ON A p-SUPERLINEAR NEUMANN p-LAPLACIAN EQUATION

SERGIU AIZICOVICI, NIKOLAOS S. PAPAGEORGIOU, AND VASILE STAICU

Abstract

We consider a nonlinear Neumann problem, driven by the $p-$ Laplacian, and with a nonlinearity which exhibits a p - superlinear growth near infinity, but does not necessarily satisfy the Ambrosetti-Rabinowitz condition. Using variational methods based on critical point theory, together with suitable truncation techniques and Morse theory, we show that the problem has at least three nontrivial solutions, of which two have a fixed sign (one positive and the other negative

1. Introduction

Let $Z \subseteq \mathbb{R}^{N}$ be a bounded domain with a C^{2} boundary ∂Z. In this paper we study the following nonlinear elliptic problem:

$$
\left\{\begin{array}{l}
-\triangle_{p} x(z)=f(z, x(z)) \text { a.e. on } Z, \tag{1.1}\\
\frac{\partial x}{\partial n}=0, \text { on } \partial Z .
\end{array}\right.
$$

Here \triangle_{p} denotes the p-Laplacian differential operator defined by

$$
\triangle_{p} u(z)=\operatorname{div}\left(\|D u(z)\|_{\mathbb{R}^{N}}^{p-2} D u(z)\right), 1<p<\infty
$$

n (.) stands for the outward unit normal on ∂Z, and $f(z, x)$ is a nonlinear Caratheodory function.

Our aim is to prove a multiplicity theorem for problem (1.1), when the nonlinearity $f(z,$.$) exhibits a p-superlinear growth near infinity. To deal with such a$ problem, in most papers, it is assumed that the nonlinearity $x \rightarrow f(z, x)$ satisfies the so called Ambrosetti-Rabinowitz condition (AR-condition for short).

We recall that this condition says that there exist $q>p$ and $M>0$ such that, for almost all $z \in Z$ and all $|x| \geq M$, we have

$$
0<q F(z, x) \leq f(z, x) x
$$

with $F(z, x)=\int_{0}^{x} f(z, s) d s$ (the primitive of $\left.f(z,).\right)$. A direct integration of this inequality, implies that for almost all $z \in Z$ and all $|x| \geq M$, we have $F(z, x) \geq \eta|x|^{q}$ for some $\eta>0$, which implies the strict p-superlinear growth near infinity of the potential function $F(z,$.$) . This condition is employed in the works of Bartsch-Liu$ [10], Degiovanni-Lancelotti [14], Liu [22], and Perera [26], where the authors sudy the corresponding Dirichlet problem. We should also mention that in the above

[^0]papers, with the exception of Bartsch-Liu [10], we find existence but no multiplicity results. Multiplicity results, but for thesemilinear (i.e., $p=2$) equation with a superlinear nonlinearity and Dirichlet boundary conditions, can be found in the works of Struwe [29] and Wang [31]. The study of the corresponding problem for the Neumann p-Laplacian, in some sense, is lagging behind. Recently there have been some multiplicity results for Neumann p-Laplacian problems, but under different conditions which do not cover the case of p-superlinear perturbations. We mention the works of Anello [6], Bonanno-Candito [11], Faraci [16], Filippakis-GasinskiPapageorgiou [17], Motreanu-Motreanu-Papageorgiou [24], Motreanu-Papageorgiou [25], Ricceri [28] and Wu-Tan [32]. In the papers of Anello [6], Bonanno-Candito [11], Faraci [16] and Ricceri [28], it is assumed that $p>N$ (low dimensional problems) and this allows the authors to exploit the fact that the Sobolev space $W^{1, p}(Z)$ is embedded compactly in $C(\bar{Z})$. In these works the approach is essentially similar and is based on an abstract multiplicity result of Ricceri [27] or variants of it. Wu-Tan [32] also assume $p>N$, but they use variational methods based on critical point theory. Filippakis-Gasinski-Papageorgiou [17] and Motreanu-Papageorgiou [25] assume bounded and symmetric nonlinearities and use minimax techniques based on the second deformation theorem and the symmetric mountain pass theorem. Motreanu-Motreanu-Papageorgiou [24] consider eigenvalue problems with a parameter λ near resonance, and they allow nonlinearities $f(z, x)$ which are p-linear and p-superlinear.

In our recent work [2], we consider problems with a p-superlinear nonlinearity satisfying the AR condition, and prove multiplicity results with precise sign information for the solutions. Our approach in [2] is purely variational and a crucial role is played by a new variational characterization of $\lambda_{1}>0$ (the first nonzero eigenvalue of the negative Neumann p-Laplacian) that was earlier proved by us in [3]. Finally, we also mention the recent papers [4], [7], where related p-Laplacian Neumann problems are discussed under different assumptions, by using variational techniques in combination with the method of upper-lower solutions and Morse theory [4], and respectively variational and degree theoretic arguments [7].

In this paper, we prove a multiplicity theorem (three nontrivial solutions) for problems with p - superlinear nonlinearities, which need not satisfy the AR-condition. Our approach combines minimax arguments based on critical point theory with suitable truncation techniques and methods from Morse theory.

2. Preliminaries

In this section, for the convenience of the reader, we recall some basic definitions and facts from critical point theory and from Morse theory, which we will need in the sequel. The reader is referred to [12], [18], [23] for more details.

Let $(X,\|\|$.$) be a Banach space, X^{*}$ its topological dual, and let $\langle.,$.$\rangle denote the$ duality brackets for the pair $\left(X^{*}, X\right)$. Let $\varphi \in C^{1}(X)$. We say that φ satisfies the Cerami condition at the level $c \in \mathbb{R}$ (the C_{c}-condition, for short), if every sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq X$ such that

$$
\varphi\left(x_{n}\right) \rightarrow c \text { and }\left(1+\left\|x_{n}\right\|\right) \varphi^{\prime}\left(x_{n}\right) \rightarrow 0 \text { in } X^{*} \text { as } n \rightarrow \infty
$$

has a strongly convergent subsequence. If this condition holds at every level $c \in \mathbb{R}$, then we say that φ satisfies the C-condition.

This compactness notion plays a key role in the following minimax theorem for the critical values of a C^{1}-functional, known in the literature as the mountain pass theorem; see, e.g. [8], [18].
Theorem 1. If $(X,\|\cdot\|)$ is a Banach space, $\varphi \in C^{1}(X), x_{0}, x_{1} \in X, \rho>0$,

$$
\begin{aligned}
& \max \left\{\varphi\left(x_{0}\right), \varphi\left(x_{1}\right)\right\}<\inf \left\{\varphi(x):\left\|x-x_{0}\right\|=\rho\right\}=\eta, \quad\left\|x_{1}-x_{0}\right\|>\rho, \\
& \Gamma=\left\{\gamma \in C([0,1], X): \gamma(0)=x_{0}, \gamma(1)=x_{1}\right\}, c=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} \varphi(\gamma(t))
\end{aligned}
$$

and φ satisfies the $C_{c}-$ condition then $c \geq \eta$ and c is a critical value of φ, i.e., there exists $x^{*} \in X$ such that $\varphi^{\prime}\left(x^{*}\right)=0$ and $\varphi\left(x^{*}\right)=c$.

Given $\varphi \in C^{1}(X)$ we introduce the following notation:

$$
\begin{gathered}
\varphi^{c}=\{x \in X: \varphi(x) \leq c\} \quad(\text { the sublevel set of } \varphi \text { at } c \in \mathbb{R}), \\
\left.K=\left\{x \in X: \varphi^{\prime}(x)=0\right\} \quad \text { (the critical set of } \varphi\right)
\end{gathered}
$$

and

$$
K_{c}=\{x \in K: \varphi(x)=c\} \text { (the critical set of } \varphi \text { at the level } c \in \mathbb{R} \text {). }
$$

Let $Y_{2} \subseteq Y_{1} \subseteq X$ and let $k \geq 0$ be an integer. By $H_{k}\left(Y_{1}, Y_{2}\right)$ we denote the $k^{t h}$ relative singular homology group of the pair $\left(Y_{1}, Y_{2}\right)$ with integer coefficients. Let $x_{0} \in X$ be an isolated critical point of $\varphi \in C^{1}(X)$ and $c=\varphi\left(x_{0}\right)$. The critical groups of φ at x_{0} are defined by

$$
C_{k}\left(\varphi, x_{0}\right)=H_{k}\left(\varphi^{c} \cap U,\left(\varphi^{c} \cap U\right) \backslash\left\{x_{0}\right\}\right) \text { for all } k \geq 0,
$$

where U is a neighborhood of x_{0} such that $K \cap \varphi^{c} \cap U=\left\{x_{0}\right\}$ (see Chang [12] and Mawhin-Willem [23]). By the excision property of the singular homology theory, we see that the above definition of critical groups is independent of the particular neighborhood U we use.

