchet superdifferential of $u(\cdot)$ in x.
For equivalent definitions and basic properties of this Fréchet semidifferentials, we refer to Ref. 10.

In what follows, we use the following equivalent definitions:

$$
\begin{align*}
\partial_{F}^{-} u(x) & =\left\{\xi \in R^{n}:(\ni) r>0, \omega(\cdot) \in C\left(R^{+}\right): \omega(0)=0, u(y) \geq u(x)\right. \\
& +\langle\xi, y-x\rangle+|y-x| \omega(|y-x|), \forall y \in B(x, r)\}, \tag{8}\\
\partial_{F}^{+} u(x) & =\left\{\xi \in R^{n}:(\ni) r>0, \omega(\cdot) \in C\left(R^{+}\right): \omega(0)=0, u(y) \leq u(x)\right. \\
& +\langle\xi, y-x\rangle+|y-x| \omega(|y-x|), \forall y \in B(x, r)\} . \tag{9}
\end{align*}
$$

Let now $\Omega \subset R^{n}$ be open, and let $F(\cdot): \Omega \times R \times R^{n} \rightarrow R$ be a continuous function.

Definition 2.2. (Refs. 2 and 3). A function $u(\cdot) \in C(\Omega)$ is said to be a viscosity solution of the equation

$$
\begin{equation*}
F(x, u(x), D u(x))=0, \quad x \in \Omega \tag{10}
\end{equation*}
$$

if the following inequalities hold:

$$
\begin{array}{lll}
F(x, u(x), \xi) \leq 0, & \forall x \in \Omega, & \forall \xi \in \partial_{F}^{+} u(x) \\
F(x, u(x), \xi) \geq 0, & \forall x \in \Omega, & \forall \xi \in \partial_{F}^{-} u(x) \tag{12}
\end{array}
$$

Remark 2.1. If $u(\cdot)$ is Fréchet differentiable at x, then

$$
\partial_{F}^{-} u(x)=\partial_{F}^{+} u(x)=\{D u(x)\},
$$

where $D u(x)$ denote the differential of $u(x)$ at x. It follows that a classical (i.e., of class C^{1}) solution of (10) is also a viscosity solution.

3. Main Results

We consider the linear control system (1); and, for $x \in R^{n}$ and $c(\cdot) \in C_{\Gamma}$, we denote by $w(t, x, c)$ the solution of (1) corresponding to the control $c(\cdot)$ and the initial condition $x(0)=x$; that is,

$$
\begin{equation*}
w(t, x, c)=\exp (t A) x-\int_{0}^{t} \exp [(t-s) A] c(s) d s \tag{13}
\end{equation*}
$$

Definition 3.1. Let $x \in V(A, \Gamma)$. A control $c_{x}(\cdot) \in C_{\Gamma}$ is said to be optimal relative to x if

$$
x=\int_{0}^{T(x)} \exp (-s A) c_{x}(s) d s
$$

Principle 3.1. (Ref. 11, p. 355). If $x \in V(A, \Gamma)$, then
(i) for every $c(\cdot) \in C_{\Gamma} \quad$ and $t \in[0, T(x)]$,

$$
\begin{equation*}
T(w(t, x, c)) \geq T(x)-t \tag{14}
\end{equation*}
$$

(ii) if $c_{x}(\cdot)$ is an optimal control relative to x, then

$$
\begin{equation*}
T\left(w\left(t, x, c_{x}\right)\right)=T(x)-t \tag{15}
\end{equation*}
$$

We use this principle to prove the following result.
Theorem 3.1. If Γ is a compact subset of $R^{n}, 0 \in$ intrelco Γ, and (5) holds, then $T(\cdot)$ defined in (4) is a viscosity solution of the Bellman equation

$$
\begin{equation*}
\max \{\langle D T(x), \gamma-A x\rangle: \gamma \in \operatorname{co} \Gamma\}-1=0, \quad x \in V(A, \Gamma) \backslash\{0\} \tag{16}
\end{equation*}
$$

Proof. Since $0 \in$ intrelco Γ and (5) holds, from (I.16.25) in Ref. 12 it follows that $V(A, \Gamma)$ is open. On the other hand, $0 \in$ intrelco Γ implies that $0 \in$ intrel $V(t, A, \Gamma)$, for any $t>0$; and, because Γ is compact, according to Theorem II.4.3. in Ref. 12, $T(\cdot)$ is continuous on $V(A, \Gamma)$.

