
REVISTA DO DETUA, VOL. 2, N◦ 3, SETEMBRO 1998 273

Automatic Generation of Root Locus Plots

Tomás Oliveira e Silva

Abstract – In this paper we present an algorithm capable of
drawing automatically accurate root locus plots. It computes
all the values ofK for which at least one branch of the root lo-
cus changes direction abruptly (in that case the characteristic
equation has multiple roots), subdivides each branch into seg-
ments according to these values ofK , and draws separately
each segment. Based of the first derivative ofK as a function
of s, appropriate values ofK are computed in order to sam-
ple each branch of the root locus at approximately equidistant
points. The output of our algorithm compares favorably with
the output of MATLAB’s rlocus command.

Resumo – Neste artigoé apresentado um algoritmo capaz de
desenhar automaticamente o diagrama do lugar das raı́zes de
um dado sistema.

I. I NTRODUCTION

The root locus is a classic technique used to study the lo-
cation of the poles of the closed loop transfer function of a
given linear system as a function of one of its parameters,
usually a loop gain, given its open loop transfer function. It
is commonly formulated for the simple negative feedback
loop of Fig. 1, which has an equivalent transfer function of

F (s) =
KG(s)

1 + KG(s)H(s)
.

The poles ofF (s), which depend onK, are the zeros of the
equation

1 + KG(s)H(s) = 0,

which is known as the characteristic equation of the system.
We will assume that bothG(s) andH(s) are proper rational
transfer functions. In that case we have

G(s)H(s) =
N(s)

D(s)
=

sn + b1s
n−1 + · · · + bn

sm + a1sm−1 + · · · + am

,

with m ≥ n. To write this equation we have assumed, with-
out loss of generality, that bothN(s) andD(s) are monic
polynomials; also, it is implicitly assumed thatN(s) and
D(s) do not have zeros in common. Using these polynomi-
als in the characteristic equation yields

D(s) + KN(s) = 0. (1)

Σ K G(s)

H(s)

Fig. 1 - System configuration usually used in root locus plots.

As K goes from0 to +∞, or from 0 to −∞, each one
of the roots of this polynomial equation traces a curve in
the extended complex plane. The collection of these curves
(called branches) is known as the root locus of the system.
A large set of rules to sketch, by hand, the root locus of a

given system can be found in most introductory textbooks
of control theory. Although useful, these rules fall short of
what is required to draw an accurate root locus automati-
cally. In section II we present some extra useful rules, not
usually found in textbooks, that help in this task. These
rules form the backbone of our algorithm to draw the root
locus, which is described in section III. We conclude the
paper with section IV, where some examples are presented.

II. SOME USEFUL EQUATIONS

To draw automatically a root locus it is convenient to sub-
divide the range of values ofK in intervals, in such a
way that in each interval the branches of the root locus are
smooth functions without derivative discontinuities. Since
the branches begin (K = 0) at the zeros ofD(s), and end
(K = ±∞) at either the zeros ofN(s) or at∞, it suffices to
find all finite values ofK for which there are discontinuities
in the derivatives of the branches (as functions ofK).
It is possible to write the characteristic equation in the form

D(s) + K(s)N(s) = 0 (2)

where nowK is a function ofs. With this new formulation
a given pointp of the complex plane belongs to the root
locus if and only ifK(p) = −D(p)/N(p) is a real number.
Note that instead of working withs as a function ofK, say
s = s(K), we are working with the inverse function, i.e.,
with K = K(s). Since

ds(K)

dK

dK(s)

ds
= 1,

and sinceK(s) is a meromorphic function,ds(K)/dK
does not exist only whendK(s)/ds = 0. Thus, the excep-
tional values ofK must satisfy the conditionK ′(s) = 0,
which is equivalent to the condition

D′(s)N(s) − D(s)N ′(s) = 0. (3)

This last condition is usually found in the textbooks as the
condition to determine the breakaway and breakin points
of the root locus with respect to the real axis. It must be
emphasized here that the same condition may hold outside
of the real axis. What is important is that the values of
K corresponding to the solutions of (3) be real (and of the
proper sign).
It turns out that the solutions of (3) also give rise to multi-

ple roots of the characteristic equation. To see this let

∆(s) = D(s) + KN(s)



274 REVISTA DO DETUA, VOL. 2, N◦ 3, SETEMBRO 1998

be the characteristic polynomial, and letp be such that
D′(p)N(p) − D(p)N ′(p) = 0 with N(p) 6= 0. Setting
K = −D(p)/N(p) forcesp to be a root of∆(s). Fur-
thermore, the first condition makesp also a root of∆′(s).
Thusp is at least a double root of∆(s). In the next para-
graph we will determine exactly the multiplicity of this root.
Nonetheless, it is worthwhile to point out in advance that if
p is a solution of (3) with multiplicityL − 1 then setting
K = −D(p)/N(p) makesp a root of∆(s) with multiplic-
ity L.
Let p be a point of the root locus. Thusp is a root of∆(s).