Now suppose that $\varphi \in C^{1}(X)$ satisfies the $C-$ condition and $-\infty<\inf \varphi(K)$. Let $c<\inf \varphi(K)$. The critical groups of φ at infinity, are defined by

$$
C_{k}(\varphi, \infty)=H_{k}\left(X, \varphi^{c}\right) \text { for all } k \geq 0
$$

(see Bartsch-Li [9]). The deformation lemma (which is valid since φ satisfies the C-condition, see Bartolo-Benci-Fortunato [8] and Gasinski-Papageorgiou [18], p.636) implies that the above definition of critical groups of φ at infinity is independent of the choice of $c<\inf \varphi(K)$. If $K=\left\{x_{0}\right\}$, then

$$
C_{k}(\varphi, \infty)=C_{k}\left(\varphi, x_{0}\right) \text { for all } k \geq 0
$$

Suppose K is finite. The Morse-type numbers of φ are defined by

$$
M_{k}=\sum_{x \in K} \operatorname{rank} C_{k}(\varphi, x) \text { for all } k \geq 0
$$

The Betti-type numbers of φ, are defined by

$$
\beta_{k}=\operatorname{rank} C_{k}(\varphi, \infty) \text { for all } k \geq 0
$$

According to Morse theory (see [9], [12] and [23]) the Poincare-Hopf formula

$$
\begin{equation*}
\sum_{k \geq 0}(-1)^{k} M_{k}=\sum_{k \geq 0}(-1)^{k} \beta_{k}, \tag{2.1}
\end{equation*}
$$

holds if all M_{k}, β_{k} are finite and the series converge.

In the analysis of problem (1.1) we will use of the following two spaces:

$$
C_{n}^{1}(\bar{Z})=\left\{x \in C^{1}(\bar{Z}): \frac{\partial x}{\partial n}=0 \text { on } \partial Z\right\}
$$

and

$$
W_{n}^{1, p}(Z)={\overline{C_{n}^{1}(\bar{Z})}}^{\|\cdot\|}
$$

where $\|\cdot\|$ denotes the $W^{1, p}(Z)-$ norm. Both spaces are ordered Banach spaces, with order cones given by

$$
C_{+}=\left\{x \in C_{n}^{1}(\bar{Z}): x(z) \geq 0 \text { for all } z \in \bar{Z}\right\}
$$

and respectively

$$
W_{+}=\left\{x \in W_{n}^{1, p}(Z): x(z) \geq 0 \text { a.e. on } Z\right\} .
$$

Moreover, we know that C_{+}has nonempty interior, given by

$$
\text { int } C_{+}=\left\{x \in C_{+}: x(z)>0 \text { for all } z \in \bar{Z}\right\}
$$

3. Hypotheses and Auxiliary Results

Throughout this section and the remainder of the paper, $\|\cdot\|_{p}$ denotes the norm of $L^{p}(\mathbb{R})$ or $L^{p}\left(\mathbb{R}^{N}\right)$, while $\|$.$\| denotes the norm of W_{n}^{1, p}(Z)$. Also, for any $x \in \mathbb{R}$, we set $x^{ \pm}=\max \{ \pm x, 0\}$. Finally, we use \xrightarrow{w} to denote the weak convergence, $|\cdot|_{N}$ to designate the Lebesgue measure on \mathbb{R}^{N}, and χ_{E} to indicate the characteristic function of a subset E of Z.

The hypotheses on the nonlinearity $f(z, x)$ are the following:
$(\mathbf{H}) f: Z \times \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $f(z, 0)=0$ a.e. on Z and
(i) for all $x \in \mathbb{R}, z \rightarrow f(z, x)$ is measurable;
(ii) for almost all $z \in Z, x \rightarrow f(z, x)$ is continuous;
(iii) for almost all $z \in Z$ and all $x \in \mathbb{R}$

$$
|f(z, x)| \leq a(z)+c|x|^{r-1}
$$

with $a \in L^{\infty}(Z)_{+}, c>0$ and $p<r<p^{*}$, where

$$
p^{*}= \begin{cases}\frac{N p}{N-p} & \text { if } p<N \\ +\infty & \text { if } p \geq N\end{cases}
$$

(iv) if $F(z, x)=\int_{0}^{x} f(z, s) d s$, then $\lim _{|x| \rightarrow \infty} \frac{F(z, x)}{|x|^{p}}$ uniformly for a.a. $z \in Z$, and there exists $\mu \in\left((r-p) \max \left\{1, \frac{N}{p}\right\}, r\right]$ such that
$\liminf _{|x| \rightarrow \infty} \frac{f(z, x) x-p F(z, x)}{|x|^{\mu}}>0$ uniformly for a.a. $z \in Z ;$
(v) there exists $\delta>0$ such that $F(z, x) \leq 0$ for a.a. $z \in Z$, and all $|x| \leq \delta$, and

$$
\lim _{x \rightarrow 0} \frac{f(z, x)}{|x|^{p-2} x}=0 \text { uniformly for a.a. } z \in Z
$$

(vi) there exists $c_{0}>0$ such that for a.a. $z \in Z$

$$
f(z, x) \geq-c_{0} x^{p-1} \text { for all } x \geq 0 \text { and } f(z, x) \leq c_{0}|x|^{p-1} \text { for all } x \leq 0
$$

Remark: Hypothesis $(H)(v)$ implies that the nonlinerity $f(z,$.$) is p-superlinear$ near infinity for a.a. $z \in Z$ (see Costa-Magalhães [13]). However, it does not need to satisfy the AR-condition, as the example that follows illustrates.

Example: Consider the following function $F(x)(x \in \mathbb{R})$ (for the sake of simplicity we drop the z-dependence):

$$
F(x)=\left\{\begin{array}{ll}
\frac{1}{q}|x|^{q}-\frac{1}{p}|x|^{p} & \text { if }|x| \leq 1 \\
\frac{\xi}{p}|x|^{p} \ln |x|+c|x| & \text { if }|x|>1
\end{array},\right.
$$

with

$$
1<p<q<\infty, c=\frac{p-q}{p q}<0 \text { and } \xi=\frac{q-p}{p q}>0
$$

Evidently, $F \in C^{1}(\mathbb{R})$ and $f(x)=F^{\prime}(x)$ satisfies hypotheses (\mathbf{H}). Indeed, take $r=p+\varepsilon$, with $\varepsilon>0$ such that $N \varepsilon<p^{2}$ and $\mu=p$. Note however that $f(x)$ does not satisfy the AR-condition.

Let $\varphi: W_{n}^{1, p}(Z) \rightarrow \mathbb{R}$ be the Euler functional for problem (1.1), defined by

$$
\varphi(x)=\frac{1}{p}\|D x\|_{p}^{p}-\int_{Z} F(z, x(z)) d z \text { for all } x \in W_{n}^{1, p}(Z) .
$$

Clearly $\varphi \in C^{1}\left(W_{n}^{1, p}(Z)\right)$.
As we already mentioned in the Introduction, we will also use truncation techniques. For this reason, we introduce the following truncations of the nonlinearity $f(z,$.$) :$

$$
f_{+}(z, x)=\left\{\begin{array}{ll}
0 & \text { if } \\
f(z, x) & \text { if } \quad x \geq 0
\end{array} \text { and } f_{-}(z, x)=\left\{\begin{array}{lll}
f(z, x) & \text { if } & x \leq 0 \\
0 & \text { if } & x \geq 0
\end{array}\right.\right.
$$

We set $F_{ \pm}(z, x)=\int_{0}^{x} f_{ \pm}(z, s) d s$. Let $0<\varepsilon<1$ and introduce the functionals $\varphi_{ \pm}^{\varepsilon}: W_{n}^{1, p}(Z) \rightarrow \mathbb{R}$ defined by

$$
\varphi_{ \pm}^{\varepsilon}(x)=\frac{1}{p}\|D x\|_{p}^{p}+\frac{\varepsilon}{p}\|x\|_{p}^{p}-\int_{Z} F_{ \pm}(z, x(z)) d z \mp \frac{\varepsilon}{p}\left\|x^{ \pm}\right\|_{p}^{p} \text { for all } x \in W_{n}^{1, p}(Z) .
$$

Evidently $\varphi_{ \pm}^{\varepsilon} \in C^{1}\left(W_{n}^{1, p}(Z)\right)$. In what follows, we denote by $\langle.,$.$\rangle the duality$ brackets for the pair $\left(W_{n}^{1, p}(Z)^{*}, W_{n}^{1, p}(Z)\right)$. Let $A: W_{n}^{1, p}(Z) \rightarrow W_{n}^{1, p}(Z)^{*}$ be the nonlinear map, defined by

$$
\langle A(x), u\rangle=\int_{Z}\|D x\|_{\mathbb{R}^{N}}^{p-2}(D x, D u)_{\mathbb{R}^{N}} d z \text { for all } x, u \in W_{n}^{1, p}(Z)
$$

