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Palavras-chave compressão de sequências genómicas, métodos não supervisionados,
métodos sem alinhamento, complexidade relativa, modelos de contexto-
finito

Resumo As sequências genómicas podem ser vistas como grandes mensagens co-
dificadas, descrevendo a maior parte da estrutura de todos os organismos
vivos. Desde a apresentação da primeira sequência, um enorme número de
dados genómicos tem sido gerado, com diversas caracteŕısticas, originando
um sério problema de excesso de dados nos principais centros de genómica.
Por esta razão, a maioria dos dados é descartada (quando posśıvel), en-
quanto outros são comprimidos usando algoritmos genéricos, quase sempre
obtendo resultados de compressão modestos.

Têm também sido propostos alguns algoritmos de compressão para
sequências genómicas, mas infelizmente apenas alguns estão dispońıveis
como ferramentas eficientes e prontas para utilização. Destes, a maio-
ria tem sido utilizada para propósitos espećıficos. Nesta tese, propomos
um compressor para sequências genómicas de natureza múltipla, capaz de
funcionar em modo referêncial ou sem referência. Além disso, é bastante
flex́ıvel e pode lidar com diversas especificações de hardware. O compressor
usa uma mistura de modelos de contexto-finito (FCMs) e FCMs estendidos.
Os resultados mostram melhorias relativamente a compressores estado-de-
arte.

Uma vez que o compressor pode ser visto como um método não-
supervisionado, que não utiliza alinhamentos para estimar a complexidade
algoŕıtmica das sequências genómicas, ele é o candidato ideal para realizar
análise de e entre sequências. Em conformidade, definimos uma maneira
de aproximar directamente a distância de informação normalizada (NID),
visando a identificação evolucionária de similaridades em intra e inter-
espécies. Além disso, introduzimos um novo conceito, a compressão relativa
normalizada (NRC), que é capaz de quantificar e inferir novas caracteŕısticas
nos dados, anteriormente indetectados por outros métodos. Investigamos
também medidas locais, localizando eventos espećıficos, usando perfis de
complexidade. Propomos e exploramos um novo método baseado em per-
fis de complexidade para detectar e visualizar rearranjos genómicos entre
sequências, identificando algumas caracteŕısticas da evolução genómica hu-
mana.

Por último, introduzimos um novo conceito de singularidade relativa e
aplicamo-lo ao Ebolavirus, identificando três regiões presentes em todas
as sequências do surto viral, mas ausentes do genoma humano. De facto,
mostramos que as três sequências são suficientes para classificar diferentes
sub-espécies. Também identificamos regiões nos cromossomas humanos que
estão ausentes do ADN de primatas próximos, especificando novas carac-
teŕısticas da singularidade humana.





Keywords genomic sequence compression, unsupervised methods, alignment-free
methods, relative complexity, finite-context modeling

Abstract Genomic sequences are large codified messages describing most of the struc-
ture of all known living organisms. Since the presentation of the first ge-
nomic sequence, a huge amount of genomics data have been generated,
with diversified characteristics, rendering the data deluge phenomenon a
serious problem in most genomics centers. As such, most of the data are
discarded (when possible), while other are compressed using general pur-
pose algorithms, often attaining modest data reduction results.

Several specific algorithms have been proposed for the compression of ge-
nomic data, but unfortunately only a few of them have been made available
as usable and reliable compression tools. From those, most have been de-
veloped to some specific purpose. In this thesis, we propose a compressor
for genomic sequences of multiple natures, able to function in a reference
or reference-free mode. Besides, it is very flexible and can cope with diverse
hardware specifications. It uses a mixture of finite-context models (FCMs)
and eXtended FCMs. The results show improvements over state-of-the-art
compressors.

Since the compressor can be seen as a unsupervised alignment-free method
to estimate algorithmic complexity of genomic sequences, it is the ideal
candidate to perform analysis of and between sequences. Accordingly, we
define a way to approximate directly the Normalized Information Distance,
aiming to identify evolutionary similarities in intra- and inter-species. More-
over, we introduce a new concept, the Normalized Relative Compression,
that is able to quantify and infer new characteristics of the data, previously
undetected by other methods. We also investigate local measures, being
able to locate specific events, using complexity profiles. Furthermore, we
present and explore a method based on complexity profiles to detect and
visualize genomic rearrangements between sequences, identifying several in-
sights of the genomic evolution of humans.

Finally, we introduce the concept of relative uniqueness and apply it to the
Ebolavirus, identifying three regions that appear in all the virus sequences
outbreak but nowhere in the human genome. In fact, we show that these
sequences are sufficient to classify different sub-species. Also, we identify
regions in human chromosomes that are absent from close primates DNA,
specifying novel traits in human uniqueness.
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“Houston, we have had a (many) problem(s) here ...”

James A. Lovell

1
Introduction

Science is a cumulative process that organizes knowledge in order to test predictions and
explanations about the universe. Science was developed by many scientists, in multiple fields
of knowledge, achieving multiple breakthroughs.

1.1 Overview

One of the most important breakthroughs was the invention of the first mechanical com-
puter by Charles Babbage, around 1822, to calculate polynomials. The device was called
the difference engine. Its development led to the analytical engine around 1837, encapsu-
lating most of the elements of modern computers. The evolution of mechanical computing
was so popular that in the following century, with the WW1 (World War One) and mostly
with WW2, they started to be used as prediction systems and for communications purposes.
Most of the prediction systems were made for military artillery, while in communications
cryptography played a role towards the end of the WW2.

1.1.1 History marks on communications and computing

In order to understand the foundations of communications and its inherent human devel-
opment, we have to go much further back. After the delayed evolutionary development of
the language, which is still a very variable and unclear thematic, its evolution as been truly
achieved with the ability of writing. The capacity of coding vocal sounds into symbols that
expressed objects or actions boosted the capacity for evaluating the own method (how to
describe an object) and, by consequence, evolve it.

With the introduction of the first dictionary, humans corrected and unified the alphabet.
Moreover, the ability to search fast for a specific word became a reality given the lexicographic
order or, in some cases, using other methods, such as by topology or meaning. Even several
language variants, such as in Mandarin, could now be understood by symbolic communication
without the necessity of similar vocal communication. At this point, the communication
speed was only dependent on the channel that transported the message. For example, in the
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Roman empire, the speed of communication was dependent on the bird, horse (or similar),
person or boat that travel with the message. Along with the confidentiality, the need for the
fastest deliver was actually the main concern. Accordingly, both encoding and fast delivery
of messages started to be investigated and developed.

Bird message delivery, mostly by pigeons, was used for several centuries. However, for
mobile armies it only allowed a direction in communication. The communication by visual
events, such as flags, symbols, fire or smoke, have also been used. However, they were very
dependent on weather conditions and day time. In Africa, the talking drums have been used
as one of the most effective technologies taking into account the development environment,
as an acoustic way. The addition of redundancy and repeaters (from tribe to tribe), enabled
a very fast communication in a relatively large distance. The talking drums, although they
have been used for several centuries, have only been truly understood in the 18th century by
the Europeans.

Mostly funded by the French government, France got its first telegraph network system
(fixed communication by event using network repeaters controlled by operators) in the end
of the seventeen century. Its success led to the usage of the same technology in much other
countries. With the development of the electric telegraphs and their inherent message codes
(such as Morse code), the number of users growth exponentially. In fact, now it was possible
to send messages without high importance or priority almost instantly by anyone. The mas-
sive usage shown a lucrative way for several companies that developed their private electric
telegraphs. Cost was now a variable enhancing the development of coding alphabets based
on word frequency or reference public books. At this point the need for efficient data com-
pression and transmission was truly followed, namely as a sampling principle [1, 2, 3]. For
foundations in telegraphy sampling see [4].

However, coding theory suffered from a massive unconcern with the commercialization of
the telephony, an invention credited mostly to Alexander Bell. The ability to easily transmit
and receive messages by sound drop out the necessity to develop better codes. The telephony
suffered from a massive adhesion, mostly after the first alleged transcontinental call around
the beginning of WW1. The motivation for coding was, at this point, essentially for hiding
the true meaning of the message.

When the Nazi party took the power in Germany, the Nazis realized that they could
transmit classified messages through air using a cipher produced by a machine, the Enigma.
Accordingly, the cryptanalysis re-started as a deep military need, that led several Polish to
crack it (break the code) seven years before the WW2. Yet, the Nazi Germans increased their
code complexity leading to one of the most successful encryption machines.