We wish to find the multiplicity of this root. First of all,
notice that

∆(l)(s) =
dl∆(s)

dsl
= D(l)(s) + KN (l)(s).

(In this equationK is not a function ofs.) Next, notice that
from (2) we have

0 =
(
D(s) + K(s)N(s)

)(l)

= D(l)(s) +

l∑

i=0

Cl
iK

(i)(s)N (l−i)(s),

whereCl
i = l!

i!(l−i)! . (Now K is a function ofs.) This
equation may be put in the form

D(l)(s) + K(s)N (l)(s) + K(l)(s)N(s) =

−
l−1∑

i=1

Cl
iK

(i)(s)N (l−i)(s). (4)

Assume for the moment that the right hand side of this
equation is zero whens = p, which will certainly happen if
l = 1. In this case

K(l)(p) = −D(l)(p) + K(p)N (l)(p)

N(p)
, (5)

which implies that ifK(l)(p) = 0 then∆(l)(p) = 0. Now
suppose thatK(l)(p) = 0 for l = 1, . . . , L − 1, and that
K(L)(s) 6= 0; if L = 1 then no derivative ofK(s) need
to be zero ats = p. Under these conditions it is clear that
∆(l)(s) will vanish for l = 1, . . . , L−1, and will not vanish
for l = L. Thus,p is a root of∆(s) with multiplicity L.
Note that the derivatives ofK(l)(s) can be computed for
l = 1, . . . , L with (5), because the right hand side of (4)
will always vanish.

Formula (5) is valid if all lower order derivatives ofK(s)
vanish ats = p. As in the previous paragraph, letL be
the first derivative ofK(s) that does not vanish ats = p.
Clearly,L ≥ 1. In this casep is as root of∆(s) with multi-
plicity L. The Taylor series expansion ofK(s) in the neigh-
borhood ofs = p has then the form

K(p + h) = K(p) +
hL

L!
K(L)(p) + · · ·

where· · · denotes the terms inhL+1, hL+2, and so on, of
the Taylor series. This power series has a strictly positive

radius of convergence ifN(p) 6= 0, i.e., ifK 6= ∞, because
K(s) is a meromorphic function. Thus, for small enoughh
it is possible to make the approximation

K(p + h) − K(p) ≈ hL

L!
K(L)(p). (6)

This leads immediately to the condition

/K(p + h) − K(p) ≈ L/h + /K(L)(p). (7)

Forp+h to belong to the root locusK(p+h) must be a real
number. In that case (7), with≈ replaced by=, specifies
the angles of departure (and of arrival) of theL branches
of the root locus ats = p. For example, ifK is increasing
(root locus forK > 0) then/K(p + h) − K(p) = 2kπ for
the branch, or branches, departing from the points = p,
and/K(p + h) − K(p) = π + 2kπ for those arriving at
that point.1 Also, it is clear that the angles between adja-
cent departing (or arriving) branches are all equal to2π/L,
and that the angles between adjacent departing and arriv-
ing branches are all equal toπ/L. This fact is often stated
without proof in the textbooks.
As an aside, note that (7) is valid whenK(p) = 0, i.e.,

it can be used to compute the angles of departure from
the poles of the branches of the root locus. In order to
make the connection of this formula with the usual rule
used for this purpose, suppose thatp is a zero ofD(s)
with multiplicity L, i.e., D(s) = (s − p)LD1(s) with
D1(p) 6= 0. In this case it is an elementary exercise to
verify thatD(L)(p) = L! D1(p). SinceK = 0 it follows
from (5) that/K(L)(p) = /−D1(p)/N(p). If

D(s) =

m∏

k=1

(s − pk) and N(s) =

n∏

k=1

(s − zk)

we have

/D1(p) =

m∑

k=1
pk 6=p

/p − pk and /N(p) =

n∑

k=1

/p− zk,

and so (7) becomes the formula found in most textbooks for
the angles of departure of the branches. (Most textbooks
treat only the caseL = 1 . . .)

