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Minimal Time Function and Viscosity Solutions’
V. Staicu?

Communicated by R. Conti

Abstact. Two theorems in Ref. 1 are generalized. It is proved that, if
V(A,T) is the set of points that can be steered to the origin along a
solution of the control system x'=Ax—g¢, if e(¢) eI, T" is a compact
subset of R", Ocintrelcol’, and if a rank condition holds, then the
minimal time function T(-) is a viscosity solution of the Bellman
equation

max{{DT(x), y—Ax): yecoT}-1=0, xe V(A T)\{0},
and of the Hajek equation

1—max{(DT(x), exp[-AT(x)]): yeco'}=0, xe V(A,T).

Key Words. Minimal time function, Bellman equation, Hajek equation,
viscosity solutions, linear control system.

1. Introduction

The concept of viscosity solution of first-order Hamilton-Jacobi
equations was introduced by Crandall and Lions in Ref. 2. This work was
reformulated and simplified by Crandall et al in Ref. 3. We refer to Ref. 4
for an extensive reference on the basic aspects of this theory. Lions proved
in Ref. 5 that, for a class of optimal control problems, the value function
is the unique viscosity solution of the associated Hamilton-Jacobi equation.
Neither this result nor the uniqueness results in Refs. 2, 3,6, and 7 can be
applied to the linear minimal time problem, which will be considered in
this paper.
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We consider the linear control system
x'=Ax—c, (1)

where the state vector x is a function of =0 with values x(¢) in R", A is
a n-square matrix, and the control parameter c is a function of =0 with
values in a subset I' of R".

Let

Cr={c(-):[0,00)->T: ¢(-) is locally integrable};
let
V(¢ A, F)={Jtexp(—sA)c(s) ds:c(+)e Cr} (2)

be the set of points in R" that can be steered to the origin along a solution
of (1) in time ¢; and let

V(A T)=U V(1,AT). (3)

=0

The function T(-), defined by
T(x)=min{t=0: xe V(¢t, A, ")}, ifxe V(A, T, (4a)
T(x)=+co, otherwise, (4b)

is said to be the minimal time function.
We prove that, if I" is a compact subset of R”, OcintrelcoI', and the
following rank condition holds:

yeC",  A*y=1y, y*T'=const = y=0, (5)
then T(-) defined in (4) is a viscosity solution of the Bellman equation
max{(DT(x), y—Ax): yecol'}-1=0, xe V(A TN{0}, (6)
and of the Hajek equation
1-max{(DT(x), exp[—AT(x)]): yecoT'}=0,
xe V(A T). (7)

This generalizes Theorem 2 and Theorem 3 in Ref. 1.

We note that, for the case when T(-) is locally Lipschitz, necessary
and sufficient conditions of optimality were obtained by Mignanego and
Pieri in Refs. 8 and 9, using the Clarke’s generalized gradient.
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2. Preliminaries

Let R" be the n-dimensional Euclidian space; let (-, ) be the scalar
product; and let |-| be the norm on R". For a subset X of R", we denote
by co X the convex hull of X, by §X the boundary of X, and by intrelco X
the interior of coX relative to its affine hull.

For x€ R" and r> 0, we consider

B(x,r)={yeR":|y—x|<r}.
For an open subset {} C R”", we denote

C(Q)={u(-): Q- R: u(-)is continuous}.

Definition 2.1. Let u(:)e C(Q) and x<€ Q.

u(x+h)—u(x)~(§ h>20}
||
is said to be the Fréchet subdifferential of u(-) in x; and

Jru(x) = {fe R":lim sup u(x+h)—|1;’(x)-<§, h>£0}

dru(x) = {fe R"™: liI;Ill ionf

is said to be the Fréchet superdifferential of u(-) in x.

For equivalent definitions and basic properties of this Fréchet semi-
differentials, we refer to Ref. 10.

In what follows, we use the following equivalent definitions:

dpu(x)={£eR": (3)r>0,0(-)e C(R"): ©(0)=0, u(y) = u(x)

+(&y—x)+|y—xlw(|y—x|), Vye B(x, 1)}, (8)
oFu(x)={eR": (3)r>0,w(-)e C(R): @(0)=0, u(y) = u(x)
+(& y—x)+|y—xlo(ly—x[), Yy e B(x, n)}. (9)

Let now Q C R" be open, and let F(-):{)x R X R" > R be a continuous
function.

Definition 2.2. (Refs. 2 and 3). A function u(-)e C(Q) is said to be
a viscosity solution of the equation

F(x, u(x), Du(x))=0, xe, (10)
if the following inequalities hold:
F(x,u(x),£)=<0, VxeQ, Véearu(x), (11)

F(x, u(x), £)=0, Vxe(, Véedru(x). (12)
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Remark 2.1. If u(-) is Fréchet differentiable at x, then
dru(x) =oru(x)={Du(x)},

where Du(x) denote the differential of u(x) at x. It follows that a classical
(i.e., of class C') solution of (10) is also a viscosity solution.