With the beginning of the WW2, it was crucial to crack the Enigma to put end to war.
Therefore, Alan Turing and his associates, using his computation ideas [5], discovering a flaw
in Enigma usage (the messages started and/or ended with the same words) built a secret
machine (Bombe) that could brute-force most possible keys of the enigma using times much
shorter that several humans. Therefore, everyday the Bombe cracked the Enigma code. The
following action was probably most sacrificing but crucial. The Nazi Germans could not sus-
pect that the Enigma was being cracked everyday or they would increase Enigma complexity,
and hence, Alan Turing and several colleagues started to transmit only the minimal number
of messages that could led to the end of the war. It was a statistical game. They had the
ultimate success in 1945.

The importance of the computing machines was well established with the end of WW2.
The commercialization of the first computers started as a series of computers known by
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Colossus. Communications purposes originated the development of computing machines,
which led to the development of better communications, namely those who where concerned
with the foundations of entropy.

1.1.2 Entropy

Nyquist and Hartley gave a basic definition of entropy (or information) for each symbol
as the logarithm of the number of possible symbols

H = n log s, (1.1)

where n is the number of symbols on the message and s is the cardinality of the alphabet
(number of possible symbols). In 1948, Claude Shannon proposed a more realistic approach,
defined as

H = −
∑

pi log2 pi, (1.2)

where pi is the probability of each message and log2 was convenient due to the binary scale
[6]. At this point, the term information was new and a synonym of entropy, unpredictability
and randomness, mostly, for stationary sources.

Fundamentally, the term entropy dates back, apparently, to the first thermodynamic ex-
periments, namely by Rudolf Clausius around 1850. It has originated the three basic rules
of thermodynamics [7]. The first law states that in an isolated system the energy is constant
(energy conservation), and thus, it is possible to derive that several different forms of work can
be converted. However, since conversion also costs work, in some way it excludes perpetual
motion machines. The second law states that the quantity of entropy in a thermodynamic
isolated system tends to increase with time until it reaches a maximum value. However, it is
only a probabilistic rule. The third law states that the entropy of a thermodynamic isolated
system approaches a constant value as the temperature approaches absolute zero, and hence,
all the processes stop and the entropy becomes minimal. When joining the three laws we are
able to see that if two systems are in thermal equilibrium respectively with a third system,
they must be in thermal equilibrium with each other, where it helps to define the notion of
temperature.

Supported by Clausius fundamentals, James Maxwell defined his demon as a hacker which
could hypothetically violate the second law of thermodynamics [8]. Maxwell gave a case
example where a tiny finite being was watching a small diaphragm which separated a gas
box (thermodynamic isolated system). The creature can identify the molecules which are
faster (hot) from the slower (cold), and hence, it can let them pass to the other side or not,
altering the probabilities and creating two thermodynamic isolated systems with different
temperatures. This experience shows the unsymmetrical property of thermodynamics, where
to mixture two isolated systems in one is a easy way since they naturally tend to the thermal
equilibrium over time. However, to reverse the action the problems start to appear and
sometimes referred to as deterministic irreversible [9].

Analogous to the thermodynamics, Andrey Kolmogorov proposed his own demon to im-
prove Shannon’s description of information. In fact, he proposed three quantitative defini-
tions of information: a combinatorial, a probabilistic (mostly refining Shannon’s definitions)
and an algorithmic [10]. The algorithmic approach became the standard and ultimate ap-
proach to quantify information. Moreover, a more appropriate term started to be used in-
stead of information: complexity. Perhaps without knowing about Kolmogorov works, due
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to language and political barriers, Gregory Chaitin studying Turing machines [5] and Kurt
Gödel’s incompleteness theorem [11], proposed, with a definition of the algorithmic informa-
tion similar to Kolmogorov complexity, the Turing incomputability issue [12]. Moreover, Ray
Solomonoff also achieved similar results, contributing mostly with probability theory perspec-
tives [13, 14]. Therefore, the Kolmogorov complexity can be seen as an independent discovery
of Kolmogorov, Chaitin and Solomonoff. Most of its applications address not only individual
objects (or systems) but also relations between objects.

More recently, Charles Bennett gave several natural definitions of a universal information
metric, based on the length of shortest programs (Kolmogorov complexity) for either ordi-
nary computations or reversible computations [15]. Bennett and his mentor, Rolf Landauer,
proposed that only an irreversible operation increases the entropy of a system and, as a logic
operation, this is analogous to deletion, leading, in thermodynamics, to the dissipation of heat
[16]. Accordingly, Bennett proposed a measure (universal, anti-symmetric, and transitive) for
the thermodynamic work required to transform one object in another object by the most
efficient process, where applied to algorithmic information it adds to Kolmogorov complexity
the notion of time. Therefore, it can be seen as the time needed to transform a object into
another given a pattern/cognitive similarity. This type of measure is known as the logical
depth [15].

1.1.3 Incomputability

At its most fundamental, any information in a isolated system is a propagation of cause
and effect within a system, described with a language, loaded by its inherent parameters,
and approximated with the shortest, fastest and most economic energy descriptor (less work
possible). The problem is to describe such descriptors, given the available data. In the case
of algorithmic complexity the program needs to learn how the system works, which includes
all the players and their relations, and this is a task that needs computational work. It
is perhaps the hardest asymptotic (inverse) unsymmetrical problem. Therefore, given the
Turing incomputability in the algorithmic complexity (in can only be approximated), the
Gödel’s incompleteness theorem in mathematical logic’s, the Heisenberg uncertainty [17] in
quantum mechanics, we realize that for these (analogous) related areas there is not a language
that addresses perfectly the data content, and hence, be considered complete. Nevertheless,
we share EPR belief [18] that such a language exists.

Although the existence of Turing incomputability, for many applications, computation
gives actually a good approximation to objects nature. In fact, algorithmic complexity is
currently the best known way to measure complexity in individual objects or between them,
specially when they are digital or have reduced number of dimensions. Several applications
involving algorithmic complexity description have been reported, for example, in genomics,
virology, languages, literature, music, handwritten digits and astronomy [19]. Genomics is
probably one of the best application fields, namely because genomic sequences (DNA se-
quences) are mostly objects with one dimension (as far as we know). For an introduction on
the biological procedures, from DNA to Protein, and some foundations, see Chapter 2.

1.1.4 Finding descriptors

Genomic sequencing has had a major impact on life sciences since the wide scale adop-
tion of the Sanger sequencing method [20], leading to consequent improvements of sequencing
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methods and big amounts of data generation. Nowadays, the genomics sequencing centers and
the scientific community are being flooded with genomic data [21]. In spite of the possibility
that a transformative breakthrough in storage technology occurs in the following years, the
$1000 genome milestone is most likely to arrive before the $100 petabyte hard disk, mainly
because the cost of disk storage is steadily decreasing over time, not matching the dramatic
change in the cost and volume of sequencing. Nowadays, it is common to find genomics
sequencing projects having a larger fraction of the budget allocated to the computational
infrastructure (including the storage component) than to the biological part. This was un-
thinkable, for example, when the first draft of the human genome was released. Therefore,
compression descriptors, the ones who code and extract redundancy of the representation of
the object play a key role in storage.

Although, many other projects in other areas, such as physics, are feeling the same prob-
lems. One such high-profile project is the Large Hadron Collider (LHC) at CERN, which will
generate an estimated 15 petabytes of data per year when fully active1. Moreover, astronomy
data generation is also a concern where large volumes of galaxy redshift surveys and cosmic
microwave background (CMB) data continue to be generated. Many people call this the big
data era, where there are mostly two options: to compress the data (lossless) or to analyze on
the fly the generated data and discard it, storing only lossy descriptors that might be enough
for conclusion purposes.

In spite of the existence of similar concerns in different areas, genomics is probably one of
the most important, because it enables to advance medicine (for life-quality and health treat-
ment) and the notion of species similarity (i.e., to understand the differences and why do they
exist). Mainly, the advances in genomics led to the unveiling of the first notion of cause/effect
in a semi-isolated thermodynamic system, called body, and their environmental interactions.
Accordingly, the development of models and/or methods that address the representability of
a species genome and their interactions is a very important problem to understand the nature
of the species puzzle. It is perhaps a puzzle of a lifetime.