Let $x \in V(A, \Gamma) \backslash\{0\}$; let $\gamma \in \Gamma$; and let

$$
w(t)=\exp (t A) x-\int_{0}^{t} \exp (s A) \gamma d s
$$

Then, from (14), we obtain

$$
\begin{equation*}
T(w(t)) \geq T(x)-t, \quad \forall t \in(0, T(x)] \tag{17}
\end{equation*}
$$

If $\xi \in \partial_{F}^{+} T(x)$, then from (9) there exist $r_{1}>0$ and $\omega_{1}(\cdot): R^{+} \rightarrow R^{+}$such that $\omega_{1}(0)=0, \omega_{1}(\cdot)$ is continuous, $T(y) \leq T(x)+\langle\xi, y-x\rangle+|y-x| \omega_{1}(|y-x|)$,

$$
\begin{equation*}
\forall y \in B\left(x, r_{1}\right) \tag{19}
\end{equation*}
$$

Because

$$
\begin{equation*}
\lim _{t \rightarrow 0+} w(t)=x \tag{20}
\end{equation*}
$$

there exist $t_{1} \in(0, T(x)]$ such that $w(t) \in B\left(x, r_{1}\right)$, for any $t \in\left(0, t_{1}\right]$; and, from (17) and (19), we obtain

$$
-t \leq\langle\xi, w(t)-x\rangle+|w(t)-x| \omega_{1}(|w(t)-x|),
$$

hence

$$
\begin{equation*}
-1 \leq\langle\xi,(1 / t)| w(t)-x \mid \omega_{1}(|w(t)-x|) \tag{21}
\end{equation*}
$$

Since

$$
(1 / t)[w(t)-x]=(1 / t)[\exp (t A)-I] x-(1 / t)\left(\int_{0}^{t} \exp (s A) d s\right) \gamma
$$

it follows that

$$
\begin{equation*}
\lim _{t \rightarrow 0+}(1 / t)[w(t)-x]=A x-\gamma \tag{22}
\end{equation*}
$$

From (18), (20), and (22), it follows that

$$
\begin{equation*}
\lim _{t \rightarrow 0+}(1 / t)|w(t)-x| \omega_{1}(|w(t)-x|)=0 \tag{23}
\end{equation*}
$$

and, from (21), (22), and (23), we obtain that

$$
-1 \leq\langle\xi, A x-\gamma\rangle, \quad \text { for any } \gamma \in \Gamma
$$

Then, also

$$
\langle\xi, \gamma-A x\rangle \leq 0, \quad \text { for any } \gamma \in \operatorname{co} \Gamma
$$

hence

$$
\begin{equation*}
\max \{\langle\xi, \gamma-A x\rangle: \gamma \in \operatorname{co} \Gamma\} \leq 1, \quad \forall \xi \in \partial_{F}^{+} T(x) \tag{24}
\end{equation*}
$$

Let now $c_{x}(\cdot)$ be an optimal control relative to $x \in V(A, \Gamma) \backslash\{0\}$, and let

$$
w^{*}(t)=\exp (t A) x-\int_{0}^{t} \exp [(t-s) A] c_{x}(s) d s
$$

Then, from (15),

$$
\begin{equation*}
T\left(w^{*}(t)\right)=T(x)-t, \quad \text { for any } t \in(0, T(x)] \tag{25}
\end{equation*}
$$

If $\eta \in \partial_{F}^{-} T(x)$, then from (8) there exist $r_{2}>0$ and $\omega_{2}: R^{+} \rightarrow R^{+}$such that

$$
\begin{align*}
& \omega_{2}(0)=0, \quad \omega_{2}(\cdot) \text { is continuous, } \tag{26}\\
& T(y) \geq T(x)+\langle\eta, y-x\rangle+|y-x| \omega_{2}(|y-x|), \\
& \forall y \in B\left(x, r_{2}\right) . \tag{27}
\end{align*}
$$

