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Abstract

The number of genomic sequences is growing substantially. Besides discarding part of the
data, the only efficient possibility for coping with this trend is data compression. We present
an efficient compressor for genomic sequences, allowing both reference-free and referential
compression. This compressor uses a mixture of context models of several orders, according
to two model classes: reference and target. A new type of context model, which is capable
of tolerating substitution errors, is introduced. For ensuring flexibility regarding hardware
specifications, the compressor uses cache-hashes in high order models. The results show
additional compression gains over several specific top tools in different levels of redundancy.
The implementation is available at http://bioinformatics.ua.pt/software/geco/.

Introduction

Genomic (DNA) sequences are large codified messages, from an alphabet of four sym-
bols Θ = {A,C,G,T}, describing most of the structure of all known living organisms.
A huge amount of genomic data has been generated, with diverse characteristics, ren-
dering the data deluge phenomenon a serious problem in most genomics centers. As
such, most of the data are discarded (when possible), while other are compressed
using general purpose algorithms, often attaining modest data reduction results.

Several specific algorithms have been proposed for the compression of genomic se-
quences, such as [1–7], but only some of them have been made available as usable and
reliable compression tools, and those have been developed to some specific purpose
or data characteristic [8–11].

The dramatic increase of sequenced genomes, given the reduced sequencing costs,
and the high redundancy characteristics, led to the development of genomic reference
sequence compression. Several compressors of this type have been proposed [12–16],
although most of them seem to be less efficient in handling sequences with higher
rates of mutation.

In this paper, we describe a statistical compressor that uses arithmetic coding [17],
able to function in reference or reference-free mode. It is very flexible and can cope
with diverse hardware specifications, due to the use of cache-hashes. It relies on a mix-
ture of finite-context models (FCMs) and extended finite-context models (XFCMs).
The XFCMs are a new type of models that we present and use in the compressor,
showing promising results. Overall, the compressor shows some improvements over
other state-of-the-art compressors.



Method

Extended FCMs

Consider an information source that generates symbols from Θ and that it has already
generated the sequence of n symbols xn = x1x2 . . . xn, xi ∈ Θ (we currently ignore
other symbols). A subsequence of xn, from position i to j, is denoted as xj

i .
Finite-Context Models (FCMs) are statistical models assuming the Markov prop-

erty, that have been used in many applications of data compression, namely associated
to genomic sequences. A FCM of an information source assigns probability estimates
to the symbols of the alphabet, according to a conditioning context computed over a
finite and fixed number, k, of past outcomes (order-k FCM) [18]. At time n, these
conditioning outcomes are represented by xn

n−k+1 = xn−k+1, . . . , xn−1, xn. The number
of conditioning states of the model is |Θ|k (in our case, 4k).

Figure 1: Performance of FCM versus XFCM, for k = 7, when a substitution (mutation)
occurs. The memory (model) of both is shared. In the example, the XFCM computes the
probabilities assuming as context the most probable symbols (according to the model and
to a maximum number of allowed corrections). Larger k reveal larger differences between
the models.

An extended FCM (XFCM) shares the memory with a FCM with the same context
order, but it may assign a different probability estimate, because it may assume a
different conditioning context. In the case of a XFCM, the conditioning context
considers that s has always been the most probable symbol, and hence the estimator

P (s|x′n

n−k+1) =
N(s|x′n

n−k+1) + α

N(x′n
n−k+1) + α|Θ|

(1)

is used, where x′ is a copy of x, edited according to

x′
n+1 = argmax

∀s∈Θ

P (s|x′n

n−k+1). (2)

Figure 1 depicts a comparison between a FCM and a XFCM, for k = 7. Notice
that this strategy enables to modify the context that is considered to be seen, without



modifying and increasing the size of the model memory. Since these models make
sense only in low complexity regions, we have created a way to turn them on or off,
saving some time in the computation.