3. Main Results

We consider the linear control system (1); and, forxe R"and ¢( ) e Cr,
we denote by w(¢, x, ¢) the solution of (1) corresponding to the control ¢(-)
and the initial condition x(0) = x; that is,

H

w(t, x, ¢) =exp (tA)x—J’ exp[(t—s)Alc(s) ds. (13)

]

Definition 3.1. Let xe V(A,I'). A control ¢.(-)e Cr is said to be
optimal relative to x if

T(x)
x= J exp(—sA)c,(s) ds.
0

Principle 3.1. (Ref. 11, p.355). If xe V(A,T), then
(i) forevery ¢(-)eCr and t€[0, T(x)],

T(w(t,x,c))=T(x)—t; (14)
(ii) if ¢.(+) is an optimal control relative to x, then
T(w(t, x,¢.))=T(x)—t (15)

We use this principle to prove the following result.

Theorem 3.1. If ' is a compact subset of R", OcintrelcoI', and (5)
holds, then T(-) defined in (4) is a viscosity solution of the Bellman equation

max{{DT(x), y—Ax); yecoT'}—1=0, xe V(A D\{0}. (16)

Proof. Since Ocintrelco I and (5) holds, from (1.16.25) in Ref. 12 it
follows that V(A,T') is open. On the other hand, O € intrelco I" implies that
Ocintrel V(t, A, T'), for any t > 0; and, because I is compact, according to
Theorem I1.4.3. in Ref. 12, T(+) is continuous on V(A,T’).

Let xe V(A,T)\{0}; let yeTI'; and let

t

w(t) =exp(tA)x — J- exp(sA)yds.

0
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Then, from (14), we obtain
Tw(t)=T(x)—1, Vie(0, T(x)]. a7)
If £€95T(x), then from (9) there exist r,>0 and w,(-): R" > R™ such that

w.{(0) =0, w,(+) is continuous, (18)
T(y)=T(x)+(&y—x)+|y = xlo(ly - x),
Vye B(x, r). (19)
Because
lim w(t) =x, (20)

t->0+

there exist #, € (0, T(x)] such that w(t)e B(x, r;), for any te(0, ,]; and,
from (17) and (19), we obtain

—1=(& w(t) = x)+|w(t) — x|w,(Jw(1) — x|),
hence
~1=(¢ (1/ D)|w(t) = x|w,(|w(r) —x]). (21)

Since

£

(1/0[w(t) —x]= (1/t)[exp(tA) ~ I]x - (UO(J exp(sA) dS) Y

]

it follows that
lirorl(l/t)[w(t)—x]=Ax—y. (22)

From (18), (20), and (22), it follows that
lim (1/0)}w(1) = x{@, ([w(6) - x[) = 0; (23)

and, from (21), (22), and (23), we obtain that
—1=(§ Ax—v), forany yeTl.

Then, also
(&, y—Ax)=0, forany yecoT’;
hence
max{(§ y—Ax): yecoI'} =1, VEearT(x). (24)

Let now ¢, () be an optimal control relative to x € V(A, I'\{0}, and let

t

w*(t) =exp(tA)x — J expl(t—s)A]c.(s) ds.

0
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Then, from (15),
T(w*(1))=T(x)—1t, for any 1€(0, T(x)].

(25)

If nedzT(x), then from (8) there exist r,>>0 and w,: R"> R™ such that

w,{0)=0, w@,{+) is continuous,
T(y)= T(x)+{n, y = x)+|y ~x|ox(|y —x),
Vye B(x, r;).
Because

lim w*(1) =x,
t->0+

there exists t,€ (0, T(x)] such that
w*(t) e B(x, r,), forall te (0, t,].

Hence, from (25) and (27), for any t € (0, t,], we have

—1=(m, (1/ O[w* (1) = x D+ (1/ )]w* (1) = x|w,(|w* (1) — x]).

Since
(1/D)[w*(t) —x]
={1/t)[exp{tA)—T]x-(1/1) ‘[t expli—s)Alc(s) ds
0
e(1/t)exp(tA)—I]x—(1/) W(t, A, T),
where

W, AT = {f‘ exp[{t—5)AJe(s) ds: c(+)e Cr};

o

and since I' is compact, from (1.15.2) in Ref. 12 it follows that
lim (1/t)W(t, A, T)=coT
>0+

in the Pompeiu~-Hausdorff metric.

(26)

27

(28)

(29)

(30)

Therefore, for any sequence t, -0+, there exist y,€col and a sub-

sequence 0+ such that
t, €(0, 1], forany pe N,

and
%

lim (1/1,) j " expl(ti, ~5)Alex(s) ds = yo.

0

(31
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From (30) and (31), it follows that
lim (1/ 4, ) w*(t,) —x]= Ax -~ v; (32)
g0

and, from (26), (28), and (32), we obtain

zi_)n;(U&,,){W*(lkp)“xIwzﬂW*(fkp)'xl)"“‘”0‘ (33)

From (29}, (32), and (33), it follows that
—1=(n, Ax— o),

hence

1={(n, yo— Ax)=<max{(n, v—Ax): yeco I},
and also

max{(n, y—Ax): yecoT}=1, forany n e dpT(x). (34)
From (24) and (34), it follows that T( - ) is a viscosity solution of (16). O

Remark 3.1. Since x =0 is 2 minimum point for T(-), it follows that
0earT(0) (Proposition 4.7 in Ref. 10); and because T(-) is not differenti-
able at x =0 (Lemma 2 in Ref. 1), it follows that 35 T(0) = &. Hence, if (24)
is trivially satisfied at x =0, {34) can be not satisfied.