It is easy to verify (see, e.g., [2]) that A is of type $(S)_{+}$, i.e., if $x_{n} \xrightarrow{w} x$ in $W_{n}^{1, p}(Z)$ and

$$
\limsup _{n \rightarrow \infty}\left\langle A\left(x_{n}\right), x_{n}-x\right\rangle \leq 0
$$

then $x_{n} \rightarrow x$ in $W_{n}^{1, p}(Z)$. Also, we introduce the maps $N, N_{ \pm}: W_{n}^{1, p}(Z) \rightarrow$ $L^{r^{\prime}}(Z) \subseteq W_{n}^{1, p}(Z)^{*}\left(\frac{1}{r}+\frac{1}{r^{\prime}}=1\right)$, defined by

$$
N(u)(.)=f(., u(.)) \text { and } N_{ \pm}(u)(.)=f_{ \pm}(., u(.)) \text { for all } u \in W_{n}^{1, p}(Z) .
$$

Note that

$$
\varphi^{\prime}(x)=A(x)-N(x) \text { and }\left(\varphi_{ \pm}^{\varepsilon}\right)^{\prime}(x)=A(x)+\varepsilon|x|^{p-2} x-N_{ \pm}(x) \mp \varepsilon\left(x^{ \pm}\right)^{p-1}
$$

Proposition 1. If hypotheses (\mathbf{H}) hold, then the functionals $\varphi_{ \pm}^{\varepsilon}$ and φ satisfy the $C-$ condition.

Proof. We complete the proof for $\varphi_{+}^{\varepsilon}$, the proofs for $\varphi_{-}^{\varepsilon}$ and φ being similar. So, let $\left\{x_{n}\right\}_{n \geq 1} \subseteq W_{n}^{1, p}(Z)$ be a sequence such that

$$
\begin{equation*}
\left|\varphi_{+}^{\varepsilon}\left(x_{n}\right)\right| \leq M_{1}, \text { for some } M_{1}>0, \text { all } n \geq 1 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1+\left\|x_{n}\right\|\right)\left(\varphi_{+}^{\varepsilon}\right)^{\prime}\left(x_{n}\right) \rightarrow 0 \text { in } W_{n}^{1, p}(Z)^{*} \text { as } n \rightarrow \infty \tag{3.2}
\end{equation*}
$$

Claim: The sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq W_{n}^{1, p}(Z)$ is bounded.
From (3.2), we have

$$
\left|\left\langle\left(\varphi_{+}^{\varepsilon}\right)^{\prime}\left(x_{n}\right), u\right\rangle\right| \leq \frac{\varepsilon_{n}}{1+\left\|x_{n}\right\|}\|u\| \text { for all } u \in W_{n}^{1, p}(Z), \text { with } \varepsilon_{n} \downarrow 0
$$

hence

$$
\begin{align*}
& \left.\left|\left\langle A\left(x_{n}\right), u\right\rangle+\varepsilon \int_{Z}\right| x_{n}\right|^{p-2} x_{n} u d z-\int_{Z} f_{+}\left(z, x_{n}\right) u d z-\varepsilon \int_{Z}\left(x_{n}^{+}\right)^{p-1} u d z \mid \\
& \leq \frac{\varepsilon_{n}}{1+\left\|x_{n}\right\|}\|u\| . \tag{3.3}
\end{align*}
$$

First choose $u=-x_{n}^{-} \in W_{n}^{1, p}(Z)$ in (3.3). Then

$$
\left\|D x_{n}^{-}\right\|_{p}^{p}+\varepsilon\left\|x_{n}^{-}\right\|_{p}^{p} \leq \varepsilon_{n},
$$

therefore

$$
\begin{equation*}
x_{n}^{-} \rightarrow 0 \text { in } W_{n}^{1, p}(Z) \text { as } n \rightarrow \infty . \tag{3.4}
\end{equation*}
$$

Next, we choose $u=x_{n}^{+} \in W_{n}^{1, p}(Z)$ in (3.3). Then

$$
\begin{equation*}
-\left\|D x_{n}^{+}\right\|_{p}^{p}+\int_{Z} f_{+}\left(z, x_{n}\right) x_{n}^{+} d z \leq \varepsilon_{n}, \text { for all } n \geq 1 \tag{3.5}
\end{equation*}
$$

Also, from (3.1) and (3.4), we have

$$
\begin{equation*}
\left\|D x_{n}^{+}\right\|_{p}^{p}-\int_{Z} p F_{+}\left(z, x_{n}\right) d z \leq M_{2} \text { for some } M_{2}>0, \text { all } n \geq 1 \tag{3.6}
\end{equation*}
$$

Adding (3.5) and (3.6) we obtain

$$
\begin{equation*}
\int_{Z}\left(f_{+}\left(z, x_{n}\right) x_{n}^{+}-p F_{+}\left(z, x_{n}\right)\right) d z \leq M_{3} \text { for some } M_{3}>0, \text { all } n \geq 1 \tag{3.7}
\end{equation*}
$$

By virtue of hypothesis $(\mathbf{H})(i v)$, we can find $\beta>0$ and $M_{4}=M_{4}(\beta)>0$ such that

$$
0<\beta|x|^{\mu} \leq f(z, x) x-p F(z, x) \text { for a.a. } z \in Z, \text { all }|x| \geq M_{4}
$$

hence

$$
\begin{equation*}
0<\beta x^{\mu} \leq f_{+}(z, x) x-p F_{+}(z, x) \text { for a.a. } z \in Z, \text { all } x \geq M_{4} . \tag{3.8}
\end{equation*}
$$

On the other hand, hypothesis (\mathbf{H}) (iii) implies that for some $M_{5}>0$

$$
\begin{equation*}
\left|f_{+}(z, x) x-p F_{+}(z, x)\right| \leq M_{5}, \text { for a.a. } z \in Z \text { and all } x<M_{4} \tag{3.9}
\end{equation*}
$$

Combining (3.8) and (3.9) we see that

$$
\begin{equation*}
\beta\left(x^{+}\right)^{\mu}-M_{6} \leq f_{+}(z, x) x^{+}-p F_{+}(z, x) \text { for a.a. } z \in Z, \text { all } x \in \mathbb{R} \tag{3.10}
\end{equation*}
$$

with $M_{6}=M_{5}+\beta M_{4}^{\mu}$. We use (3.10) in (3.7) and obtain

$$
\beta\left\|x_{n}^{+}\right\|_{\mu}^{\mu} \leq M_{7} \text { for some } M_{7}>0, \text { all } n \geq 1,
$$

hence

$$
\begin{equation*}
\left\{x_{n}^{+}\right\}_{n \geq 1} \subseteq L^{\mu}(Z) \text { is bounded } \tag{3.11}
\end{equation*}
$$

By hypothesis $(\mathbf{H})(i v)$, we have $\mu \leq r<p^{*}$. Hence, we can find $t \in[0,1)$ such that

$$
\frac{1}{r}=\frac{1-t}{\mu}+\frac{t}{p^{*}} .
$$

Imvoking a classical interpolation inequality (see, for instance, Gasinski-Papageorgiou [18], p.905), we have

$$
\left\|x_{n}^{+}\right\|_{r} \leq\left\|x_{n}^{+}\right\|_{\mu}^{1-t}\left\|x_{n}^{+}\right\|_{p^{*}}^{t}
$$

whence (see(3.11))

$$
\begin{equation*}
\left\|x_{n}^{+}\right\|_{r}^{r} \leq M_{8}\left\|x_{n}^{+}\right\|_{p^{*}}^{t r} \text { for some } M_{8}>0, \text { all } n \geq 1 \tag{3.12}
\end{equation*}
$$

Recall that (cf.(3.3))

$$
\begin{equation*}
\left|\left\|D x_{n}^{+}\right\|_{p}^{p}-\int_{Z} f_{+}\left(z, x_{n}\right) x_{n}^{+} d z\right| \leq \varepsilon_{n}, \text { for all } n \geq 1 \tag{3.13}
\end{equation*}
$$

Note that hypotheses $(\mathbf{H})(i i i)$ and (iv) imply that given $\varepsilon>0$, we can find $c_{\varepsilon}>0$, such that

$$
|f(z, x) x| \leq \varepsilon|x|^{p}+c_{\varepsilon}|x|^{r} \text { for a.a. } z \in Z, \text { all } x \in \mathbb{R},
$$

hence

$$
f_{+}(z, x) x^{+} \leq \varepsilon\left(x^{+}\right)^{p}+c_{\varepsilon}\left(x^{+}\right)^{r} \text { for a.a. } z \in Z, \text { all } x \in \mathbb{R} .
$$