1.2 Motivation

The data deluge phenomenon is becoming a serious problem in most genomics centers,
as it can be see by the growing number of the fully sequenced and re-sequenced genomes
from large-scale projects such as the 1000 Genomes Project 2, The Cancer Genome Atlas 3,
The 10k Genomes 4, among many others. Moreover, the prizes that reward cheaper, faster,
less prone to errors and higher throughput sequencing methodologies 5, help to increase this
scenario. To alleviate it, general purpose tools, such as gzip, are used to compress the data.
However, although pervasive and easy to use, these tools fall short when the intention is to
reduce as much as possible the data, for example for medium and long term storage. In fact,
for several genomic sequences they attain results worst than the 2 bits per base. To face
this, a competition has been proposed for the achievement of better compression algorithms
6. A number of algorithms have been proposed for the compression of genomics data, but

1http://public.web.cern.ch/public/en/LHC/Computing-en.html
2http://www.1000genomes.org/
3http://cancergenome.nih.gov/
4http://genome10k.soe.ucsc.edu/
5http://genomics.xprize.org/
6http://www.pistoiaalliance.org/projects/sequence-squeeze/
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unfortunately only a few of them have been made available as usable and reliable compression
tools. From these, they are mostly developed to some specific purpose within the genomic
sequences, namely to a specific nature (for instance highly repetitive) or to cope with a specific
file format.

On the other hand, the underlying model of compression can be used as a descriptor for
the object. Therefore, the better the compression model is, the better the descriptor of the
object is. Accordingly, it is a way to approximate the object nature. When we explore this
principle between objects, we are approximating the space between that nature of objects.
This is very important if our objective is to understand evolution, given the Darwin and
Huxley theory of evolution [22]. Compression models are usually nonsupervised, therefore
they are automatic learning programs that search for regularities. In this sense, improving
the compression models is also a way to improve Artificial Intelligence systems. Moreover,
the information contained in these models can led to the development of new diagnostics and
therapeutic methodologies, besides the ability to look for a past window of millions of years
in order to understand human nature.

1.3 Objectives

At a high level, the objectives are essentially the contribution with compressors for storage
minimization purposes and the development of unsupervised algorithms that are able to
determinate regularities (or absence of them) in and between genomic sequences.

At a lower level, we aim to create a universal genomic compressor (in the sense of any
genomic sequence specific characteristic) that is able to obtain state-of-the-art results, using
the minimal time and memory resources, but at the same time flexible enough in the sense
of memory optimization for any computer hardware specifications. The compressor must be
also prepared to perform analysis.

Another objective is to use the compressor in analysis, studying the effects and foundations
of algorithmic complexity, associated to metrics or measures. As such, we aim to quantify and
locate low and high regions of complexity. For the purpose, we analyze regularities in the ge-
nomic sequences using a triple approach: individual sequences, between sequences of the same
species and between sequences that represent different species. Moreover, using algorithmic
complexity, the objective is to build an unsupervised method to detect rearrangements (or
regularities) between different sequences.

As complement, analyze unique features in genomic sequences that might classify or char-
acterize species in order to detect insights into genomic evolution or novel traits.

1.4 Structure

The thesis is divided in seven chapters. The first chapter is an introduction. The sec-
ond chapter gives a background in biology and compression. The third chapter describes
techniques and methods for the compression of genomic sequences, namely presenting two
compressors: a compressor for genomic collections and a universal genomic compressor. The
fourth chapter depicts the usage of compression-based measures for analysis. It is constituted
by three sections, namely a Kolmogorov complexity introduction, global measures and local
measures. In global measures, we present a way to compute directly the Normalized Infor-
mation Distance and introduce a new notion, the Normalized Relative Compression. In local
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measures, we define complexity profiles and give several applications. The fifth chapter is an
extension of the fourth, however for a specific purpose, the detection of genomic rearrange-
ments. The sixth chapter addresses the complement: relative uniqueness. Accordingly, two
applications are presented, namely the detection of Ebola virus specific signatures (relatively
to human) and the detection of human specific regions according to primates. The seventh
chapter finishes the thesis with conclusions and future work.

1.5 Contributions

In the context of this thesis several contributions have been made.

In journals:

1. Diogo Pratas, Raquel Silva, Armando J. Pinho, Paulo J S G Ferreira. An alignment-free
method to find and visualise rearrangements between pairs of DNA sequences. Scientific
Reports, vol. 5, p. 10203, May 2015 (IF 2014: 5.578);

2. Raquel Silva, Diogo Pratas, Lúısa Castro, Armando J. Pinho, Paulo J S G Ferreira.
Three minimal sequences found in Ebola virus genomes and absent from human DNA.
Bioinformatics, April 2015 (IF 2014: 4.981);

3. Lúıs Matos, António J. R. Neves, Diogo Pratas, Armando J. Pinho. MAFCO: A com-
pression tool for MAF files. PLoS ONE, vol. 10, no. 3, p. e0116082, March 2015 (IF
2013: 3.534);

4. Armando J. Pinho, Diogo Pratas. MFCompress: a compression tool for FASTA and
multi-FASTA data. Bioinformatics, vol. 30, no. 1, p. 117-118, January 2014 (IF 2013:
4.621);

5. Diogo Pratas, Armando J. Pinho, João M. O. S. Rodrigues. XS: a FASTQ read simu-
lator. BMC Research Notes, vol. 7, no. 40, January 2014;

6. Armando J. Pinho, Sara Pinto Garcia, Diogo Pratas, Paulo J S G Ferreira. DNA
sequences at a glance. PLoS ONE, vol. 8, no. 11, p. e79922, November 2013 (IF 2013:
3.534);

7. Lúıs Matos, Diogo Pratas, Armando J. Pinho. A compression model for DNA multiple
sequence alignment blocks. IEEE Transactions on Information Theory, vol. 59, no. 5,
p. 3189-3198, May 2013 (IF 2013: 2.650);

8. Sara Pinto Garcia, João M. O. S. Rodrigues, Sérgio Santos, Diogo Pratas, Vera Afreixo,
Carlos A C Bastos, Paulo J S G Ferreira, Armando J. Pinho. A genomic distance
for assembly comparison based on compressed maximal exact matches. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, vol. 10, no. 3, p. 793-798,
May 2013 (IF 2013: 1.536);

9. Armando J. Pinho, Diogo Pratas, Sara Pinto Garcia. GReEn: a tool for efficient
compression of genome resequencing data. Nucleic Acids Research, vol. 40, no. 4, p.
e27, February 2012 (IF 2012: 8.278) (IF 2013: 8.808);
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Book chapters:

1. Armando J. Pinho, Diogo Pratas, Sara Pinto Garcia. Compressing resequencing data
with GReEn. Deep Sequencing Data Analysis, Noam Shomron (Ed.), Humana Press,
vol. 1038 (Methods in Molecular Biology), p. 27-37, July 2013;

In international conferences:

1. Diogo Pratas, Armando J. Pinho. Exploring deep Markov models in genomic data
compression using sequence pre-analysis. Proc. of the 22nd European Signal Processing
Conference, EUSIPCO-2014, Lisbon, Portugal, September 2014;

2. Diogo Pratas, Armando J. Pinho. A conditional compression distance that unveils
insights of the genomic evolution. Proc. of the Data Compression Conference, DCC-
2014, Snowbird, UT, p. 421, March 2014;

3. Armando J. Pinho, Diogo Pratas, Paulo J S G Ferreira. Information profiles for DNA
pattern discovery. Proc. of the Data Compression Conference, DCC-2014, Snowbird,
UT, p. 420, March 2014;

4. Sara Pinto Garcia, João M. O. S. Rodrigues, Diogo Pratas, Armando J. Pinho. Compar-
ing maximal exact repeats in human genome assemblies using a normalized compression
distance. 20th Annual International Conference on Intelligent Systems for Molecular
Biology, Long Beach, California, USA, July 2012;

5. Lúıs Matos, Diogo Pratas, Armando J. Pinho. Compression of whole genome alignments
using a mixture of finite-context models. Proceedings of 9th International Conference on
Image Analysis and Recognition, ICIAR 2012, Aveiro, Portugal, vol. Aurélio Campilho
and Mohamed Kamel (Eds.): Part I, LNCS 7324, p. 359-366, June 2012;

6. Diogo Pratas, Armando J. Pinho, Sara Pinto Garcia. Exon: A Web-Based Software
Toolkit for DNA Sequence Analysis. Advances in Intelligent and Soft Computing,
Proc. of the 6th Int. Conf. on Practical Applications of Computational Biology &
Bioinformatics, PACBB 2012, Salamanca, Spain, vol. 154, p. 217-224, March 2012;

7. Diogo Pratas, Armando J. Pinho, Sara Pinto Garcia. Computation of the normal-
ized compression distance of DNA sequences using a mixture of finite-context models.
Bioinformatics 2012: International Conference on Bioinformatics Models, Methods and
Algorithms, Vilamoura, Portugal, February 2012;

In national conferences:

1. Diogo Pratas, Raquel Silva, Armando J. Pinho, Paulo J S G Ferreira. Detection and
visualisation of regions of human DNA not present in other primates. Proceedings of
the 21th Portuguese Conference on Pattern Recognition, RecPad 2015, Faro, Portugal,
October 2015;