We permit t substitutions in the conditioning context of a XFCM without dis-
carding it and, hence, turning it off. For example, consider that k = 7 and c0 =
CACGTCA is the current context. Also, consider that the number of past symbol
occurrences following c0 was A = 1,C = 0,G = 0,T = 0. If the symbol that is
being compressed is G (contradicting the probabilistic model), a FCM would have
as next context c1 = ACGTCAG. However, the XFCM would use a c′1 taking into
account the most probable outcome and, hence, c′1 = ACGTCAA. Therefore, the
next probabilistic model would be dependent on the past context assumed to be seen
and, hence, it assumes that the symbol that was compressed is A.

The XFCM works well when using high orders. This also creates sparse occur-
rences that can be efficiently supported by a cache-hash memory and, therefore, we
implemented the XFCMs using cache-hashes (see next subsection).

The XM algorithm [2] uses a copy-model that gives top compression genomic
results, although at the expense of huge amounts of memory and time. Our intention
with the XFCM is to approximate the copy-model using low and controllable memory,
being as fast as possible.

Figure 2: XFCM performance, varying the substitution threshold, in mutated data (target)
and using the original as reference. The “t” represents the t permitted substitutions without
discarding the context. The “XM-50” stands for the XM compression model using 50
experts. The “FCM-Mix” uses a XFCM mixed with a FCM (the same as having t = 0) of
the same context order. A) shows a comparison of XFCM, for several t, against XM. B)
shows how a mixture between XFCM and FCM outperforms, on average, XM.

For simplicity, we have generated a uniform pseudo-random synthetic sequence
(using XS [19]) and have mutated the sequence with a defined substitution rate. Our
intention is to simulate genomic sequences given several degrees of mutations (also
removing the self-redundancy of the sequence) and compress it using the original as
reference. In Fig. 2 we show the performance of the XFCMs, compared with the XM



model, using several values for parameter t. It can be seen that for a high value of t
the model adjusts better to the nature of the data.

In Fig. 2 it is possible to see that a FCM is not able to deal with mutations as
XFCMs and XM does. This was a disadvantage in our past models. When we mix
FCM and XFCM (“FCM-Mix”), we are able to get results even better that XM.
Moreover, we do not have two memory models, since they share the same cache-hash
(because they have the same context order). In fact, for the same statistics, we have
different predictors that cooperate according to a mixture.

Mixture of classes

The mixture is based on two model classes, those belonging to what we call the
reference set, R, and those in the target set, T . The reference set contains the FCMs
or XFCMs responsible for modeling the conditioning string, i.e., the y of C(x|y),
whereas the target set of FCMs or XFCMs is used to represent x, when required.
The C(x|y) represents the number of bits when compressing sequence x given y and,
thus, it can be seen as conditional compression.

Basically, the probability of the next symbol, xn+1, is given by

P (xn+1) =
∑

k∈R

Pr(xn+1|x
n
n−k+1) w

r
k,n +

∑

k∈T

Pt(xn+1|x
n
n−k+1) w

t
k,n, (3)

where Pr(xn+1|x
n
n−k+1) and Pt(xn+1|x

n
n−k+1) are, respectively, the probability assigned

to the next symbol by a model from the reference set and from the target set, and
where wr

k,n and wt
k,n denote the corresponding weighting factors, with

wr
k,n ∝ (wr

k,n−1)
γPr(xn|x

n−1

n−k) and wt
k,n ∝ (wt

k,n−1)
γPt(xn|x

n−1

n−k) (4)

where γ ∈ [0, 1) acts as a forgetting factor. Moreover, both are constrained to

∑

k∈R

wr
k,n +

∑

k∈T

wt
k,n = 1. (5)

To compute C(x) only the models of the T class are used, while to compute C(x|y)
the compression is performed in two phases. In the first phase, the R class of models
accumulates the counts regarding the y sequence. After the entire y sequence was
processed, the models are kept frozen and, hence, the second phase starts. At this
point, the x sequence starts to be compressed using the R models computed during
the first phase, in cooperation with the set of models of the T class, that dynamically
accumulate the counts only from x.