Using this inequality and (3.12) in (3.13), we obtain

$$
\begin{equation*}
\left\|D x_{n}^{+}\right\|_{p}^{p} \leq \varepsilon_{n}+\varepsilon\left\|x_{n}^{+}\right\|_{p}^{p}+\widehat{c}_{\varepsilon}\left\|x_{n}^{+}\right\|_{p^{*}}^{t r} \text { for some } \widehat{c}_{\varepsilon}>0, \text { all } n \geq 1 . \tag{3.14}
\end{equation*}
$$

Arguing by contradiction, suppose that $\left\|x_{n}^{+}\right\| \rightarrow \infty$. Set

$$
y_{n}=\frac{x_{n}^{+}}{\left\|x_{n}^{+}\right\|}, n \geq 1
$$

Then $\left\|y_{n}\right\|=1$ for all $n \geq 1$, and so we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } W_{n}^{1, p}(Z) \text { and } y_{n} \rightarrow y \text { in } L^{p}(Z), y \geq 0 . \tag{3.15}
\end{equation*}
$$

We write $x_{n}^{+}=y_{n}\left\|x_{n}^{+}\right\|$in (3.14) and divide by $\left\|x_{n}^{+}\right\|^{p}$. Then

$$
\begin{equation*}
\left\|D y_{n}\right\|_{p}^{p} \leq \frac{\varepsilon_{n}}{\left\|x_{n}^{+}\right\|^{p}}+\varepsilon\left\|y_{n}\right\|_{p}^{p}+\frac{\widehat{c}_{\varepsilon}}{\left\|x_{n}^{+}\right\|^{p-t r}}\left\|y_{n}\right\|_{p^{*}}^{t r} \text { for all } n \geq 1 \tag{3.16}
\end{equation*}
$$

The hypothesis $\mu>(r-p) \max \left\{1, \frac{N}{p}\right\}(\operatorname{see}(\mathbf{H})(i v))$ is equivalent to saying that $t r<p$. So, if in (3.16), we pass to the limit as $n \rightarrow \infty$ and we use (3.15), we obtain

$$
\|D y\|_{p}^{p} \leq \varepsilon\|y\|_{p}^{p} \leq \varepsilon\|y\|^{p} \leq \varepsilon(\text { since }\|y\|=1)
$$

But recall that $\varepsilon>0$ was arbitrary. So we let $\varepsilon \downarrow 0$ and obtain $\|D y\|_{p}=0$, therefore

$$
y \equiv \xi \in \mathbb{R} .
$$

If $\xi=0$, then from (3.16) we have $D y_{n} \rightarrow 0$ in $L^{p}\left(Z, \mathbb{R}^{n}\right)$ hence (see (3.15)),

$$
y_{n} \rightarrow 0 \text { in } W_{n}^{1, p}(Z),
$$

a contradiction since $\left\|y_{n}\right\|=1$ for all $n \geq 1$.
If $\xi>0$ (recall that $y \geq 0$, see (3.15)), then $x_{n}^{+}(z) \rightarrow \infty$ for a.a. $z \in Z$. From (3.1) we have

$$
\begin{equation*}
\int_{Z} \frac{F_{+}\left(z, x_{n}(z)\right)}{\left\|x_{n}^{+}\right\|^{p}} d z \leq \frac{M_{1}}{\left\|x_{n}^{+}\right\|^{p}}+1\left(\text { recall that }\left\|y_{n}\right\|=1 \text { for all } n \geq 1\right) \tag{3.17}
\end{equation*}
$$

On the other hand, by virtue of hypothesis $(\mathbf{H})(i v)$, given $\theta>0$, we can find $M_{9}=M_{9}(\theta)$ such that

$$
\frac{F(z, x)}{|x|^{p}} \geq \theta>0 \text { for a.a. } z \in Z, \text { all } x \geq M_{9}
$$

hence

$$
\begin{equation*}
\frac{F_{+}(z, x)}{x^{p}} \geq \theta>0 \text { for a.a. } z \in Z, \text { all }|x| \geq M_{9} \tag{3.18}
\end{equation*}
$$

Using (3.18) and hypothesis (H) (iii), we have

$$
\begin{aligned}
& \int_{Z} \frac{F_{+}\left(z, x_{n}(z)\right)}{\left\|x_{n}^{+}\right\|^{p}} d z \\
& =\int_{\left\{x_{n}^{+} \geq M_{9}\right\}} \frac{F_{+}\left(z, x_{n}(z)\right)}{x_{n}^{+}(z)^{p}} y_{n}(z)^{p} d z+\int_{\left\{x_{n}^{+}<M_{9}\right\}} \frac{F_{+}\left(z, x_{n}(z)\right)}{\left\|x_{n}^{+}\right\|^{p}} d z \\
& \geq \int_{\left\{x_{n}^{+} \geq M_{9}\right\}} \theta y_{n}(z)^{p} d z+\int_{\left\{x_{n}^{+}<M_{9}\right\}} \frac{F_{+}\left(z, x_{n}(z)\right)}{\left\|x_{n}^{+}\right\|^{p}} d z \\
& \geq \theta \int_{\left\{x_{n}^{+} \geq M_{9}\right\}} y_{n}(z)^{p} d z-\frac{M_{10}}{\left\|x_{n}^{+}\right\|^{p}} \text { for some } M_{10}>0, \text { all } n \geq 1
\end{aligned}
$$

Since $x_{n}^{+}(z) \rightarrow \infty$ for a.a. $z \in Z$, we have

$$
\chi_{\left\{x_{n}^{+} \geq M_{9}\right\}}(z) \rightarrow \chi_{Z}(z)=1 \text { for a.a. } z \in Z
$$

Hence it follows that

$$
\theta \int_{\left\{x_{n}^{+} \geq M_{9}\right\}} y_{n}(z)^{p} d z \rightarrow \theta \xi^{p}|Z|_{N}
$$

So, if in (3.19) we pass to the limit as $n \rightarrow \infty$, we obtain

$$
\liminf _{n \rightarrow \infty} \int_{Z} \frac{F_{+}\left(z, x_{n}(z)\right)}{\left\|x_{n}^{+}\right\|^{p}} \geq \theta \xi^{p}|Z|_{N}
$$

Recall that $\theta>0$ was arbitrary. So, we let $\theta \rightarrow \infty$ to conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{Z} \frac{F_{+}\left(z, x_{n}(z)\right)}{\left\|x_{n}^{+}\right\|^{p}}=\infty \tag{3.20}
\end{equation*}
$$

Comparing (3.17) and (3.20), we reach a contradiction. This proves the Claim.
By virtue of the Claim, we may assume that

$$
\begin{equation*}
x_{n} \xrightarrow{w} x \text { in } W_{n}^{1, p}(Z) \text { and } x_{n} \rightarrow x \text { in } L^{r}(Z) . \tag{3.21}
\end{equation*}
$$

If in (3.3) we choose $u=x_{n}-x \in W_{n}^{1, p}(Z)$ and pass to the limit as $n \rightarrow \infty$, using (3.21), we obtain

$$
\lim _{n \rightarrow \infty}\left\langle A\left(x_{n}\right), x_{n}-x\right\rangle=0
$$

But A is of type $(S)_{+}$. So, it follows that $x_{n} \rightarrow x$ in $W_{n}^{1, p}(Z)$. This proves that $\varphi_{+}^{\varepsilon}$ satisfies the C-condition.

Similarly, we show that $\varphi_{-}^{\varepsilon}$ and φ satisfy the C-condition.
Proposition 2. If hypotheses (\mathbf{H}) hold, then $x=0$ is a local minimizer for the functionals $\varphi_{+}^{\varepsilon}, \varphi_{-}^{\varepsilon}$ and φ.
Proof. Again we carry out the proof for $\varphi_{+}^{\varepsilon}$, the proofs for $\varphi_{-}^{\varepsilon}$ and φ being similar.
Let $x \in C_{n}^{1}(\bar{Z})$ be such that $\|x\|_{C_{n}^{1}(\bar{Z})} \leq \delta$, with $\delta>0$ as in hypothesis $(\mathbf{H})(v)$. Then

$$
\begin{equation*}
F(z, x(z)) \leq 0 \text { a.e. on } Z(\text { see }(\mathbf{H})(v)) \tag{3.22}
\end{equation*}
$$

Consequently, for $x \in C_{n}^{1}(\bar{Z})$ with $\|x\|_{C_{n}^{1}(\bar{Z})} \leq \delta$, we have

$$
\varphi_{+}^{\varepsilon}(x) \geq \frac{1}{p}\|D x\|_{p}^{p}-\int_{Z} F_{+}(z, x(z)) d z\left(\text { since }\left\|x^{+}\right\|_{p} \leq\|x\|_{p}\right) \geq 0
$$

(see (3.22)). Therefore, $x=0$ is a local $C_{n}^{1}(\bar{Z})-\operatorname{minimizer}$ of $\varphi_{+}^{\varepsilon}$. Invoking Proposition 2.5 of Motreanu-Motreanu-Papageorgiou [24] (see also [2], Proposition 3 when $p \geq 2$) we infer that $x=0$ is also a local $W_{n}^{1, p}(Z)-\operatorname{minimizer}$ of $\varphi_{+}^{\varepsilon}$.