Because

$$
\begin{equation*}
\lim _{t \rightarrow 0+} w^{*}(t)=x \tag{28}
\end{equation*}
$$

there exists $t_{2} \in(0, T(x)]$ such that

$$
w^{*}(t) \in B\left(x, r_{2}\right), \quad \text { for all } t \in\left(0, t_{2}\right] .
$$

Hence, from (25) and (27), for any $t \in\left(0, t_{2}\right]$, we have

$$
\begin{equation*}
-1 \geq\left\langle\eta,(1 / t)\left[w^{*}(t)-x\right]\right\rangle+(1 / t)\left|w^{*}(t)-x\right| \omega_{2}\left(\left|w^{*}(t)-x\right|\right) \tag{29}
\end{equation*}
$$

Since

$$
\begin{align*}
& (1 / t)\left[w^{*}(t)-x\right] \\
& \left.=(1 / t)[\exp (t A)-I] x-(1 / t) \int_{0}^{t} \exp [t-s) A\right] c_{x}(s) d s \\
& \in(1 / t)[\exp (t A)-I] x-(1 / t) W(t, A, \Gamma) \tag{30}
\end{align*}
$$

where

$$
W(t, A, \Gamma)=\left\{\int_{0}^{t} \exp [(t-s) A] c(s) d s: c(\cdot) \in C_{\Gamma}\right\}
$$

and since Γ is compact, from (I.15.2) in Ref. 12 it follows that

$$
\lim _{t \rightarrow 0+}(1 / t) W(t, A, \Gamma)=\operatorname{co} \Gamma
$$

in the Pompeiu-Hausdorff metric.
Therefore, for any sequence $t_{k} \rightarrow 0+$, there exist $\gamma_{0} \in \operatorname{co} \Gamma$ and a subsequence $t_{k_{p}} \rightarrow 0+$ such that

$$
t_{k_{p}} \in\left(0, t_{2}\right], \quad \text { for any } p \in N
$$

and

$$
\begin{equation*}
\lim _{p \rightarrow \infty}\left(1 / t_{k_{p}}\right) \int_{0}^{t_{k_{r}}} \exp \left[\left(t_{k_{p}}-s\right) A\right] c_{x}(s) d s=\gamma_{0} \tag{31}
\end{equation*}
$$

From (30) and (31), it follows that

$$
\begin{equation*}
\lim _{p \rightarrow \infty}\left(1 / t_{k_{p}}\right)\left[w^{*}\left(t_{k_{p}}\right)-x\right]=A x-\gamma_{0} ; \tag{32}
\end{equation*}
$$

and, from (26), (28), and (32), we obtain

$$
\begin{equation*}
\lim _{p \rightarrow \infty}\left(1 / t_{k_{p}}\right)\left|w^{*}\left(t_{k_{p}}\right)-x\right| \omega_{2}\left(\left|w^{*}\left(t_{k_{p}}\right)-x\right|\right)=0 . \tag{33}
\end{equation*}
$$

From (29), (32), and (33), it follows that

$$
-1 \geq\left\langle\eta, A x-\gamma_{0}\right\rangle,
$$

hence

$$
1 \leq\left\langle\eta, \gamma_{0}-A x\right\rangle \leq \max \{\langle\eta, \gamma-A x\rangle: \gamma \in \operatorname{co} \Gamma\},
$$

and also

$$
\begin{equation*}
\max \{\langle\eta, \gamma-A x\rangle: \gamma \in \operatorname{co} \Gamma\} \geq 1, \quad \text { for any } \eta \in \partial_{F}^{-} T(x) . \tag{34}
\end{equation*}
$$

From (24) and (34), it follows that $T(\cdot)$ is a viscosity solution of (16).
Remark 3.1. Since $x=0$ is a minimum point for $T(\cdot)$, it follows that $0 \in \partial_{F}^{-} T(0)$ (Proposition 4.7 in Ref. 10); and because $T(\cdot)$ is not differentiable at $x=0$ (Lemma 2 in Ref. 1), it follows that $\partial_{F}^{+} T(0)=\varnothing$. Hence, if (24) is trivially satisfied at $x=0$, (34) can be not satisfied.