2. Diogo Pratas, Raquel Silva, Armando J. Pinho. Large-scale inversions between hu-
man reference assemblies. Proceedings of the 20th Portuguese Conference on Pattern
Recognition, RecPad 2014, Covilhã, Portugal, October 2014;
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3. Raquel Silva, Lúısa Castro, Diogo Pratas, Armando J. Pinho. Towards personalized
medicine: ebola virus absent words in the human genome. Proceedings of the 20th Por-
tuguese Conference on Pattern Recognition, RecPad 2014, Covilhã, Portugal, October
2014;

4. Diogo Pratas, Armando J. Pinho. Insights into primates genomic evolution using a
compression distance. Proc. RecPad 2013, Lisbon, November 2013;

5. Diogo Pratas, Armando J. Pinho. On the compression of FASTQ quality-scores. Pro-
ceedings of the 18th Portuguese Conference on Pattern Recognition, Coimbra, Portugal,
October 2012;

On the other hand, although in a way connected, the following contributions have been made
simultaneously:

1. Armando J. Pinho, Diogo Pratas, Paulo J S G Ferreira. A new compressor for measuring
distances among images. Proc. of the International Conference on Image Analysis and
Recognition, ICIAR-2014, Vilamoura, Portugal, vol. LNCS 8814, p. 30-37, October
2014;

2. Diogo Pratas, Armando J. Pinho. On the Detection of Unknown Locally Repeating
Patterns in Images. Proceedings of 9th International Conference on Image Analysis
and Recognition, ICIAR 2012, Aveiro, Portugal, vol. Aurélio Campilho and Mohamed
Kamel (Eds.): Part I, LNCS 7324, p. 158-165, June 2012;
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“Follow the white rabbit.”

2
Background

2.1 Biological Background

The biological processes, such as self-sustaining and signaling, defines the organisms na-
ture, namely as the smallest and optimized contiguous units for a specific function over a
certain period of time. Organisms can be classified as unicellular, such as Valonia ventricosa,
or multi-cellular, such as Homo sapiens. In fact, humans are composed of many trillions of
cells grouped into specialized tissues and organs. An organism may be either a prokaryote or
eukaryote (eukarya). Having a higher factor of diversity, prokaryotes are represented by the
Bacteria and Archaea domains [23], while eukaryotes are characterized by the presence of a
membrane-bound cell nucleus and contains additional membrane-bound compartments (called
organelles), namely mitochondria, Golgi apparatus or chloroplasts [24]. Animals, plants and
fungis are well known examples of eukaryotic kingdoms.

Individual organisms are time limited [25, 26]. Therefore, to avoid species extinction, they
must have the ability to create new individuals of the same kind, either asexually from a single
parent, or sexually from two parent organisms. Ultimately, they can be seen as (metabolic)
functions that accept parameters, namely through environment (energy and materials) and
ancestors (parents), and produce a transformed outcome that is tightly related with its sur-
vival and, in some way, in species survival. Globally, these functions need to be constantly
evolving, according to a process called the natural selection [22], using the smallest amount
of energy that ensures efficiency. It is a survival game, as the major four mass extinctions in
the marine fossil record exemplify [27].

In agreement with [28, 29], Fig. 2.1 depicts a proposed phylogenetic tree showing the
separation of bacteria, archaea, and eukaryotes [30, 31]. Despite the visual similarity to
bacteria, archaea possess genes and several metabolic pathways that are more similar to
those of eukaryotes, namely the enzymes involved, in transcription and translation, and their
reliance on ether lipids in their cell membranes. Moreover, they are known by using more
energy sources than eukaryotes and by living in extreme environments.

Besides the three separated domains, there are the viruses. These have been defined as
small infectious agents that replicate only inside the living cells of other organisms [32]. In
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Figure 2.1: A proposed rooted tree for rRNA genes, showing major branches Bacteria, Ar-
chaea, and Eukaryote. Source: wikipedia.org.

fact, viruses can infect all types of life forms and in some cases integrate the hostage genomes
[33, 34, 35]. Their classification is currently a controversial subject, mainly because many
believe that the recent discovery of the giant DNA viruses, also known as megavirus [36],
should represent a separated fourth domain of life in addition to the Bacteria, Archaea and
Eukarya domains [37, 38]. Despite their association with other organisms death, they are
considered one of the major factors of increasing the genetic diversity of organisms [39].

Despite metabolic and structural diversity between species, living organisms and several
viruses have their instructions, also known as genetic information, embedded in the Deoxyri-
bonucleic acid, or DNA for short, while other viruses use the Ribonucleic acid, or RNA for
short. The DNA sequences are composed by four different elements (or bases): adenine (A),
cytosine (C), guanine (G), and thymine (T). Adenine and guanine are classified as purines,
in agreement with their chemical similarity, while cytosine and thymine as pyrimidines. The
definition of nucleotide derives from the combination of a base with a sugar/phosphate. The
DNA sequences are usually represented and analyzed as strings over a quaternary alphabet,
that can be small as a virus or as large as a human. The process of unveiling DNA nucleotides
is known as DNA sequencing [20].

Although in 2010 it has been proposed that a microbe (GFAJ-1) that, when starved of
phosphorus, was capable of substituting arsenic for a small percentage of its phosphorus
and sustain its growth [40], subsequent independent published studies found no detectable
arsenate in the DNA of GFAJ-1. Moreover, they have demonstrated that GFAJ-1 is simply
an arsenate-resistant phosphate-dependent organism [41]. Therefore, to the present all the
(known) living organisms are based on phosphate.

Based on the image of diffraction X-rays by Rosalind Franklin, 1952, and a DNA image
improved by Maurice Wilkins, followed by biochemical information by Erwin Chargaff, James
Watson and Francis Crick discovered the double helix structure of DNA in 1953 [42], making
evident that the total percentage of complementary nucleotides, namely adenine- thymine
(A-T) and cytosine-guanine (C-G), in a double-stranded molecule should be equal. This
property had been previously reported by Chargaff and it is defined as his first parity rule
[43]. The detailed analysis of some bacterial genomes led to the formulation of Chargaff’s
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second parity rule, which asserts that the percentage of complementary nucleotides should
also be equal in each of the two strands. This rule has been extensively confirmed in bacterial
and eukaryote genomes, including recent results [44] that use global association measures
and suggest that the symmetry holds for k-mers up to 10 nucleotides. Nevertheless, the
universality of Chargaff’s second parity rule has been questioned for organelle DNA and some
viral genomes [45].

Figure 2.2: The structure of the DNA double helix. The atoms in the structure are color-
coded by element and the detailed structure of two base pairs are shown in the bottom right.
Source: wikipedia.org.

Fig. 2.2 depicts a biochemistry representation of the double helix. Accordingly, the base
pairs are separated 0.34 nm in the double helix, and a complete turn of one chain over the
other materializes 3.4 nm, making 10 pair bases by rotation. The chains are not uniformly
spaced on the double helix, forming cavities of different sizes, namely a large (major groove)
and a thin (minor groove). Both chains are anti-parallel, which means that they follow from
5′ to 3′ in an inverted sense. These chains may contain many instructions which can be
fundamental to the development and survival of the organisms and regularly called genes.

According to Fig. 2.3, a chromatid is composed by many genes, regulatory elements and
other non-coding DNA/RNA, all packaged and organized, namely by the nucleosomes and
histones [46]. A chromatid that joined to the other copy by a single centromere constitute a
chromosome. The tip of chromosomes are called telomers and are normally associated with
aging [47]. Some organisms have multiple copies of chromosomes: diploid, triploid, tetraploid
and so on. As an example, humans are diploid, while salmons are tetraploid. A set of
chromosomes forms a genome.

The human genome, as Matt Ridley metaphorized [48], can be seen as a book that wrote
itself, continually adding, deleting and amending over four billion years. The book contains
twenty-three chapters, called chromosomes. Each chapter contains several thousand stories,
called genes. Each story is made up of paragraphs, called exons, which are interrupted by
advertisements called introns. Each paragraph is made up of words, called codons. Each
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Figure 2.3: Progressive visualization from a cell to DNA. Image adapted from wikipedia.org.

word is written in letters called bases.

The human genome is determined by approximately 3 000 million base pairs [49]. This
means that being the DNA a language written with an alphabet of four different symbols, it
takes approximately 750 MBytes to represent the human genome using log2 4 = 2 bits per
symbol (bps).

Analogous to the OSI model in communications, genomic information has its own layer
model, namely from DNA to RNA and to Protein. According to Fig. 2.4 there are two main
steps to produce Proteins from DNA. The first one is transcription, that is to make RNA
from DNA. RNA (Ribonucleic Acid) is synthesized in the nucleus and is very similar to DNA.
The synthesis of RNA also involves the use of bases. However, in RNA synthesis no thymine
(T) is used, but uracil (U) instead. The sequence of RNA corresponds to the sequence of
DNA from which the RNA is synthesized.