Similarly, we show that $x=0$ is a local minimizer of $\varphi_{-}^{\varepsilon}$ and φ, too.
Proposition 3. If hypotheses (\mathbf{H}) hold, then problem (1.1) has two solutions of constant sign $x_{0} \in$ int C_{+}and $v_{0} \in$-int C_{+}.

Proof. By virtue of Proposition 3 and arguing as in Aizicovici-Papageorgiou-Staicu [5] (see the proof of Proposition 10), we can find $\rho>0$ small such that

$$
\begin{equation*}
0=\varphi_{+}^{\varepsilon}(0)<\inf \left\{\varphi_{+}^{\varepsilon}(x):\|x\|=\rho\right\}=: \gamma_{\rho}^{+} \tag{3.23}
\end{equation*}
$$

On account of hypothesis $(\mathbf{H})(i v)$, it is clear that

$$
\begin{equation*}
\varphi_{+}^{\varepsilon}(\sigma)=-\int_{Z} F_{+}(z, \sigma) d z \rightarrow-\infty \text { as } \sigma \rightarrow \infty \tag{3.24}
\end{equation*}
$$

Then Proposition 2 together with (3.23) and (3.24) enables us to use the mountain pass theorem (see Theorem 1). So, we obtain $x_{0} \in W_{n}^{1, p}(Z)$ such that

$$
\begin{equation*}
0=\varphi_{+}^{\varepsilon}(0)<\gamma_{\rho}^{+} \leq \varphi_{+}^{\varepsilon}\left(x_{0}\right) \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\varphi_{+}^{\varepsilon}\right)^{\prime}\left(x_{0}\right)=0 \tag{3.26}
\end{equation*}
$$

By (3.25) it is clear that $x_{0} \neq 0$. From (3.26), we have

$$
A\left(x_{0}\right)+\varepsilon\left|x_{0}\right|^{p-2} x_{0}=N_{+}\left(x_{0}\right)+\varepsilon\left(x_{0}^{+}\right)^{p-1}
$$

We act with $-x_{0}^{-} \in W_{n}^{1, p}(Z)$ on the above relation and obtain

$$
\varepsilon\left\|x_{0}^{-}\right\|=0
$$

hence

$$
x_{0} \in W_{+}, x_{0} \neq 0
$$

Moreover, using the nonlinear Green identity, as in Motreanu-Papageorgiou [25], we show that $x_{0} \in W_{+}$is a solution of problem (1.1). In addition, the nonlinear regularity theory (see, for example, Gasinski-Papageorgiou [18]) implies that $x_{0} \in$ C_{+}. By virtue of hypothesis $(\mathbf{H})(v i)$, we have

$$
-\triangle_{p} x_{0}(z)=f\left(z, x_{0}(z)\right) \geq-c_{0} x_{0}(z)^{p-1} \text { a.e. on } Z
$$

hence

$$
\triangle_{p} x_{0}(z) \leq c_{0} x_{0}(z)^{p-1} \text { a.e. on } Z .
$$

Invoking the nonlinear strong maximum principle of Vazquez [30], we conclude that $x_{0} \in \operatorname{int} C_{+}$. Similarly, working this time with the finctional $\varphi_{-}^{\varepsilon}$, we obtain a second constant sign solution $v_{0} \in-$ int C_{+}.

Proposition 4. If hypotheses (\mathbf{H}) hold, then $C_{k}(\varphi, \infty)=0$ for all $k \geq 0$.
Proof. Hypotheses $(\mathbf{H})(i i i),(i v)$ imply that given any $\theta>0$, we can find $M_{11}=$ $M_{11}(\theta)>0$ such that

$$
\begin{equation*}
F(z, x) \geq \frac{\theta}{p}|x|^{p}-M_{11} \text { for a.a. } z \in Z, \text { all } x \in \mathbb{R} . \tag{3.27}
\end{equation*}
$$

Hence, if $u \in \partial B_{1}=\left\{u \in W_{n}^{1, p}(Z):\|u\|=1\right\}$ and $t>0$, then

$$
\begin{align*}
\varphi(t u) & =\frac{t^{p}}{p}\|D u\|_{p}^{p}-\int_{Z} F(z, t u) d z \leq \frac{t^{p}}{p}-\frac{\theta t^{p}}{p}\|u\|_{p}^{p}+M_{11}|Z|_{N} \\
& =\frac{t^{p}}{p}\left(1-\theta\|u\|_{p}^{p}\right)+M_{11}|Z|_{N} \tag{3.28}
\end{align*}
$$

So, if we choose $\theta>\frac{1}{\|u\|_{p}^{p}}$, then from (3.28) it is clear that

$$
\begin{equation*}
\varphi(t u) \rightarrow-\infty \text { as } t \rightarrow+\infty \tag{3.29}
\end{equation*}
$$

Also, because of hypothesis $(\mathbf{H})(i v)$, we can find $\beta>0$ and $M_{12}>0$, such that

$$
f(z, x) x-p F(z, x) \geq \beta|x|^{\mu} \text { for a.a. } z \in Z, \text { all }|x| \geq M_{12} .
$$

Hence, for any $v \in W_{n}^{1, p}(Z)$, we have

$$
\begin{align*}
& \int_{Z} p F(z, v) d z-\int_{Z} f(z, v) v d z \\
& =\int_{\left\{|v| \geq M_{12}\right\}} p F(z, v) d z+\int_{\left\{|v|<M_{12}\right\}} p F(z, v) d z \\
& -\int_{\left\{|v| \geq M_{12}\right\}} f(z, v) v d z-\int_{\left\{|v|<M_{12}\right\}} f(z, v) v d z \\
& \leq-\int_{\left\{|v| \geq M_{12}\right\}} \beta|x|^{\mu} d z+c_{1}, \tag{3.30}
\end{align*}
$$

where

$$
c_{1}=\xi M_{12}|Z|_{N}(p+1) \text { with } \xi=\operatorname{ess} \sup \left\{|f(z, x)|: z \in Z,|x|<M_{12}\right\}
$$

Let $c_{2}=c_{1}+1$ and pick $\lambda<-c_{2}$. Then by virtue of (3.29), for $t>0$ large and $u \in \partial B_{1}$, we have

$$
\begin{equation*}
\varphi(t u)=\frac{1}{p}\left(t^{p}\|D u\|_{p}^{p}-\int_{Z} p F(z, t u) d z\right) \leq \lambda \tag{3.31}
\end{equation*}
$$

In view of (3.29) and of the fact that $\varphi(0)=0$, we infer that there exists $t^{*}>0$ such that

$$
\varphi\left(t^{*} u\right)=\lambda
$$

Then

$$
\begin{aligned}
\frac{d}{d t} \varphi(t u) & =\left\langle\varphi^{\prime}(t u), u\right\rangle=t^{p-1}\|D u\|_{p}^{p}-\int_{Z} f(z, t u) u d z \\
& =\frac{1}{t}\left(t^{p}\|D u\|_{p}^{p}-\int_{Z} f(z, t u) t u d z\right) \\
& \leq \frac{1}{t}\left(t^{p}\|D u\|_{p}^{p}-\int_{Z} p F(z, t u) d z+c_{1}\right)(\text { see }(3.30)) \\
& \leq \frac{1}{t}\left(\lambda+c_{1}\right)<0\left(\text { recall } \lambda<-c_{2}=-\left(c_{1}+1\right)\right), \text { for all } t \geq t^{*}
\end{aligned}
$$

It follows that there exists a unique $\tau(u)>0$, such that

$$
\varphi(\tau(u) u)=\lambda \text { for all } u \in \partial B_{1}
$$

Moreover, the implicit function theorem guarantees that $\tau \in C\left(\partial B_{1}\right)$.
For $u \neq 0$, we set $\widehat{\tau}(u)=\frac{1}{\|u\|} \tau\left(\frac{u}{\|u\|}\right)$. Evidently $\widehat{\tau} \in C\left(W_{n}^{1, p}(Z) \backslash\{0\}\right)$ and

$$
\varphi(\widehat{\tau}(u) u)=\lambda \text { for all } u \in W_{n}^{1, p}(Z) \backslash\{0\} .
$$

Moreover, if $\varphi(u)=\lambda$, then $\widehat{\tau}(u)=1$. We define

$$
\widehat{\tau}_{0}(u)=\left\{\begin{array}{lll}
1 & \text { if } \quad \varphi(u) \leq \lambda \\
\widehat{\tau}(u) & \text { if } \quad \varphi(u) \geq \lambda
\end{array}\right.
$$