Remark 3.2. Theorem 3.1 generalizes Theorem 3 in Ref. 1, because if
T(-) is differentiable in x, then
3rT(x) =05 T(x)={DT(x)},
and from (24) and (34) it follows that {16) holds.
Theorem 3.2. If I' is a compact subset of R", O eintrelco I, and if (5)
holds, then T(-) defined by (4) is a viscosity solution of the Hajek equation
1~max{{DT(x), exp[—AT(x}]y): yecoI'}=0,
xe V(A T). (35)
Proof. As in the proof of Theorem 3.1, V(A,T') is open and T(-) is
continuous on V(A,T'). Let xe V(A, T) and let t= T(x).

If ¢ €95 T(x), then there exist r,> 0 and w,{-) such that (18) and (19)
hold.
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Let 5,0, 5,#0. From Proposition 2 in Ref.1, there exist y,€

V(sy, A, T') such that

>0, T(yx) = sk,

Tx+exp(—A)yJ=T(x)+ T(y).
Thus, there exists ko€ N such that

x+exp(—At)y € B(x, ry), for all k= kg;
and from (19) and (36), we obtain, for k=k,,

1=(& [1/ T(y)] exp(—At)y)

+|[1/ T(y)] exp(—At) yilw, (|exp(—At) yi)).

Since I' is compact,

1inO1 (1/0)V(t,A,T)=coT

(36a)
(36b)

(37)

(Proposition 1 in Ref.1), and there exist y,ecol’ and a subsequence

Yi,/ T(yi,) such that

;1_)11010 Y,/ T( J’k,,) = %Yo-

From (18), (36), and (38), it follows that

tim [exp(~ ANy, / T(yi,) Y (lexp(=An) y, ) = 0;

and, from (37), (38), and (39), we obtain
1= (¢ exp(—At)yy).
Hence,
—1=(~§ exp(—At)yyy = min{{—§ exp(—At)y): yecoI}
= —max{(¢, exp(—At)y): yecoT};
that is,
1 —max{{¢, exp(—At)y): yecoT}=0,

forany £€drT(x).

(38)

(39)

(40)

If n € 35T (x), then there exist r,> 0 and w,(-) such that (26) and (27)

hold.
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Let yedcol. Then, from Proposition 1 in Ref. 1, there exist y, €
V(A,T) such that

Y0, W #0, lim[y./ T(y)]=1v. (41)
From (27), (41), and the inequality
Tlx+exp(-ADy]= T(x)+ T(y)

(Proposition 2 in Ref. 1), it follows that there exist ke N such that, for
any k=k,,

1=(n, exp(—A)[y/ T(3:)D
+lexp(— AN yi/ T(yo)]|x(lexp(—Anyi|); (42)
and, from (41) and (42), we obtain
1=(n, exp(—At)vy), forany yedcol. (43)
From the convexity of co I', it follows that (43) holds for any vy € co T', hence
—1=min{(—n, exp(—At)y): yecoI'}
=—max{({n, exp(—Af)y): yecoT}.
Therefore,
1—-max{(n, exp[—AT(x)]y): yecoT}=0,
forany ne€dpT(x); (44)
and, from (40) and (44), it follows that T(-) is a viscosity solution of (35).
)
Remark 3.3. Theorem 3.2 generalizes Theorem 2 in Ref. 1, because if
T(-) is differentiable in x, then
IrT(x)=0rT(x)={DT(x)};
and, from (40) and (44), it follows that the Hajek equation
max{{DT(x), exp[—AT(x)]): yecol}=1

is satisfied.
In general, T(-) is not the unique viscosity solution of Egs. (16) and
(35) as the following example proves.

Example 3.1. Let

0 1 ')’1:! 2 . }
A= I'= R~ = = .
[0 0]’ {[72 R%:fnl=1.1=1,2
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Obviously, the assumptions in Theorems 3.1 and 3.2 are satisfied; hence,
Y () defined by (4) is a viscosity solution of Egs. (16) and (35).

We prove that u(-): R*> R defined by u(x) = x,, x, the second com-
ponent of x, is also a viscosity solution of (16) and (35). We note first that
u(+) is not the minimal time function T{-):

x=[;:]eV(A, m, u(x)=1, but T(x)#1;

see Ref. 9. Since u(-) is differentiable on R? and its differential is

Du(x)= [2]

it follows that

sruto=stuco={[ ]},

max{{Du(x), y — Ax): yeTI}

T N e

=max{y;: 2€[-1,1]} =1,
max{{Du(x), exp[—Au(x)]y: yeT}

BT

=max{y;: v.€[-1,1]}=1

Therefore, u(-) is a classical solution, hence also a viscosity solution, of
Egs. (16) and (35), which is different from T(-).

The uniqueness problem of the minimal time function as viscosity
solution of Bellman equation was studied in Ref. 13.
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