If m = n there exists one extra exceptional value ofK,
not usually mentioned in the textbooks. This exceptional
value ofK is of courseK = −1, for which∆(s) becomes
a polynomial of degree smaller thatm. In this special case
some, or all, of the branches of the root locus go to infinity.
The number of branches that go to infinity is equal to the
degree reduction of∆(s), which is equal tom minus the
degree ofD(s) − N(s). One way to show this consists in
rewriting the characteristic equation in the form

N(s)
︸ ︷︷ ︸

D(s)

+
1

1 + K
︸ ︷︷ ︸

K

(
D(s) − N(s)
︸ ︷︷ ︸

N(s)

)
= 0, K 6= −1.

This new equation can be interpreted as the characteristic
equation of another system [cf. (1)]. WhenK tends to−1

1Note thatk can be any integer; it suffices to usek = 0, . . . , L− 1.



REVISTA DO DETUA, VOL. 2, N◦ 3, SETEMBRO 1998 275

from above (or below),K tends to+∞ (or −∞). The be-
havior of the branches of the root locus nearK = −1 will
then be the same as the asymptotic behavior of the branches
of the root locus ofD(s) + KN(s) = 0 when K tends
to ±∞. (An elementary analysis of this well known case
is presented in the appendix.) Note that the two root lo-
cus plots are graphically the same when drawn forK, and
K, ranging from−∞ to +∞, although the calibration of
the two plots will certainly be different. Finally, note that
MATLAB does not handle this exceptional case, with ugly
consequences . . .

III. T HE ALGORITHM

The input data of the algorithm is:

• a monic polynomialD(s);
• a monic polynomialN(s);
• a boolean flag, indicating if positive (true) or negative

(false) values ofK are desired;
• a bounding box, specifying the region of the root locus

we are interested in;
• information of where to place one or more arrows in

each segment (the default is one arrow in the middle
of each segment).

Some optional flags may also be given, such as, for exam-
ple, a flag indicating if the asymptote is to be drawn for each
branch going to, or coming from, the point at infinity. The
bounding box information is used to compute the desired
distanceδ between consecutive points of each segment of
the root locus. By defaultδ = max(width, height)/500,
wherewidth and height are the width and height of the
bounding box.
The output data is an encapsulatedPostScript file,

holding the commands necessary to draw the root locus
with an aspect ratio of1.
The algorithm first computes the roots ofD(s) and of

N(s), if these polynomials where not given in factored
form. All solutions of (3) are then computed. Since mul-
tiple roots ofD(s) or of N(s) are also solutions of this
equation, these roots are first removed, by deflation, from
D′(s)N(s) − D(s)N ′(s) before searching for other solu-
tions. This avoids, in most cases, the factorization of a poly-
nomial that has multiple roots.2 For each solution found,
the corresponding value ofK is computed, and those that
are real and of the proper sign are sorted (repetitions are re-
moved) and stored for posterior use.K = 0, K = ±∞,
and, if necessary,K = −1, are also added to this list. For
each of these values ofK all (finite) roots of∆(s) are com-
puted. Of course, the known roots of∆(s) are removed
first, mainly to avoid factoring a polynomial with multi-
ple roots. These known roots are either roots ofD(s), for
K = 0, of N(s), for K = ∞, or are solutions of (3), for all
other values ofK except possiblyK = −1.
The rest of the algorithm is concerned with the generation

of each segment of the root locus. FirstK is set to0 and the
corresponding roots of∆(s) are used as the initial points of
each of them segments (one for each branch). Next, points
are appended to each segment, in the way described below,

2Multiple roots give some trouble to many root finding algorithms.

until at least one segment reaches a value ofK stored in the
list of exceptional values. Those segments are then closed
and sent to the output routine, and new ones are opened in
their place unless the last exceptional value ofK has been
reached, in which case the algorithm terminates.
The proximity of an exceptional value ofK is checked by

comparing the respective values ofK, and, in the case of
branches not going to infinity, by also comparing the roots
of the characteristic equation.
Equations (5) and (6) are used to increment the value ofK.

This is done by finding the smallest value of

∣
∣K(p + h) − K(p)

∣
∣ ≈ δL

L!