From the above, it is clear that $\widehat{\tau}_{0} \in C\left(W_{n}^{1, p}(Z) \backslash\{0\}\right)$. We introduce the map $h:[0,1] \times\left(W_{n}^{1, p}(Z) \backslash\{0\}\right) \rightarrow W_{n}^{1, p}(Z) \backslash\{0\}$, defined by

$$
h(t, u)=(1-t) u+t \widehat{\tau}_{0}(u) u
$$

The continuity of $\widehat{\tau}_{0}$ implies that h is continuous, too. Also, we have

$$
h(0, u)=u, h(1, u) \in \varphi^{\lambda} \text { for all } u \in W_{n}^{1, p}(Z) \backslash\{0\}
$$

and if $u \in \varphi^{\lambda}$, then $h(t, u)=u$ for all $t \in[0,1]$. These properties imply that φ^{λ} is a strong deformation retract of $W_{n}^{1, p}(Z) \backslash\{0\}$. Clearly, ∂B_{1} is a retract of $W_{n}^{1, p}(Z) \backslash\{0\}$ (consider the radial retraction). Therefore, choosing $\lambda<\inf \varphi(K)$, we conclude that

$$
\varphi^{\lambda} \text { is homotopy equivalent to } \partial B_{1}
$$

(see Dugundji [15], pp. 325, 365). Hence

$$
H_{k}\left(W_{n}^{1, p}(Z), \varphi^{\lambda}\right)=H_{k}\left(W_{n}^{1, p}(Z), \partial B_{1}\right) \text { for all } k \geq 0
$$

(see Granas-Dugundji [19], p.387), therefore

$$
C_{k}(\varphi, \infty)=0 \text { for all } k \geq 0
$$

(see Granas-Dugundji [19] and recall that ∂B_{1} is contractible in itself).
Proposition 5. If hypotheses (\mathbf{H}) hold, then $C_{k}\left(\varphi_{ \pm}^{\varepsilon}, \infty\right)=0$ for all $k \geq 0$.
Proof. We present the proof for $\varphi_{+}^{\varepsilon}$, the proof for $\varphi_{-}^{\varepsilon}$ being similar.
By virtue of hypotheses $(\mathbf{H})(i i i),(i v)$, given $\theta>0$, we can find $M_{13}=M_{13}(\theta)>$ 0 such that

$$
\begin{equation*}
F_{+}(z, x) \geq \frac{\theta}{p}\left(x^{+}\right)^{p}-M_{13} \text { for a.a. } z \in Z, \text { all } x \in \mathbb{R} . \tag{3.32}
\end{equation*}
$$

We consider the set $S_{+}=\left\{u \in \partial B_{1}: u^{+} \neq 0\right\}$. Then, for $u \in S_{+}$and $t>0$, we have

$$
\begin{align*}
\varphi_{+}^{\varepsilon}(t u) & \leq \frac{t^{p}}{p}(1+\varepsilon)-\frac{t^{p}}{p}(\theta+\varepsilon)\left\|u^{+}\right\|_{p}^{p}+M_{13}|Z|_{N} \\
& =\frac{t^{p}}{p}\left(1+\varepsilon-(\theta+\varepsilon)\left\|u^{+}\right\|_{p}^{p}\right)+M_{13}|Z|_{N} \tag{3.33}
\end{align*}
$$

(see (3.32) and recall that $\|u\|=1$). Since $\theta>0$ is arbitrary, from (3.33), we infer that

$$
\begin{equation*}
\varphi_{+}^{\varepsilon}(t u) \rightarrow-\infty \text { as } t \rightarrow+\infty . \tag{3.34}
\end{equation*}
$$

Also, by hypothesis $(\mathbf{H})(i v)$, we can find $\beta>0$ and $M_{14}>0$, such that

$$
\begin{equation*}
f_{+}(z, x) x-p F_{+}(z, x) \geq \beta x^{\mu} \text { for a.a. } z \in Z, \text { all } x \geq M_{14} . \tag{3.35}
\end{equation*}
$$

Recalling that $f_{+}(z, x)=F_{+}(z, x)=0$ for a.a. $z \in Z$ and all $x \leq 0$, for any $v \in W_{n}^{1, p}(Z)$, we have

$$
\begin{equation*}
\int_{Z} p F_{+}(z, v) d z-\int_{Z} f_{+}(z, v) v d z \leq-\int_{\left\{v \geq M_{14}\right\}} \beta v^{\mu} d z+c_{3} \tag{3.36}
\end{equation*}
$$

where

$$
c_{3}=\widehat{\xi} M_{14}|Z|_{N}(p+1) \text { with } \widehat{\xi}=\operatorname{ess} \sup \left\{|f(z, x)|: z \in Z, 0 \leq x<M_{14}\right\}
$$

(see (3.35) and the proof of Proposition 5).
Let $c_{4}=c_{3}+1$ and pick $\lambda<-c_{4}$. Because of (3.34), for $t>0$ large and $u \in S_{+}$, we have

$$
\begin{equation*}
\varphi_{+}^{\varepsilon}(t u)=\frac{1}{p}\left(t^{p}\|D u\|_{p}^{p}+\varepsilon\left\|u^{-}\right\|_{p}^{p}-\int_{Z} p F_{+}(z, t u) d z\right) \leq \lambda \tag{3.37}
\end{equation*}
$$

Recalling (3.34) and the fact that $\varphi_{+}^{\varepsilon}(0)=0$, we infer that there exists $\widehat{t}>0$ such that $\varphi_{+}^{\varepsilon}(\widehat{t u})=\lambda$.

Then, as before (see the proof of Proposition 5)

$$
\begin{aligned}
\frac{d}{d t} \varphi_{+}^{\varepsilon}(t u) & =\left\langle\left(\varphi_{+}^{\varepsilon}\right)^{\prime}(t u), u\right\rangle \\
& =\frac{1}{t}\left(t^{p}\|D u\|_{p}^{p}+\varepsilon t^{p}\|u\|_{p}^{p}-\int_{Z} f_{+}(z, t u) t u d z-\varepsilon t^{p}\left\|u^{+}\right\|_{p}^{p}\right) \\
& \leq \frac{1}{t}\left(t^{p}\|D u\|_{p}^{p}+\varepsilon t^{p}\left\|u^{-}\right\|_{p}^{p}-\int_{Z} p F_{+}(z, t u) d z+c_{3}\right)(\text { see }(3.36)) \\
& \leq \frac{1}{t}\left(\lambda+c_{3}\right)(\text { see }(3.37)) \\
& <0\left(\text { recall } \lambda<-\left(c_{3}+1\right)\right), \text { for all } t \geq \widehat{t}
\end{aligned}
$$

Thus, by the implicit function theorem, we can find a unique $\tau^{+} \in C\left(S_{+}\right)$such that

$$
\varphi\left(\tau^{+}(u) u\right)=\lambda \text { for all } u \in S_{+}
$$

Let $D_{+}=\left\{x \in W_{n}^{1, p}(Z): x^{+} \neq 0\right\}$. We define

$$
\widehat{\tau^{+}}(u)=\frac{1}{\|u\|} \tau^{+}\left(\frac{u}{\|u\|}\right) \text { for all } u \in D_{+} .
$$

Clearly $\widehat{\tau^{+}} \in C\left(D_{+}\right)$and $\varphi_{+}^{\varepsilon}\left(\widehat{\tau^{+}}(u) u\right)=\lambda$ for all $u \in D_{+}$. Moreover, if $\varphi_{+}^{\varepsilon}(u)=$ λ, then $\widehat{\tau^{+}}(u)=1$. We define

$$
\widehat{\tau}_{0}^{+}(u)=\left\{\begin{array}{lll}
1 & \text { if } & \varphi_{+}^{\varepsilon}(u) \leq \lambda \tag{3.38}\\
\widehat{\tau^{+}}(u) & \text { if } & \varphi_{+}^{\varepsilon}(u) \geq \lambda
\end{array} .\right.
$$

Then $\widehat{\tau}_{0}^{+} \in C\left(D_{+}\right)$. We introduce the map $h_{+}:[0,1] \times D_{+} \rightarrow D_{+}$, defined by

$$
h_{+}(t, u)=(1-t) u+t \widehat{\tau}_{0}^{+}(u) u .
$$

The continuity of $\widehat{\tau}_{0}^{+}$implies the continuity of h_{+}. In addition, we have

$$
h_{+}(0, u)=u, h_{+}(1, u) \in\left(\varphi_{+}^{\varepsilon}\right)^{\lambda} \text { for all } u \in D_{+}
$$

and if $u \in\left(\varphi_{+}^{\varepsilon}\right)^{\lambda}$ then $h_{+}(t, u)=u$ for all $t \in[0,1]$ (see (3.38). Hence, we infer that $\left(\varphi_{+}^{\varepsilon}\right)^{\lambda}$ is a strong deformation retract of D_{+}.