Cache-hash

In order to ensure a flexible compressor in the sense of memory optimization for
any computer hardware specification, we have developed the cache-hash. The cache-
hash approach keeps only the last hashed entries in memory, rendering a flexible and
predictable quantification of the memory necessary to run in any sequence (memory
does not blow with the size of the sequence).



Figure 3: Cache-hash scheme. The “POSITION” indicates the position of the last edited
block relatively to the hash index. Each hash index is shaped by both “INDEX A” and
“INDEX B”. The “COUNTERS” store the counts for each base. These are packed using a
2 bits per base approach that on overflow normalize all by half.

Depicted in Fig. 3, the cache-hash is able to store each index primarily by exploring
precision splitting. For example, if the context order size can be up to 20 and the
hash table has size 24 bits (specifically, the next prime after 224), each hashed entry
uses 24 bits for the “INDEX A” and 16 bits for the “INDEX B”. This entry will
be added or updated (only if already exists) according to the “POSITION” (circular
buffer having the “MAXIMUM COLLISIONS” as size). An advantage is that we only
need to store “INDEX B”, since the full index can be disambiguated by the position
where it is inserted or updated. For each block according to each “POSITION”, we
have the “INDEX B” (already described) and the “COUNTERS”. The latter stores
the counters with 2 bits precision in a unsigned char (4 symbols and 2 bits per symbol
gives the 8 bits). Each time a counter reaches the value 3, all the counters (for the 4
symbols) are normalized, hence divided by two (only integer division). This would be
problematic if the size of the context was small. A context of 20 is considered large,
resulting in a sparse table, if represented in that sense. As such, the cache-hash in
fact simulates a structure that can be seen as a middle point between a probabilistic
and dictionary model. The cache-hash uses a fixed hash function that, on average,
has a low probability of collisions.

For searching in the cache-hash we need to compare each key, formed by “INDEX
A” and “INDEX B”, with the actual key, given by the context. This is a costly
task, although needed. To minimize the processing time, we start the search from
the previous position relatively to the current position, given by “POSITION”, and
search from newest to oldest entries. This approach relies on the characteristics of
the genomic sequences, for which similar regions tend to be grouped or near.

Results

The tool (GeCo), written in C language, is available at http://bioinformatics.ua.
pt/software/geco, under GPL-2, and can be applied to any genomic sequence. The
experiments have been performed on a Linux server running Ubuntu with 16 Intel(R)



Xeon(R) CPU E7320 at 2.13 GHz and with 256 GB of RAM. We have used seven
datasets. Three datasets were used from the recent sequenced birds project 1, namely
duck, peregrine falcon and cuckoo. All of the birds datasets were not assembled (in
contig state), totaling more than 3.2 GB multi-FASTA derived format. The fourth
dataset was the assembled human genome GRC-b38 2 (with 24 chromosomes) totaling
an approximated size of 2.9 GB. The fifth dataset contains a FASTQ file used in [10] 3,
while the sixth is a frequently used one 4. For fair comparison, the datasets have
been filtered and transformed into equivalent files in order to compare only genomic
sequences, using the Goose framework 5. The final dataset, for reference compression,
has been downloaded from the NCBI, including the assembled genomic sequences of
human, chimpanzee, gorilla and orangutan (chromosomes 5,11 and 18).

As it can be seen in Table 1, Gzip was unable to compress the human genome below
2 bits per base. On the other hand, the specific methods were able to compress it with
success. DNACompact [7] used a very small amount of memory, but at the expense
of more computational time. The proposed algorithm (GeCo) provides a substantial
compression improvement to our previous algorithm (DNAEnc3 [4]), using much less
resources. In fact, GeCo is able to compress the human genome in less than 550 MB,
using memory equivalent to a laptop computer, and much faster than the previous
approaches. Moreover, memory will not explode with the size of the sequence, unlike
DNAEnc3 and XM [2]. XM was unable to compress two of the birds datasets, due to
a processing error.