The second one, is known to be the translation, making Proteins from RNA. It all begins
in the RNA strand, where the protein will be synthesized. A protein is made from amino
acids. The protein strand, although in the Fig. 2.4 is being presented as a line, has complex
interactions between amino acids leading to three dimensional spatial forms that are essential
for the functioning of the protein. In the translation of RNA to protein one amino acid is
added to the protein strand for every three bases in the RNA. So, a RNA sequence of 24 bases
codes for a protein strand of eight amino acids. On the left of Fig. 2.4 there is a table with
the encoding correspondent to the translation, where the combination of three bases gives
always the same amino acid, for example “CAT” corresponds to “gln” (glutamine).

As described previously, sequencing is the process to unveil the genomic information (indi-
vidual content and relative order), into digital format. This enables the possibility to analyze
the data. However, the sequencing process is not yet perfect. In fact, currently it is only
possible to sequence fragments. As such, it is the same as to find the order and the content
of a few pieces in a huge puzzle that we need to assemble and, after, perform an analysis,
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Figure 2.4: Stages from DNA to Protein: transcription (DNA to RNA) and translation (RNA
to amino acid). Several amino acids form a Protein. Translation is done according to the
table on the left.

sometimes comparative (between puzzles), sometimes individual (within the same puzzle).
To challenge more this quest, the tiny fragments, namely between 25 to 300 bases, might
have several errors (it is a probabilistic label attribution). Therefore, the analysis of genomic
sequences needs to be addressed with methods/tools that are aware of these difficulties [50].

There are many file formats to store the data after sequencing, such as FASTQ, BAM,
SAM, VCF, FASTA, among others. The FASTQ is by default the current output format
from sequencers. FASTQ is made of multiple reads. Each read has three information chan-
nels: headers (information relative to each read), a small sub-sequence containing DNA bases
(normally between 25 and 300 bases) and quality-scores containing, for each DNA base,
the corresponding sequencing quality. This is a highly redundant format that led to the
development of the SAM format. SAM explores the redundancy according to a reference se-
quence, and hence, for high similarity between sequences (such has multiple human genomes)
it enables large space savings. Besides the headers, this format only stores information of
deviations relatively to the reference sequence (both in DNA bases and quality-scores). BAM
is the binary version of SAM, reducing even more the space, although it needs a simple trans-
formation for analysis access purposes. The VCF file format does not store quality scores
neither headers (identifiers), since it only maps the differences (substitutions, deletions and
insertions) according to an assembled reference sequence.

Probably the most popular and used file format is FASTA. This format has two channels
of information: headers and DNA bases. It can be used after and before assembling the
sequences. If it is assembled, without the headers, can be considered a genomic sequence,
containing only the bases: A,C,G,T. In several cases, there are other symbols, such as N,
that represent mostly sequencing or assembling uncertainties and, therefore, since they are
caused by faults in the accuracy of sequencing or human comprehension, in most cases, we
ignore or uniformly generated random bases for its replacement.
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2.2 Compression

Compression is a lossless or lossy technique that identifies and eliminates redundancy of
data using a source coding method called compressor [51, 52]. Lossless compression does not
loose information. This means that the compressed data can be decompressed to exactly its
original value. On the other hand, lossy compression looses information, making (perhaps)
impossible to obtain the original value in the decompression process.

Most successful compression techniques fall into three categories: variable-length coding,
dictionary-based and arithmetic coding.

Generically, a variable-length code can be seen as a code that maps a source of symbols to
a variable number of bits, such as the well known Shannon-Fano [6], Huffman [53] and Golomb
[54] codes. One of the most successful applications is bzip2, based on the Burrows-Wheeler
transform (BWT) [55], that divides the input into fixed size blocks and uses the BWT for each
block. The sort order is the lexicographical order of the string to which it refers, wrapping
around to the beginning of the block when necessary. After the transformation, the data is
encoded with the Huffman technique.

Dictionary-based compressors, also known as substitutional compressors, replace an oc-
currence at a particular offset with a reference to a previous occurrence, such as the well
known gzip, based on the Lempel-Ziv method [56]. Given that gzip uses the self sequence
to match repeated occurrences, the memory increases in proportion to the size of the sliding
window (by default, gzip uses a fixed-size window to avoid high memory usage).

The most recent compressors are based on arithmetic coding [57, 58]. According to
Fig. 2.5, this technique leds to a new concept, the full separation of modeling from cod-
ing [59], mostly given by the flexibility of arithmetic coding that can be fed by any statistical
model.

Figure 2.5: Arithmetic coding scheme

The idea of arithmetic coding enables the possibility to have fractions of bits, because the
entire message is represented using a single code-word: a number in [0, 1). This idea exceeds
variable-length codes, namely because, unlike arithmetic coding, they are optimum only if
the probabilities of the symbols are powers of 2 [60].

If we consider the binary sequence 0110 (P0 = 0.6, P1 = 0.4), the encoded message is a
number in the interval [0.504, 0.5616) as depicted in Fig. 2.6. Moreover, Fig. 2.6 also depicts
the process of decoding of the previous binary example, considering x = 0.54. It is important
to say that, in both processes, probabilities can never be zero, or this will harm the arithmetic
coding process [61]. Therefore, estimators that assume always the possibility of an event to
happen play a key role.

Most of the updates in arithmetic coding are related to trades between precision and
processing speed [62], because the efficiency of an arithmetic coder is very close to the entropy
of the model. Therefore, modeling is a key factor.
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Figure 2.6: Arithmetic encoding (left) and decoding (right) processes given the binary string
0110 assuming static probabilities with P0 = 0.6 and P1 = 0.4.

For example, a statistical compressor, such as prediction by partial match (PPM) [63],
explicitly estimates the probability distribution of each symbol. Statistical compression algo-
rithms depend on assumptions about how the sequence is generated to calculate the distribu-
tion. These assumptions are the model of the sequence. If the model gives a high probability
to the actual value of the next symbol, good compression is obtained. A model that produces
good compression makes good predictions and is a good description of the data. More re-
cently, the PAQ compressors [64] are the most successful and popular statistical applications
(see http://mattmahoney.net/dc/ for more).

2.2.1 Finite-context models

Finite-context modeling (FCM), a statistical method assuming the Markov property, has
been used in several areas, such as in text and image. Although FCM generally has good
performance, they are limited by the number of symbols of the alphabet (memory grows
exponentially). For data sources with restricted alphabet size, normally less than 60, it seems
to attain top compression ratios.

Consider an information source that generates symbols, s, from a finite alphabet Θ =
{s1, s2, . . . , s|Θ|}, where |Θ| denotes the size of the alphabet. In the case of DNA data,
Θ = {A,C,G,T} and, therefore, |Θ| = 4. Also, consider that the information source has
already generated the sequence of n symbols xn = x1x2 . . . xn, xi ∈ Θ. A subsequence of xn,
from position i to j, is denoted as xji .

A FCM of an information source (see Fig. 2.7) assigns probability estimates to the symbols
of the alphabet, according to a conditioning context computed over a finite and fixed number,
M , of past outcomes (order-M FCM) [59, 65, 66]. At time n, these conditioning outcomes are
represented by c = xn−M+1, . . . , xn−1, xn. The number of conditioning states of the model is
|Θ|M , dictating the model complexity or cost. In the case of DNA, an order-M model implies
4M conditioning states.

Previously, FCMs have been used with low-orders. Currently, and in the case of genomic
sequences, high orders have also been considered. In fact, high orders are the most significant
in terms of compression capabilities, however they also require more space/time resources.

The probability estimates, P (s|c), ∀s∈Θ, are usually calculated using symbol counts that
are accumulated while the sequence is being processed, which makes them dependent not
only of the past M symbols, but also of n. In other words, these probability estimates are
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Figure 2.7: FCM: the probability of the next outcome, xn+1, is conditioned by the M previous
outcomes. In this example, Θ = {A,C,G,T} and M = 5.

Table 2.1: Simple example illustrating how statistical data are typically collected in FCMs.
Each row of the table represents a probability model at a given instant n. In this example,
the particular model that is chosen for encoding a symbol depends on the last five processed
symbols (order-5 context).

Context, c ncA ncC ncG ncT nc =
∑
a∈Θ

nca

AAAAA 23 41 3 12 79
...

...
...

...
...

...
ATAGA 16 6 21 15 58

...
...

...
...

...
...

GTCTA 19 30 0 4 53
...

...
...

...
...