Next, we show that D_{+}is contractible in itself. To this end, let $u_{0} \in \operatorname{int} C_{+}$ be the $L^{p}-$ normalized principal eigenvalue of $\left(-\triangle_{p}, W_{n}^{1, p}(Z)\right)$. Consider the map $\widehat{h}:[0,1] \times D_{+} \rightarrow D_{+}$, defined by

$$
\widehat{h}(t, u)=\frac{(1-t) u+u_{0}}{\left\|(1-t) u+u_{0}\right\|} .
$$

Note that $\left[(1-t) u+u_{0}\right]^{+} \neq 0$ and so \widehat{h} is well defined. Evidently \widehat{h} is continuous and $\widehat{h}(1, u)=\frac{u_{0}}{\left\|u_{0}\right\|} \in D_{+}$. Therefore D_{+}is contractible in itself. Then, reasoning as in the proof of Proposition 5, we conclude that

$$
C_{k}\left(\varphi_{+}^{\varepsilon}, \infty\right)=0 \text { for all } k \geq 0
$$

In a similar way, we show that

$$
C_{k}\left(\varphi_{-}^{\varepsilon}, \infty\right)=0 \text { for all } k \geq 0
$$

using this time the set $D_{-}=\left\{x \in W_{n}^{1, p}(Z): x^{-} \neq 0\right\}$.

4. Main Result

In this section, we prove a multiplicity (three solutions) theorem for problem (1.1).

Theorem 2. If hypotheses $\mathbf{(H)}$ hold, then problem (1.1) has at least three nontrivial solutions $x_{0} \in \operatorname{int} C_{+}, v_{0} \in$ int C_{+}and $u_{0} \in \operatorname{int} C_{n}^{1}(\bar{Z})$.
Proof. From Proposition 4, we already have two solutions $x_{0} \in \operatorname{int} C_{+}$and $v_{0} \in$ -int C_{+}.

Suppose that $\left\{0, x_{0}, v_{0}\right\}$ are the only critical points of φ, or otherwise we have a third nontrivial critical point, hence a third nontrivial solution of (1.1) (belonging to $C_{n}^{1}(\bar{Z})$ by nonlinear regularity theory), and we are done.
Claim 1: $C_{k}\left(\varphi_{+}^{\varepsilon}, x_{0}\right)=C_{k}\left(\varphi_{-}^{\varepsilon}, v_{0}\right)=\delta_{k, 1} \mathbb{Z}$ for all $k \geq 0$.
We complete the proof for the pair $\left(\varphi_{+}^{\varepsilon}, x_{0}\right)$, the proof for the pair $\left(\varphi_{-}^{\varepsilon}, v_{0}\right)$ being similar. Note that the critical points of $\varphi_{+}^{\varepsilon}$ belong to C_{+}, and so are the critical points of φ, too. Since we have assumed that $\left\{0, x_{0}, v_{0}\right\}$ are the only critical points of φ, we see that $\left\{0, x_{0}\right\}$ are the only critical points of $\varphi_{+}^{\varepsilon}$. We choose λ, $\xi \in \mathbb{R}$ such that

$$
\lambda<0=\varphi_{+}^{\varepsilon}(0)<\xi<\varphi_{+}^{\varepsilon}\left(x_{0}\right) .
$$

Then, we consider the following triple of sets

$$
\left(\varphi_{+}^{\varepsilon}\right)^{\lambda} \subseteq\left(\varphi_{+}^{\varepsilon}\right)^{\xi} \subseteq W_{n}^{1, p}(Z)=: W
$$

We have the following long exact sequence

$$
\begin{equation*}
\ldots H_{k}\left(W,\left(\varphi_{+}^{\varepsilon}\right)^{\lambda}\right) \xrightarrow{j_{*}} H_{k}\left(W,\left(\varphi_{+}^{\varepsilon}\right)^{\xi}\right) \xrightarrow{\partial} H_{k-1}\left(\left(\varphi_{+}^{\varepsilon}\right)^{\xi},\left(\varphi_{+}^{\varepsilon}\right)^{\lambda}\right) \ldots \tag{4.1}
\end{equation*}
$$

where j_{*} is the homomorphism induced by the inclusion

$$
\left(W,\left(\varphi_{+}^{\varepsilon}\right)^{\lambda}\right) \xrightarrow{j}\left(W,\left(\varphi_{+}^{\varepsilon}\right)^{\xi}\right)
$$

and ∂ is the boundary homomorphism. From the choice of the levels λ and ξ and since $\left\{0, x_{0}\right\}$ are the only critical points of $\varphi_{+}^{\varepsilon}$, we have

$$
\begin{equation*}
H_{k}\left(W,\left(\varphi_{+}^{\varepsilon}\right)^{\lambda}\right)=C_{k}\left(\varphi_{+}^{\varepsilon}, \infty\right)=0 \text { for all } k \geq 0 \tag{4.2}
\end{equation*}
$$

(see Proposition 6),

$$
\begin{equation*}
H_{k}\left(W,\left(\varphi_{+}^{\varepsilon}\right)^{\xi}\right)=C_{k}\left(\varphi_{+}^{\varepsilon}, x_{0}\right) \text { for all } k \geq 0 \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{k-1}\left(\left(\varphi_{+}^{\varepsilon}\right)^{\xi},\left(\varphi_{+}^{\varepsilon}\right)^{\lambda}\right)=C_{k-1}\left(\varphi_{+}^{\varepsilon}, 0\right)=\delta_{k-1,0} \mathbb{Z}=\delta_{k, 1} \mathbb{Z} \text { for all } k \geq 0 \tag{4.4}
\end{equation*}
$$

(see Proposition 3). The exactness of (4.1) together with (4.2) imply that the boundary homomorphism is an isomorphism between the groups in (4.3) and (4.4). This proves Claim 1.
Claim 2: $C_{k}\left(\varphi, x_{0}\right)=C_{k}\left(\varphi_{+}^{\varepsilon}, x_{0}\right)$ and $C_{k}\left(\varphi, v_{0}\right)=C_{k}\left(\varphi_{-}^{\varepsilon}, v_{0}\right)$ for all $k \geq 0$.
We do the proof for the pair $\left(\varphi_{+}^{\varepsilon}, x_{0}\right)$, since the proof for the pair $\left(\varphi_{-}^{\varepsilon}, v_{0}\right)$ is similar.

Consider the homotopy

$$
\psi(t, x)=t \varphi_{+}^{\varepsilon}(x)+(1-t) \varphi(x) \text { for all }(t, x) \in[0,1] \times W_{n}^{1, p}(Z)
$$

We show that, without loss of generality, we can say that for some $r>0, x_{0}$ is the only critical point of $\psi(t,$.$) in B_{r}\left(x_{0}\right)=\left\{x \in W_{n}^{1, p}(Z):\left\|x-x_{0}\right\|<r\right\}$, for all $t \in[0,1]$. Indeed, if this is not the case, we can find $\left\{t_{n}\right\}_{n \geq 1} \subseteq[0,1]$ and $\left\{x_{n}\right\}_{n \geq 1} \subseteq W_{n}^{1, p}(Z)$ such that $t_{n} \rightarrow t, x_{n} \rightarrow x$ in $W_{n}^{1, p}(Z)$ and $\psi_{x}^{\prime}\left(t_{n}, x_{n}\right)=0$. Then

$$
A\left(x_{n}\right)+t_{n} \varepsilon\left|x_{n}\right|^{p-2} x_{n}=t_{n} N_{+}\left(x_{n}\right)+\left(1-t_{n}\right) N\left(x_{n}\right)+\left(1-t_{n}\right) \varepsilon\left(x_{n}^{+}\right)^{p-1}
$$

therefore

$$
\begin{cases}-\triangle_{p} x_{n}(z)=t_{n} f_{+}\left(z, x_{n}(z)\right)+ & \left(1-t_{n}\right) f\left(z, x_{n}(z)\right)+\left(1-t_{n}\right) \varepsilon\left(x_{n}^{+}(z)\right)^{p-1} \\ & +\varepsilon t_{n}\left[\left(x_{n}^{-}(z)\right)^{p-1}-\left(x_{n}^{+}(z)\right)^{p-1}\right] \text { a.e. on } Z \\ \frac{\partial x_{n}}{\partial n}=0 \text { on } \partial Z . & \end{cases}
$$