∣
∣
∣
∣

D(L)(p) + K(p)N (L)(p)

N(p)

∣
∣
∣
∣

among the roots of∆(s), for K = K(p), that areinside
the bounding box.3 If one of the roots crosses the bounding
box boundary, then a bisection strategy is used to compute
a good approximation to the exact value ofK for which
that happens. The roots of∆(s) for the new value ofK are
then computed, using the previous ones as starting values.4

A simple proximity test is then used to assign each root to
a segment. Arrival (and departure) angles are computed for
each point.
The current point of each segment may be in one of three

states: inside the bounding box, on the boundary, or out-
side the bounding box. To improve the quality of the gen-
eratedPostScript code, and to decrease its size, each
visible (inside or on the boundary) part of the segment is
re-parametrized. This is done by selectively throwing away
points that are closer than4δ. (This makes the average
distance between points to be between4δ and5δ.) A cu-
bic spline (PostScript’s curveto command) is then
drawn between every two consecutive visible points, using
the departing and arrival angles to compute the two extra
points required to specify uniquely the spline. It is also at
this stage that arrows are drawn. Their position is speci-
fied as a fraction of the total length of each visible part of
a segment. Using again a bisection strategy, the value ofK
where the arrow will be placed is computed. With this in-
formation, its position and orientation are also computed,
and the arrow is drawn.
After all segments are drawn, it only remains to draw some

decorative stuff, such as the real and imaginary axis, the
asymptotes (if requested), and the poles (crosses) and zeros
(circles).

Future implementations of the algorithm may provide the
following extra facilities:

• automatic generation of a reasonable default bounding
box;

• inclusion of calibration data (values ofK) on interest-
ing points of the plot.

3If all roots are outside of the bounding box, an increment ofK based
of the smallest distance between the roots and the bounding box is used.

4Note that at this stage it is never necessary to deal with multiple roots.
Using the previous roots as starting approximations of the roots of the new
characteristic polynomial is a very effective way of reducing the execution
time of the algorithm. More sophisticated, and accurate, guesses of the po-
sitions of these roots can also be easily computed, using (6)to estimateh.



276 REVISTA DO DETUA, VOL. 2, N◦ 3, SETEMBRO 1998

IV. EXAMPLES

Figures 2 to 4 present examples of some root locus plotted
with our algorithm. Contrary toMATLAB, all points where
two or more branches touch are treated correctly. Figure 2
shows a “simple” root locus plot, used by the author to
illustrate, in his control theory classes, the classical rules
to sketch by hand a root locus. Figure 3 shows an exam-
ple where two branches touch outside of the real axis; this
example is simple enough to be used in the classroom (if
time permits). Figure 4 shows an example where the ex-
ceptional caseK = −1, for monicD(s) andN(s), must
be taken in consideration. Note that in the even simpler case
D(s) = s + 1, N(s) = s + 2, andK < 0, for example,
the root locus drawn byMATLAB includes the line segment
between the pole and the zero (together with other parts of
the real axis), which is clearly wrong!

APPENDIX

In this appendix we will analyze the asymptotic behavior
of the root locus whenK goes to±∞ for the casem > n.
Since we are interested in them − n roots of the charac-
teristic equation that go to infinity, it is convenient to write
this equation in the form

D(s)

N(s)
= sm−n 1 + a1s

−1 + · · · + ams−m

1 + b1s−1 + · · · + bns−n
= −K.

When1 ≫ |s−1| ≫ |s−2| we can approximate this equa-
tion by

sm−n
(
1 + (a1 − b1)s

−1
)
≈ −K.

Under the same conditions another standard approximation
gives

sm−n

(

1 +
a1 − b1

m − n
s−1

)m−n

≈ −K.

Thus, as|K| goes to∞ them−n roots of the characteristic
equation that also go to infinity are given by

s +
a1 − b1

m − n
≈ m−n

√
−K.

(There arem−n different values ofm−n
√
−K, one for each

branch of the root locus that goes to∞.) The approximation
gets better and better as|s| increases, i.e., as|K| increases
(asymptotes).

σ = Re[s]

ω
=

Im
[s

]
-4 -2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

Fig. 2 -D(s) = (s + 1)(s + 2)(s + 3), N(s) = s2 + 1, andK < 0.

σ = Re[s]

ω
=

Im
[s

]

-4 -2 0 2

−2

−1

0

1

2

2

Fig. 3 - D(s) = (s + 1)(s + 3)(s2 + 1), N(s) = 4s2 + 4s + 1, and
K > 0.

σ = Re[s]

ω
=

Im
[s

]

-4 -2 0 2

−2

−1

0

1

2

Fig. 4 -D(s) = s(s+2), N(s) = s2+2s+2, andK < 0. MATLAB does
not draw correctly this root locus (it connects the horizontal and vertical
segments with ugly diagonal lines).