Remark 3.2. Theorem 3.1 generalizes Theorem 3 in Ref. 1 , because if $T(\cdot)$ is differentiable in x, then

$$
\partial_{F}^{-} T(x)=\partial_{F}^{+} T(x)=\{D T(x)\},
$$

and from (24) and (34) it follows that (16) holds.

Theorem 3.2. If Γ is a compact subset of $R^{n}, 0 \in$ intrelco Γ, and if (5) holds, then $T(\cdot)$ defined by (4) is a viscosity solution of the Hàjek equation

$$
\begin{align*}
1-\max \{\langle D T(x), \exp [-A T(x)] \gamma\rangle: & \gamma \in \operatorname{co} \Gamma\}=0, \\
& x \in V(A, \Gamma) . \tag{35}
\end{align*}
$$

Proof. As in the proof of Theorem 3.1, $V(A, \Gamma)$ is open and $T(\cdot)$ is continuous on $V(A, \Gamma)$. Let $x \in V(A, \Gamma)$ and let $t=T(x)$.

If $\xi \in \partial_{F}^{+} T(x)$, then there exist $r_{1}>0$ and $\omega_{1}(\cdot)$ such that (18) and (19) hold.

Let $s_{k} \rightarrow 0, s_{k} \neq 0$. From Proposition 2 in Ref. 1, there exist $y_{k} \in$ $V\left(s_{k}, A, \Gamma\right)$ such that

$$
\begin{align*}
& y_{k} \rightarrow 0, \quad T\left(y_{k}\right)=s_{k} \tag{36a}\\
& \mathrm{~T}\left[\mathrm{x}+\exp (-A t) y_{k}\right]=T(x)+T\left(y_{k}\right) \tag{36b}
\end{align*}
$$

Thus, there exists $k_{0} \in N$ such that

$$
x+\exp (-A t) y_{k} \in B\left(x, r_{1}\right), \quad \text { for all } k \geq k_{0}
$$

and from (19) and (36), we obtain, for $k \geqq k_{0}$,

$$
\begin{align*}
1 & \leq\left\langle\xi,\left[1 / T\left(y_{k}\right)\right] \exp (-A t) y_{k}\right\rangle \\
& +\left|\left[1 / T\left(y_{k}\right)\right] \exp (-A t) y_{k}\right| \omega_{1}\left(\left|\exp (-A t) y_{k}\right|\right) \tag{37}
\end{align*}
$$

Since Γ is compact,

$$
\lim _{t \rightarrow 0}(1 / t) V(t, A, \Gamma)=\operatorname{co} \Gamma
$$

(Proposition 1 in Ref.1), and there exist $\gamma_{0} \in \operatorname{co} \Gamma$ and a subsequence $y_{k_{p}} / T\left(y_{k_{p}}\right)$ such that

$$
\begin{equation*}
\lim _{p \rightarrow \infty} y_{k_{p}} / T\left(y_{k_{p}}\right)=\gamma_{0} \tag{38}
\end{equation*}
$$

From (18), (36), and (38), it follows that

$$
\begin{equation*}
\lim _{p \rightarrow \infty}\left|\exp (-A t)\left[y_{k_{p}} / T\left(y_{k_{p}}\right)\right]\right| \omega_{1}\left(\left|\exp (-A t) y_{k_{p}}\right|\right)=0 \tag{39}
\end{equation*}
$$

and, from (37), (38), and (39), we obtain

$$
1 \leq\left\langle\xi, \exp (-A t) \gamma_{0}\right\rangle
$$

Hence,

$$
\begin{aligned}
-1 & \geq\left\langle-\xi, \exp (-A t) \gamma_{0}\right\rangle \geq \min \{\langle-\xi, \exp (-A t) \gamma\rangle: \gamma \in \operatorname{co} \Gamma\} \\
& =-\max \{\langle\xi, \exp (-A t) \gamma\rangle: \gamma \in \operatorname{co} \Gamma\}
\end{aligned}
$$

that is,

$$
\begin{array}{r}
1-\max \{\langle\xi, \exp (-A t) \gamma\rangle: \gamma \in \operatorname{co} \Gamma\} \leq 0, \\
\text { for any } \xi \in \partial_{F}^{+} T(x) . \tag{40}
\end{array}
$$

If $\eta \in \partial_{\bar{F}}^{-} T(x)$, then there exist $r_{2}>0$ and $\omega_{2}(\cdot)$ such that (26) and (27) hold.