The nonlinearity on the right hand side of the above Neumann problem has subcritical growth. Hence by $L^{\infty}(Z)$ - regularity (see Ladyzhenskaya-Uraltseva [20]) we can find an $M_{15}>0$ such that $\left\|x_{n}\right\|_{\infty} \leq M_{15}$ for all $n \geq 1$. Then (see [21]) we can find $\alpha \in[0,1]$ and $M_{16}>0$, both independent of $n \geq 1$, such that

$$
\begin{equation*}
x_{n} \in C_{n}^{1, \alpha}(\bar{Z}) \text { and }\left\|x_{n}\right\|_{C_{n}^{1, \alpha}}(\bar{Z}) \leq M_{16} \text { for all } n \geq 1 \tag{4.5}
\end{equation*}
$$

From (4.5) and the compact embedding of $C_{n}^{1, \alpha}(\bar{Z})$ into $C_{n}^{1}(\bar{Z})$ (see, for example Adams [1], p.11), we have that $\left\{x_{n}\right\}_{n \geq 1} \subseteq C_{n}^{1, \alpha}(\bar{Z})$ is relatively compact, hence we may assume that

$$
x_{n} \rightarrow x_{0} \text { in } C_{n}^{1}(\bar{Z}) .
$$

Since $x_{0} \in$ int C_{+}, it folows that we can find an integer $n_{0} \geq 1$ such that $x_{n} \in$ int C_{+}for all $n \geq n_{0}$. Then

$$
f_{+}\left(z, x_{n}(z)\right)=f\left(z, x_{n}(z)\right) \text { for all } n \geq n_{0}
$$

and so, all x_{n} with $n \geq n_{0}$ are solutions of (1.1) and we are done.
Therefore, we may assume that, for some $r>0, x_{0}$ is the only critical point in $B_{r}\left(x_{0}\right)$ of $\psi(t,$.$) , for all t \in[0,1]$. Invoking the homotopy invariance property of singular homology, we have

$$
C_{k}\left(\psi(0, .), x_{0}\right)=C_{k}\left(\psi(1, .), x_{0}\right) \text { for all } k \geq 0
$$

hence

$$
C_{k}\left(\varphi, x_{0}\right)=C_{k}\left(\varphi_{+}^{\varepsilon}, x_{0}\right) \text { for all } k \geq 0
$$

Similarly, we show that

$$
C_{k}\left(\varphi, v_{0}\right)=C_{k}\left(\varphi_{-}^{\varepsilon}, v_{0}\right) \text { for all } k \geq 0
$$

This proves Claim 2.
Recall that, because of Proposition 3, we have

$$
\begin{equation*}
C_{k}(\varphi, 0)=\delta_{k, 0} \mathbb{Z} \text { for all } k \geq 0 \tag{4.6}
\end{equation*}
$$

(see Chang [12], p. 33 and Mawhin-Willem [23], p.175).
Then from Propositions 5, 6, Claims 1, 2, (4.6) and the Poincare-Hopf formula (see (2.1)) we have

$$
(-1)^{0}+2(-1)^{1}=0
$$

a contradiction. This means that φ has a third nontrivial critical point $u_{0} \in$ $W_{n}^{1, p}(Z)$, which solves (1.1) and belongs to $C_{n}^{1}(\bar{Z})$ (by the nonlinearity regularity theory).

Remark: When $p=2$ (semilinear problems), Theorem 7 extends to Neumann problems the work of Wang [31], where the boundary condition is of Dirichlet type. However, note that in contrast with Wang [31], where $f(z, x)=f(x)$, we do note assume that f is of class C^{1} and we do not use the AR-condition.
Aknowledgement: We thank the referee for kindly suggesting a simplification of the proof of Theorem 2.

References

[1] R. Adams. Sobolev Spaces. Academic Press, New York, 1975.
[2] S. Aizicovici, N. S. Papageorgiou, and V. Staicu. Existence of multiple splutions with precise sign information for superlinear Neumann problems. (submitted).
[3] S. Aizicovici, N. S. Papageorgiou, and V. Staicu. The spectrum and an index formula for the Neumann p-Laplacian and multiple solutions for problems with crossing nonlinearity. (submitted).
[4] S. Aizicovici, N. S. Papageorgiou, and V. Staicu. Three nontrivial solutions for p-Laplacian Neumann problems with a concave nonlinearity near the origin. Contemp. Math., (to appear).
[5] S. Aizicovici, N. S. Papageorgiou, and V. Staicu. Multiple nontrivial solutions for nonlinear periodic problems wih the p-Laplacian. J. Differential Equations, 243:504-535, 2007.
[6] G. Anello. Existence of infinitely many weak solutions for a Neumann problem. Nonlinear Anal., 57:199-209, 2004.
[7] G. Barletta and N. S. Papageorgiou. A multiplicity theorem for the Neumann p-Laplacian with an asymmetric nonsmooth potential. J. Global Optim., 39:365-392, 2007.
[8] P. Bartolo, V. Benci, and D. Fortunato. Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity. Nonlinear Anal., 7:981-1012, 1983.
[9] T. Bartsch and S. Li. Critical point theory for asymptotically quadratic functionals and applications to problems with resonance. Nonlinear Anal., 28:419-441, 1997.
[10] T. Bartsch and Z. Liu. On the superlinear elliptic p-Lapacian equation. J. Differential Equations, 198:149-175, 2004.
[11] G. Bonanno and P. Candito. Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian. Arch. Math., 80:424-429, 2003.
[12] K. C. Chang. Infinite Dimensional Morse Theory and Multiple Solution Problems. Birkhauser, Boston, 1993.
[13] D. G. Costa and C. A. Magalhães. Existence results for perturbations of the p-Laplacian. Nonlinear Anal., 24:409-418, 1995.
[14] M. Degiovanni and S. Lancelotti. Linking over cones and nontrivial solutions for p-Laplacian equations with p-superlinear nonlinearity. Ann. Inst. H. Poincare Anal. Non Lineaire, 24:907-919, 2007.
[15] J. Dugundji. Topology. Allyn and Bacon Inc., Boston, 1966.
[16] F. Faraci. Multiplicity results for a Neumann problem involving the p-Laplacian. J. Math. Anal. Appl., 277:180-189, 2003.
[17] M. Filippakis, L. Gasinski, and N. S. Papageorgiou. Multiplicity results for nonlinear Neumann problems. Canadian J. Math., 58:64-92, 2006.
[18] L. Gasinski and N. S. Papageorgiou. Nonlinear Analysis. Chapman \&Hall/ CRC Press, Boca Raton, 2006.
[19] A. Granas and J. Dugundji. Fixed Point Theory. Springer, New York, 2005.
[20] O. Ladyzhenskaya and N. Uraltseva. Linear and Quasilinear Elliptic Equations. Academic Press, New York, 1968.
[21] G. Lieberman. Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal., 12:1203-1219, 1988.
[22] S. Liu. Existence of solutions to a superlinear p-Laplacian equations. Electronic J. Differential Equations, 2001, No. 66:1-6, 2001.
[23] J. Mawhin and M. Willem. Critical Point Theory and Hamiltonian Systems. Springer-Verlag, New York, 1989.
[24] D. Motreanu, V. Motreanu, and N. S. Papageorgiou. Nonlinear Neumann problems near reasonance. Indiana Univ. Math. J., (to appear).
[25] D. Motreanu and N. S. Papageorgiou. Existence and multiplicity of solutions for Neumann problems. J. Differential Equations, 232:1-35, 2007.
[26] K. Perera. Nontrivial solutions of p-superlinear p-Laplacian problems. Appl. Anal., 82:883888, 2003.
[27] B. Ricceri. On a three critical points theorem. Arch. Math., 75:220-226, 2000.
[28] B. Ricceri. Infinitely many solutions of the Neumann problem for elliptic equations involving the p-Laplacian. Bull. London Math. Soc., 33:331-340, 2001.
[29] M. Struwe. Three nontrivial solutions of anticoercive boundary value problems for the pseudoLaplace operator. J. Reine Angew. Math., 325:68-74, 1981.
[30] J. Vazquez. A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim., 12:191-202, 1984.
[31] Z. Q. Wang. On a superlinear elliptic equation. Ann. Inst. H. Poincare Anal. Non Lineaire, 8:43-58, 1991.
[32] X. Wu and K. K. Tan. On the existence and multiplicity of solutions of Neumann boundary value problems for quasilinear elliptic equations. Nonlinear Anal., 65:1334-1347, 2006.
(S. Aizicovici) Department of Mathematics, Ohio University, Athens, OH 45701, USA E-mail address: aizicovi@math.ohiou.edu
(N. S. Papageorgiou) Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece

E-mail address: npapg@math.ntua.gr
(V.Staicu) Department of Mathematics, Aveiro University, 3810-193 Aveiro, Portugal

E-mail address: vasile@ua.pt

[^0]: 2000 Mathematics Subject Classification. 35J25, 35J80, 58E05.
 Key words and phrases. p-superlinearity, mountain pass theorem, C-condition, Morse theory, critical groups.

 The third author acknowledges partial financial support from the Portuguese Foundation for Sciences and Technology (FCT) under the project POCI/MAT/55524/2004.