...
TTTTT 8 2 18 11 39

generally time varying.
Table 2.1 shows an example of how statistical data are usually collected in FCMs. In this

example, an order-5 FCM is presented (as that of Fig 2.7). Each row represents a probability
model that is used to represent a given symbol according to the last processed symbols (five
in this example). The counters are updated each time a symbol is processed.

The theoretical per symbol information content average provided by the FCM, after having
processed n symbols, is given by

Hn = − 1

n

n∑
i=1

log2 P (xi|c) bpb, (2.1)

where “bpb” stands for “bits per base”. Recall that the entropy of any sequence of four
symbols is limited to two bits per symbol, a value that is obtained when the symbols are
independent and equally likely.

The probabilities are estimated using the parameter α. Accordingly, we address the
information content estimation process under the form

Pα(s|c) =
ncs + α

nc + α|Θ|
, (2.2)

where ncs represents the number of times that, in the past, the information source generated
symbol s having c as the conditioning context and where nc is the total number of events
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that has occurred so far in association with context c. Parameter α allows balancing between
the maximum likelihood estimator and an uniform distribution. Note that when the total
number of events, n, is large, the estimator behaves as a maximum likelihood estimator. For
α = 1, (2.2) is the Laplace estimator.

The combination of multiple FCMs can be mainly addressed using two schemes: compe-
tition and cooperation (or mixture). These are explained in the following subsections.

2.2.1.1 Competition

DNA sequence data are non-stationary. In fact, one of the reasons why most DNA encod-
ing algorithms uses a mixture of two methods, one based on repetitions and the other relying
on low-order FCMs, is to try to cope with the non-stationary nature of the data. We also
follow this line of reasoning, i.e., that of using different models along the sequence. However,
unlike the other approaches, we use exclusively the finite-context paradigm for modeling the
data, changing only the order of the model as the characteristics of the data change. More
precisely, we explore an approach based on multiple FCMs of different orders that compete
for encoding the data.

Using several models with different orders allows a better handling of DNA regions with
diverse characteristics. Although these multiple models are continuously updated, only the
best one is used for encoding a given region. For convenience, the DNA sequence is partitioned
into non-overlapping blocks of fixed size, which are encoded by one (the best one) of the
FCMs. Figure 2.8 shows an example where two competing FCMs are used. In this example,
each model collects statistical information from a context of depth k1 = 5 and k2 = 11,
respectively. At time n, the two conditioning contexts are c1 = xn−k1+1 . . . xn−1xn and
c2 = xn−k2+1 . . . xn−1xn.

Figure 2.8: Example of the use of multiple FCMs for encoding DNA data. In this case, two
models are used, one with a depth-5 context and the other using an order-11 context.

2.2.1.2 Mixture

In a mixture of FCMs, instead of having competition, each model cooperates according
to weights attributed. The weights are continuously adapted during compression, depending
on the performance of each individual probabilistic model. After seeing the first n symbols
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of x, xn, the average number of bits generated by an order-k FCM is1

Hk,n = − 1

n

n∑
i=1

logP (xi|xi−1
i−k), (2.3)

where, for simplicity, we assume the convention that xii = xi, i ≤ 0 is known to both the
encoder and decoder. When several models are used simultaneously, Hk,n can be viewed as
a measure of the average performance of model k 2 until position n. Therefore, the overall
probability estimated for position n+ 1 is given by the weighted average of the probabilities
provided by each model, according to their individual performance, i.e.,

P (xn+1) =
∑
k∈K

P (xn+1|xnn−k+1) wk,n, (2.4)

where K denotes the set of K = |K| models involved in the mixture, and

wk,n = P (k|xn), (2.5)

i.e., these weights are equal to the probabilities that each model has generated xn. Hence, we
have

wk,n = P (k|xn) ∝ P (xn|k)P (k), (2.6)

where P (xn|k) denotes the likelihood of sequence xn being generated by model k and P (k)
denotes the prior probability of model k. Assuming

P (k) =
1

K
, (2.7)

we also obtain
wk,n ∝ P (xn|k). (2.8)

Calculating the negative logarithm of this probability we get

− logP (xn|k) = − log

n∏
i=1

P (xi|k, xi−1) = −
n∑
i=1

logP (xi|k, xi−1), (2.9)

which is the number of bits that would be required by model k to represent the sequence xn.
It is, therefore, the accumulated measure of the performance of model k until position n.

To facilitate faster adaptation to non-stationarities of the data, instead of using the whole
accumulated performance of the model, we adopt a progressive forgetting mechanism. The
idea is to let each model to progressively forget the distant past and, consequently, to give
more importance to recent performance results. To accommodate this, we first write (2.9) as

logP (xn|k) =
n−1∑
i=1

logP (xi|k, xi−1) + logP (xn|k, xn−1) (2.10)

and then
log pk,n = γ log pk,n−1 + logP (xn|k, xn−1), (2.11)

1For now on, we consider base-2 logarithms.
2For simplicity of notation, although incurring in some loss of generality, we identify a FCM by its order.

However, as explained below, we may have more that one model of the same order in the mixture.
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where γ ∈ [0, 1) is the forgetting factor and log pk,n represents the estimated number of bits
that would be required by model k for representing the sequence xn (we set pk,0 = 1), taking
into account the forgetting mechanism. Removing the logarithms, we rewrite (2.11) as

pk,n = pγk,n−1P (xn|k, xn−1) (2.12)

and, finally, set the weights to

wk,n =
pk,n∑

k∈K
pk,n

. (2.13)

2.2.2 Genomic compression

Although the success of the general purpose algorithms in many types of data, in genomic
data they seem to be, in several aspects, behind specific purpose algorithms (whose existence
is already an indicator). This happens because of the nature of the data, which, besides
being very heterogeneous and non-stationary, has specific properties, such as inverted repeats
[67, 68] (see subsection 2.2.2.3 for a definition and how we address their modeling).

The field of genomic sequence compression can be mainly divided in two areas:

1. Individual compression (pure compression);

2. Reference compression (conditional compression).

2.2.2.1 Individual compression

The individual sequence compression has arrived with the first sequenced genomes, where
the purpose was initially to decrease the space of the transmitted data over the internet
(very low speed connections at that time). Currently, it is used due to space constrains and
efficiency in data manipulations. Nonetheless, the advances in the core of these models (and
also in reference sequence compression) are always a way to approximate the optimal function
(or program) that represents the object (or distance between objects).

In the literature, since Biocompress [69], several individual genomic compression algo-
rithms have been proposed [70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88]
(for reviews see [21, 89, 90]).

These algorithms have a common idea, which arises from the non-stationary nature of
the genomic sequences. Typically, there are at least two compression methods, one based on
Lempel-Ziv substitutional procedures [56] and another based on low-order FCM arithmetic
coding. According to the substitutional paradigm, repeated regions of the genomic sequence
are represented by a reference to a past occurrence of the repetition and the length of the
repeating sequence. Both exact and approximate repetitions have been explored, as well as
their inverted complements. In the case of approximate repetitions it is necessary to indicate
where and how the sequences differ.

The substitutional approach is usually the main encoding method, with the low-order
FCM assuming the role of a fallback, secondary choice. When the substitutional method is
unable to provide satisfactory performance, the corresponding region of the genomic sequence
is represented by a low-order FCM. This scheme for representing genomic sequences have
been significantly improved by Tabus and Korodi et al., based on the normalized maximum
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likelihood (NML) algorithm [77, 79, 81], and mostly by Cao et al. [82], using the eXpert
Model (XM).

The most recent version of the NML-based approach [81] is an evolution of the normalized
maximum likelihood model introduced in [77] and improved in [79]. This new version, NML-
1, aims at finding the best regressor block, i.e., an approximate repetition, using first-order
dependencies. One of the drawbacks of the substitutional approaches is the associated com-
putational complexity. In fact, most of the CPU time required by these encoding techniques
is spent on finding good exact/approximate repeats or inverted complements. The authors
of NML-1 reported that it took about 42 hours to compress a human genome (considering a
single machine).

The XM statistical method comprises three types of experts: order-2 FCMs (see Sub-
section 2.2.1); order-1 local FCMs (typically using information only from the 512 previous
symbols); the copy expert, that considers the next symbol as part of a copied region from
a particular offset. The probabilities provided by the set of experts are combined using
Bayesian averaging and then directed to an arithmetic encoder. In general, XM has the best
space compression results. However, it uses high memory and time resources to compress
larger sequences (such as a chromosome or human genome).