Let $\gamma \in \partial$ co . Then, from Proposition 1 in Ref. 1, there exist $y_{k} \in$ $V(A, \Gamma)$ such that

$$
\begin{equation*}
y_{k} \rightarrow 0, \quad y_{k} \neq 0, \quad \lim \left[y_{k} / T\left(y_{k}\right)\right]=\gamma . \tag{41}
\end{equation*}
$$

From (27), (41), and the inequality

$$
T\left[x+\exp (-A t) y_{k}\right] \leq T(x)+T\left(y_{k}\right)
$$

(Proposition 2 in Ref. 1), it follows that there exist $k_{0} \in N$ such that, for any $k \geq k_{0}$,

$$
\begin{align*}
1 & \geq\left\langle\eta, \exp (-A t)\left[y_{k} / T\left(y_{k}\right)\right]\right\rangle \\
& +\left|\exp (-A t)\left[y_{k} / T\left(y_{k}\right)\right]\right| \omega_{2}\left(\left|\exp (-A t) y_{k}\right|\right) \tag{42}
\end{align*}
$$

and, from (41) and (42), we obtain

$$
\begin{equation*}
1 \geq\langle\eta, \exp (-A t) \gamma\rangle, \quad \text { for any } \gamma \in \partial \operatorname{co} \Gamma \tag{43}
\end{equation*}
$$

From the convexity of co Γ, it follows that (43) holds for any $\gamma \in \operatorname{co} \Gamma$, hence

$$
\begin{aligned}
-1 & \leq \min \{\langle-\eta, \exp (-A t) \gamma\rangle: \gamma \in \operatorname{co} \Gamma\} \\
& =-\max \{(\eta, \exp (-A t) \gamma\rangle: \gamma \in \operatorname{co} \Gamma\} .
\end{aligned}
$$

Therefore,

$$
\begin{array}{r}
1-\max \{\langle\eta, \exp [-A T(x)] \gamma\rangle: \gamma \in \operatorname{co} \Gamma\} \geq 0 \\
\text { for any } \eta \in \partial_{F}^{-} T(x) \tag{44}
\end{array}
$$

and, from (40) and (44), it follows that $T(\cdot)$ is a viscosity solution of (35).

Remark 3.3. Theorem 3.2 generalizes Theorem 2 in Ref. 1, because if $T(\cdot)$ is differentiable in x, then

$$
\partial_{F}^{-} T(x)=\partial_{F}^{+} T(x)=\{D T(x)\} ;
$$

and, from (40) and (44), it follows that the Hàjek equation

$$
\max \{\langle D T(x), \exp [-A T(x)]\rangle: \gamma \in \operatorname{co} \Gamma\}=1
$$

is satisfied.
In general, $T(\cdot)$ is not the unique viscosity solution of Eqs. (16) and (35) as the following example proves.

Example 3.1. Let

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad \Gamma=\left\{\left[\begin{array}{l}
\gamma_{1} \\
\gamma_{2}
\end{array}\right] \in R^{2}:\left|\gamma_{i}\right| \leq 1, i=1,2\right\} .
$$

Obviously, the assumptions in Theorems 3.1 and 3.2 are satisfied; hence, $Y(\cdot)$ defined by (4) is a viscosity solution of Eqs. (16) and (35).