Table 2 depicts the benchmarks of two datasets using several tools, namely two
state-of-the-art FASTA dedicated tools: Deliminate [8] and MFCompress [9]. More-
over, two state-of-the-art FASTQ tools are also used: fqz comp [10] and Orcom [11].
As it can be seen, GeCo provides substantial compression capabilities, although at
the expense of more computational time. The tool Orcom, an efficient disk-based
tool, was not able to address with much success these files, perhaps because it is
more suitable for much larger files.

Table 3 includes several reference-based compressed tools, namely GReEn [14],
iDoComp [16] and GeCo (proposed). We have also ran GRS [12], however, as in
[15], the sequences have some degree of dissimilarity and therefore the programs are
not suitable for this purpose (GRS even suggests not to be used in these cases).
Moreover, GDC versions [20, 21] are more suitable for large collections, since in most
of the cases they reported a compression value above two bits per base. For more
similar sequences, iDoComp seems to attain the best compression results. In more
dissimilar sequences, we can see that, on average, GeCo outperforms the specific
reference compressors at the expense of some more time and memory. In fact, we
have only used the first reference mode (-l 11) and, therefore, the compression factor
might increase although at the expense of more space/time resources.

1ftp://climb.genomics.cn/pub/10.5524/
2ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/Assembled_chromosomes/seq/
3ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA001/SRA001546/SRX000706/
4ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR494/SRR494099/SRR494099.fastq.gz
5https://github.com/pratas/goose/



Table 1: Compression benchmarks for state-of-the-art pure genomic compression tools.
Time is in minutes, while maximum memory peak is in MBytes. With the exception of
Gzip, the compressors are symmetric (time/memory compression and decompression are
approximately the same). Symbol “*” means that the compressor processed the dataset by
parts because of memory, time or testing purposes.

Dataset Method Mode Compression
Bps Time (m) Mem (MB)

Gzip -9 (best) 2.2010 26 6
Duck DNACompact default 1.8998 1,656 1,348

DNAEnc3 standard best 1.8676 118 10,668
size: 1.0 GB XM 50 experts 1.8601 1,131 32,879
SEQ XM 150 experts 1.8505 1,384 33,634

GeCo -l 6 1.8570 52 4,800
GeCo -l 7 1.8520 64 5,800

Gzip -9 (best) 2.1789 24 6
Cuckoo DNACompact default 1.9051 1,720 1,348

DNAEnc3 standard best 1.8462 128 11,071
size: 1.1 GB GeCo -l 6 1.8250 59 4,800
SEQ GeCo -l 7 1.8200 70 5,800

Gzip -9 (best) 2.2074 25 6
Peregrine Falcon DNACompact default 1.9038 1,818 1,455

DNAEnc3 standard best 1.8889 120 11,322
size: 1.1 GB GeCo -l 6 1.8790 58 4,800
SEQ GeCo -l 7 1.8740 71 5,800

Gzip -9 (best) 2.1108 70 6
Assembled DNACompact* default 1.7173 4,764 1,348
human genome DNAEnc3* standard best 1.6597 427 4,379
(GRC), DNAEnc3 standard best 1.6216 489 14,839

XM* 50 experts 1.6044 1,170 20,759
size: 2.9 GB XM* 150 experts 1.5832 1,594 22,295
SEQ GeCo -l 6 1.5750 131 4,800

GeCo -l 7 1.5710 148 5,800
GeCo -l 8 1.5690 155 6,400

Conclusions

We have presented a compressor that can be applied efficiently to genomic sequences
both for non-referential and referential compression. We used a mixture of context
models of several orders given by two model classes (reference and target). For high
orders, we have created a cache-hash to ensure flexibility given hardware specifica-
tions. Moreover, we have introduced the extended context models (XFCM), which
can be seen as very flexible context models (fault tolerant). Finally, we have shown
the very good adaptability of the compressor to multiple types and characteristics of
genomic sequences.



Table 2: Compression benchmarks for state-of-the-art compression tools derived from
FASTQ formats. Time is in minutes, while maximum memory peak in MBytes.