To changing the paradigm of the compression methods, we have proposed the exclusive
usage of FCMs [91, 92, 84], where, first, using a competing and, after, a mixing approach. The
better version emerged as FCM-Mx [84]. The FCM-Mx, a pure statistical method, relies on a
mixture of multiple order-k FCMs with a special technique to deal with inverted repeats (see
Subsection 2.2.2.3), where the probabilities are weighted and then directed to an arithmetic
encoder. In general, the FCM-Mx presents competitive or even superior results, for example in
bacterial genomes [84, 91], than XM, using significantly less computational time and memory.

2.2.2.2 Reference compression

The dramatic increase of sequenced genomes [93], given the dramatically reduced sequenc-
ing costs, with the high redundancy characteristics, led to the development of genomic refer-
ence sequence compression. Some models for storing and communicating redundant genomic
data have already been presented, based on, for example, single nucleotide polymorphism
(SNP) databases [94], or insert and delete operations [95].

Wang et al. proposed a compression tool, GRS, that is able to compress a sequence using
another one as reference, without requiring any additional information about those sequences,
such as a reference SNP map [96]. RLZ, a compressor able to perform relative Lempel-Ziv
compression of DNA sequences was proposed by Kuruppu et al. [97].

Other approaches propose encoding the sequence reads that are output by massively
parallel sequencing experiments (e.g., [98, 99, 100, 101]), which is also a very important
problem and which shares some common points with the problem being addressed here.
However, the compression of short reads needs to cope with other requirements, such as, for
example, the efficient representation of base calling quality information.

We have proposed GReEn [102], a compression tool based on arithmetic coding that
handles arbitrary alphabets. Its running time and memory depends on the size of the sequence
being compressed. The model is mostly inspired in the copy expert [82]. The probability
distribution, Pn(c), can be provided by two different sources: (a) an adaptive model (the
copy model) which assumes that the characters of the target sequence are an exact copy of
(parts of) the reference sequence; (b) a static model that relies on the frequencies of the
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Table 2.2: Table 2.1 updated after processing symbol “C” according to context “ATAGA”
(see example of Fig. 2.7) and taking the inverted repeats property into account.

Context, c ncA ncC ncG ncT nc =
∑
a∈Θ

nca

AAAAA 23 41 3 12 79
...

...
...

...
...

...

ATAGA 16 7 21 15 59
...

...
...

...
...

...

GTCTA 19 30 10 5 64
...

...
...

...
...

...
TTTTT 8 2 18 11 39

characters in the target sequence. The adaptive model is the main statistical model, as it
allows a high compression rate of the target sequence, particularly in areas where the target
and reference sequences are highly similar. The static model will act as a fallback mechanism,
feeding the arithmetic coder with the required probability distribution.

For highly similar sequences, Wandelt et al. proposed an algorithm based on dictionary
schemes [103], while, for large collections, Deorowicz et al. proposed GDC [99, 104]. Finally,
Ochoa et al. proposed iDoComp [105], using mostly a suffix-array and dictionary scheme.
Generally, this method seems to have top compression results.

2.2.2.3 Updating the inverted complements

Frequently, DNA sequences contain sub-sequences that are reversed and complemented
copies of some other sub-sequences. These sub-sequences are named “inverted repeats”. As
mentioned before, this particularity of DNA sequence data is used by most of the DNA
encoding methods that have been proposed and that rely on the sliding window searching
paradigm.

For exploring the inverted repeats of a DNA sequence in the FCMs, besides updating
the corresponding counter after encoding a symbol, we also update another counter that we
determine in the following way [106]. Consider the example given in Table 2.1, where the
context is the string “ATAGA” and the symbol to encode is “C”. Reversing the string obtained
by concatenating the context string and the symbol, i.e., “ATAGAC”, we obtain the string
“CAGATA”. Complementing this string (A↔T, C↔G), we get “GTCTAT”. Now we consider
the prefix “GTCTA” as the context and the suffix “T” as the symbol that determines which
counter should be updated. Therefore, according to this procedure, we take into consideration
the inverted repeats if, after encoding symbol “C” of the example in Table 2.1, the counters
are updated according to Table 2.2. As shown in [106], this provides additional modeling
performance.
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2.3 Conclusions

In this Chapter, we have introduced the basics of the biological processes, namely from
DNA to protein. Also, we have explained the problems of the representation of genomic
sequences in digital format and its most used file formats.

Moreover, we have described the Finite-Context Models (FCMs) and its relations: compe-
tition and cooperation (or mixture). These are the building blocks of most of the algorithms
that we developed during this work.

Finally, we have presented the state-of-the-art in genomic sequence compression, namely
describing reference and reference-free methods.
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“Who is uncompressing all this
stuff?”

Jarvis

3
Genomic sequence compression for storage

In this chapter we address the efficient compression of genomic sequences for storage pur-
poses. We explore a specific reference-free compressor, introducing an algorithmic entropy
filter. On the other hand, we introduce a general, in multiple purpose sense, genomic com-
pressor integrating several new research topics, such as cache-hashes, extended FCMs and
mixing different classes.

Genomic sequences, besides being very heterogeneous, non-stationary [91], with specific
properties (such as inverted repeats [68]), are nowadays, very large [21]. To detect similar
blocks of information very apart (such as in collections or complete genomes) common com-
pressors load into memory the full sequence. This means that, if the sequence is very large,
then the compressor will spend all available memory resources.

On the other hand, to run with controlled memory, most compressors create a buffered
internal model of the data with limited size. However, most of the very far away blocks of
information will be treated as if they were new (that will result in a inefficient compression).

As introduced in Section 2.2, XM and FCM-Mx are the current state-of-the-art com-
pression methods for genomic sequences (compression capability, running time and memory
used). Unfortunately, in average laptop computers they can not be used without splitting the
sequences into smaller sub-sequences. One has to cut the sequences into smaller ones to en-
sure minimal RAM memory, specially with XM. This has a strong impact in the compression
capability, namely in complete genomes (such as the human).

To deal with these issues and to improve the genomic compressor, we have studied, used
and created several techniques to support and extend the usage of deep context models,
namely an algorithmic entropy filter, cache-hash and extended FCMs, that we describe in the
following subsections (from 3.1 to 3.2.3).

3.1 An algorithmic entropy filter

DNAEnc3 [85, 91], the competitive FCMs version (instead of the cooperation between
FCMs as in FCM-Mx), is a top genomic compressor that presents reasonable balance between
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running resources (time and memory) and compression results, being able to easily compress
sequences with less than 200 MB in a few minutes and using up to 3 GB of memory. The
method is based on multiple Markov models, with variable context orders, that compete to
encode every block of the genomic sequence. DNAEnc3 is limited to contexts up to 16, where
FCMs above contexts of size 14 use a linear hash table.

It is known that when the size of the sequences and the redundancy increases, the context
need to be larger for a decent compression performance [91]. However this might be problem-
atic in terms of memory, since the precision of the key in a hash table increases. By precision,
we mean the number of bits needed to describe the interval of numbers (indexes) up to the
hash size. On the other hand, the causality problem in data compression does not allow to
know in a first time if a sub-sequence shares information with other, but only after seeing it
a second time.

To tackle this we need to develop a data structure that filters the sequence in terms of
information content and only updates the hash table with homologous regions, at the expense
of some more time. Moreover, we are aware that the need to be fast and use low memory is on
the side of the decompression, mainly because the compression of these datasets is normally
done in computers with high hardware capabilities (and only once), while the decompression
is done by very different (and sometimes modest) computers (and many times). Usually it is
done one compression for thousands of decompressions.

We follow the line of DNAEnc3 [85, 91], exploring two competing Markov models with a
low and high context order. However, unlike DNAEnc3, the proposed approach rely on deep
context orders and on a preprocessing analysis to identify low complexity regions of the data,
and hence the algorithmic entropy filter. This strategy allows the reduction of memory usage
and, consequently, allows to use deeper contexts that positively impact the compression gain.

3.1.1 Multiple finite-context models

As mentioned, one of the reasons why most DNA encoding algorithms use a mixture of
two methods, one based on repetitions and the other relying on low-order FCM, is to try to
cope with the non-stationary nature of the data. We also follow this line of reasoning, using
a low order FCM, typically 4, and a high order FCM that can be, in the case of DNA data,
up to 32, where the high order context size depends on the size and repetitiveness of the
sequence as shown in the results section.

As such, we explore an approach based on two FCMs of different orders (low and high)
that compete for encoding the data, allowing a better handling of DNA regions with diverse
characteristics. The competition between the two FCMs is held in the evaluation process for
non-overlapping blocks of fixed size, such as 100 symbol blocks, which are then encoded by
the best estimated FCM. The binary stream (side information) with the information of the
respective FCM used in the compression of each block is encoded using an adaptive order-0
model followed by arithmetic coding.