We prove that $u(\cdot): R^{2} \rightarrow R$ defined by $u(x)=x_{2}, x_{2}$ the second component of x, is also a viscosity solution of (16) and (35). We note first that $u(\cdot)$ is not the minimal time function $T(\cdot)$:

$$
x=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \in V(A, \Gamma), \quad u(x)=1, \quad \text { but } T(x) \neq 1
$$

see Ref. 9. Since $u(\cdot)$ is differentiable on R^{2} and its differential is

$$
D u(x)=\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

it follows that

$$
\begin{aligned}
& \partial_{F}^{-} u(x)=\partial_{F}^{+} u(x)=\left\{\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}, \\
& \max \{\langle D u(x), \gamma-A x\rangle: \gamma \in \Gamma\} \\
& =\max \left\{\left\langle\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
\gamma_{1} \\
\gamma_{2}
\end{array}\right]-\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right\rangle:\left|\gamma_{i}\right| \leq 1, i=1,2\right\} \\
& =\max \left\{\gamma_{2}: \gamma_{2} \in[-1,1]\right\}=1, \\
& \max \{\langle D u(x), \exp [-A u(x)] \gamma: \gamma \in \Gamma\} \\
& =\max \left\{\left\langle\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{cc}
1 & -u(x) \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\gamma_{1} \\
\gamma_{2}
\end{array}\right]\right\rangle:\left|\gamma_{i}\right| \leq 1, i=1,2\right\} \\
& =\max \left\{\gamma_{2}: \gamma_{2} \in[-1,1]\right\}=1 .
\end{aligned}
$$

Therefore, $u(\cdot)$ is a classical solution, hence also a viscosity solution, of Eqs. (16) and (35), which is different from $T(\cdot)$.

The uniqueness problem of the minimal time function as viscosity solution of Bellman equation was studied in Ref. 13.

References

1. Hàjek, O., On Differentiability of Minimal Time Function, Funkcialaj Ekvacioj, Vol. 20, pp. 97-114, 1976.
2. Crandall, M. G., and Lions, P. L., Viscosity Solutions of Hamilton-Jacobi Equations, Transactions of the American Mathematical Society, Vol. 277, pp. 142, 1983.
3. Crandall, M. G., Evans, L. C., and Lions, P. L., Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations, Transactions of the American Mathematical Society, Vol. 282, pp. 1-42, 1984.
4. Lions, P. L., Equations de Hamilton-Jacobi et Solutions de Viscosité, Ennio De Giorgi Colloquium, Edited by P. Krée, Pitman, Boston, Massachusetts, 1985.
5. Lions, P. L., Generalized Solutions of Hamilton-Jacobi Equations, Pitman, Boston, Massachusetts, 1982.
6. Crandall, M. G., and Lions, P. L., On Existence and Uniqueness of Solutions of Hamilton-Jacobi Equations, Nonlinear Analysis, Theory, Methods and Applications, Vol. 10, pp. 353-370, 1984.
7. Ishir, H., Existence and Uniqueness of Solutions of Hamilton-Jacobi Equations, Funkcialaj Ekvacioj, Vol. 29, pp. 267-388, 1986.
8. Mignanego, F., and Pieri, G., On a Generalized Bellman Equation for the Optimal Time Problem, System and Control Letters, Vol. 3, pp. 235-241, 1983.
9. Mignanego, F., and Pieri, G., On the Sufficiency of the Hamilton-JacobiBellman for the Optimality in a Linear Optimal Time Problem. System and Control Letters, Vol. 6, pp. 357-363, 1986.
10. Mirica, S., Staicu, V., and Angelescu, N., Equivalent Definitions and Basic Properties of Fréchet Semidifferentials, SIAM Journal on Control and Optimization (to appear).
11. Athans, M., and Falb, P. L., Optimal Control, McGraw-Hill, New York, New York, 1966.
12. CONTI, R., Processi di Controllo Lineari in R^{n}, Pitagora Editrice, Bologna, Italy, 1985.
13. Staicu, V., Uniqueness of Minimal Time Function as Viscosity Solution of Bellman Equation (to appear).

[^0]: ${ }^{1}$ This paper was completed when the author held a Borsa di Ricerca at the Istituto Matematico U. Dini of the Universita di Firenze, Firenze, Italy. The author is indebted to Prof. R. Conti for stimulating discussions.
 ${ }^{2}$ Staff Member, International School for Advanced Studies (SISSA), Trieste, Italy.