Dataset Method Mode Compression
Bps Time (m) Mem (MB)

Gzip -9 (best) 2.1927 8 6
fqz comp default 1.8029 1 79
fqz comp -e -b -s5+ 1.7652 1 199

SRR003168 fqz comp -e -b -s6+ 1.7607 1 583
fqz comp -e -b -s7+ 1.7602 2 2,070

361 MB fqz comp -e -b -s8+ 1.7660 2 8,263
(only bases) Orcom -t4 -b256 -p6 -s6 2.1809 1 1,180

Deliminate a 1.7381 1 780
MFCompress -1 1.7413 3 514
MFCompress -2 1.7012 4 514
MFCompress -3 1.6405 6 2,322

FASTQ derived GeCo -l 2 1.5500 17 4,800
GeCo -l 4 1.5491 16 3,900
GeCo -l 6 1.5344 18 4,800
GeCo -l 8 1.5322 20 6,400

Gzip -9 (best) 2.2136 11 6
fqz comp default 1.8064 1 79
fqz comp -e -b -s5+ 1.7714 2 199

SRR494099 fqz comp -e -b -s6+ 1.7496 2 583
fqz comp -e -b -s7+ 1.7390 2 2,070

486 MB fqz comp -e -b -s8+ 1.7418 2 8,263
(only bases) Orcom -t4 -b256 -p6 -s6 1.9495 1 1,252

Deliminate a 1.7995 1 780
MFCompress -1 1.8810 5 514
MFCompress -2 1.8459 5 514
MFCompress -3 1.8344 8 2,322

FASTQ derived GeCo -l 2 1.6670 23 4,800
GeCo -l 4 1.6789 22 3,900
GeCo -l 6 1.6662 25 4,800
GeCo -l 8 1.6856 28 6,400

Acknowledgments

This work was partially funded by the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement No. 305444 “RD-Connect: An in-
tegrated platform connecting registries, biobanks and clinical bioinformatics for rare
disease research” and by National Funds through FCT - Foundation for Science and
Technology, in the context of the project UID/CEC/00127/2013.



Table 3: Benchmarks for state-of-the-art genomic reference compressors using several ref-
erences and targets. Time is in minutes, while maximum memory peak in MBytes. The
prefix HS, PT, GG, PA, represent, respectively, human, chimpanzee, gorilla and orangutan.
The suffix with the numbers represent the chromosome number.

Reference seq Target seq Method Mode Compression
Bps Time (m) Mem (MB)

HS18 PT18 GReEn - 1.2224 2 826
77 MB 71 MB iDoComp - 0.2408 2 599
SEQ GeCo -l 11 0.3176 5 3,938

GG18 GReEn - 0.9800 2 826
72 MB iDoComp - 0.3568 2 599

GeCo -l 11 0.3672 5 3,938
PA18 GReEn - 1.7056 2 826
71 MB iDoComp - 0.8224 2 599

GeCo -l 11 0.5992 5 3,938

PA11 HS11 GReEn - 1.8784 4 1,112
119 MB 129 MB iDoComp - 1.2816 3 1,114
SEQ GeCo -l 11 0.6552 8 3,938

PT11 GReEn - 1.5752 4 1,112
118 MB iDoComp - 1.1352 3 1,114

GeCo -l 11 0.6024 8 3,938
GG11 GReEn - 1.5704 4 1,112
118 MB iDoComp - 1.2784 3 1,114

GeCo -l 11 0.6752 8 3,938

HS5 PT5 GReEn - 1.3944 5 1,430
173 MB 167 MB iDoComp - 0.9352 4 1,420
SEQ GeCo -l 11 0.3568 10 3,938

GG5 GReEn - 1.9040 5 1,430
147 MB iDoComp - 0.9200 4 1,420

GeCo -l 11 0.8632 10 3,938
PA5 GReEn - 1.4632 5 1,430
165 MB iDoComp - 0.5640 4 1,420

GeCo -l 11 0.6344 11 3,938
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