3.1.2 Exploring high-order models using pre-analysis

Although the symbol counters for the low order FCM are constantly accumulated in a
table with 16 bits of precision, the high order FCM requires two key approaches to maintain
reasonable memory resources and the possibility of exploring deeper orders that might provide
a better compression.
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The first key approach is to use sequence pre-analysis, in order to classify the data blocks
into low or high information content, reducing the number of them that otherwise would
“pollute” the hash or counter table with incorrect statistics. Therefore, by applying this
block-by-block analysis to the sequence, we are able to determine the blocks with low and
high information content, and hence only update the high order model in the low information
content blocks. As such, in the compression process, we spend more memory than in the
decompression process. If we do not have the resources on the compression side, it is also
possible to estimate these low and high information content blocks by using a smaller context
order, only marginally reducing the performance. However, we recall that the importance of
resources is generally on the side of the decompression phase and this is ensured to be light
on memory and time.

The second key approach, enhanced by pre-analysis, is to use high-order hash-tables (in-
dexes up to 264), mainly because when implementing the FCM using simple tables the memory
requirements grow exponentially with k. For DNA data, and considering 16 bits counters, this
would imply about 39.4 zettabytes of memory for implementing an order-32 model. However,
this table would also be very sparse, because the maximum number of different words of size
k that can be found in a sequence of length n is upper bounded by n. Therefore, using hash-
tables, it is possible to explore large order FCMs having an approximate increase of memory
proportional to the size of the sequence if data are random. Repetitive data mitigate the
memory consumption, which is usually the case for genomic data, given its repetitive nature
(due to homologous genes, transposons, centromeres, telomeres, among others).

3.1.3 The encoding process

The symbolic sequence is processed from left to right (LR), in order to create a binary
sequence representing the blocks that correspond to low information regions, as depicted in
Fig. 3.1. After that, from right to left (RL), the block sequence is updated only when a block
is marked as a low information region and when the block sequence had the previous index
marked in the LR as a high information block. This corresponds to the maximum of the LR
and RL cases.

Finally, the sequence block information is used to compress the sequence with the high-
order FCM, which is associated to the lower information content region blocks, and the low-
order FCM, that is associated to the higher information content region blocks. In practice,
the high-order FCM is used to compress regions that can be evaluated as low information
content regions by orders lower or equal to its own.

The inverted repeats (IR) particularity of DNA sequence data is explored by most of the
DNA specific compression methods, given the additional modeling performance (specially
in high orders). Therefore, the IR are also explored in the high FCM (in the analysis and
compression stages), where after encoding a symbol the respective sub-sequence IR counters
are also updated in the same model. Specifically, the high FCM is constituted by two complete
chains, the regular chain and the IR chain.

3.1.4 Software availability

The tool (HighFCM), written in C language, with the implementation of the method is
available at http://bioinformatics.ua.pt/software/highfcm, under GPL-2, and can be
applied to any textual sequence data. We have adopted a variable input alphabet, allowing
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Figure 3.1: Block sequence profiles from 100 KBases of the human chromosome 22, processed
in left-to-right mode (LR) and right-to-left mode (RL), and computing the maximum of LR
and RL. Block value 0 indicates a low-order FCM (order-4) whereas 1 indicates a high-order
FCM (order-16). The block size used was 100. Filtering: Blackman window of size 10.

this compressor to run in sequences with alphabets up to 256 symbols. Moreover, it is very
flexible, since it allows a variable multi-thread approach, defined by the user, as well as the
possibility of compressing with hash-tables and decompressing with regular tables (or vice
versa).

3.1.5 Results

The experiments have been performed on a Linux server running Ubuntu with 16 Intel(R)
Xeon(R) CPU E7320 at 2.13 GHz and with 256 GB of RAM. Three datasets have been used:
Escherichia and Salmonella (bacterial) collections from NCBI (ftp://ftp.ncbi.nlm.nih.
gov/genomes/) and a collection of 20 human chromosomes 22 (very repetitive) from the 1000
genomes project (http://www.1000genomes.org/data).

We have estimated only the best high order, as shown in Fig. 3.2, where the compression
ratios using different context orders of the dataset are presented. As depicted, the high
context orders have a fundamental role in the compression, namely in the larger sequence,
since the best compression ratio is achieved with the higher order (supported by the current
implementation).

Relatively to benchmark results, as shown in Table 3.1, in the second and third sequences,
the proposed approach has the best compression ratio, compared to other existing techniques,
while it stands out in the last sequence (eukaryotic genomic collections) with almost 50% re-
duction relatively to DNAEnc3. Moreover, the memory spent and time usage, in all sequences,
seems to be reasonable since the maximum is only slightly higher than 3 GB. General purpose
algorithms (Gzip, Bzip2, lzma) are not capable of handling efficiently this type of sequences,
while specific FASTA tools (MFCompress and Deliminate) seem to be between general pur-
pose and pure reference-free algorithms (DNAEnc3, XM and HighFCM). Although the XM
method had the best compression result in the first sequence (the smallest one), it spent huge
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Figure 3.2: Compression ratios as a function of the variation of the order of the deeper context,
for all dataset sequences (static low order: 4).

amounts of memory and time (both in compression and decompression). Moreover, it was
not able to handle larger sequences, returning a runtime error.

To conclude, we have seen that applying preprocessing analysis techniques before compres-
sion can substantially improve the savings in memory resources, particularly in the decom-
pression process. Moreover, these savings, together with appropriate high-order hash-tables,
yield tremendous improvements in the compression ratio, specially in highly repetitive ge-
nomic sequences.

3.2 Universal genomic sequence compressor

3.2.1 Cache-hash

Although the success on the usage of the algorithmic entropy filter, it provides an asym-
metrical scheme with compression times 3x higher than the time used for decompression. For
storage purposes this is an advantage, since we want to minimize memory and time resources
on the decompression side. However, for analysis, we only rely on the compression part
method. During this work, one of the objectives was to create a genomic compressor that
was able to obtain state-of-the-art results, using the minimal time and memory resources, but
at the same time flexible in the sense of memory optimization for any computer hardware
specification.

Accordingly, we have developed a cache-hash approach that keeps only the last hashed
entries in memory, rendering a flexible and predictable quantification of the memory necessary
to run in any sequence (memory does not blow with the size of the sequence). Depicted in
Fig. 3.3, the cache-hash is able to store each index primarly by exploring precision splitting.
For example, if the context order size can be up to 20 and the hash table has size 24 bits
(specifically the next prime after 224), each hashed entry uses 24 bits for the “INDEX A”
and 16 bits for the “INDEX B”. This entry will be added or updated (only if already exists)
according to the “POSITION” (circular buffer having the “MAXIMUM COLLISIONS” as
size). An advantage is that we only need to store “INDEX B” since the full index can be
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Table 3.1: Compression and decompression benchmarks. The memory (called “Mem” and
expressed in MBytes) has been estimated with valgrind, using massif, while running time (in
seconds) with the time Linux program. It was not possible to obtain two results using XM,
due to a program error. “MFC” stands for MFCompress, while “DELIM” for DELIMINATE.

Dataset Method Mode Compression Decompression
Size (B) Time Mem Time Mem

Collection of Gzip -9 (best) 38,026,737 190 6 8 6
Salmonella Bzip2 -9 (best) 36,707,571 39 15 24 11

Lzma -9 (best) 6,285,003 364 383 7 47
size: 130 MB MFC -3 (best) 5,572,546 184 2,329 126 2,329

DELIM - 11,199,769 15 8 19 8
XM 500 experts 3,480,673 12,413 12,632 13,149 12,632
DNAEnc3 4, 16 1/20, -ir 5,461,468 325 1,144 234 1,144
HighFCM 4, 17 1/100 -ir 5,051,170 679 2,106 243 1,792

Collection of Gzip -9 (best) 85,356,853 399 6 9 6
Escherichia Bzip2 -9 (best) 82,325,477 70 15 50 11

Lzma -9 (best) 14,240,205 2,150 383 12 47
size: 291 MB MFC -3 (best) 10,247,079 920 2,329 651 2,329

DELI - 19,156,665 47 656 45 68
XM 500 experts # # # # #
DNAEnc3 4, 16 1/20, -ir 9,560,314 689 1,378 647 1,378
HighFCM 4, 18 1/100 -ir 8,615,784 1,688 3,166 586 2,105

Collection of Gzip -9 (best) 183,918,347 875 6 18 6
20x human Bzip2 -9 (best) 175,272,623 138 15 112 11
chromosomes Lzma -9 (best) 151,390,802 2,594 107 35 46
G22 MFC -3 (best) 29,983,772 973 2,329 639 2,329

DELIM - 39,775,033 531 711 95 67
size: 664 MB XM 500 experts # # # # #

DNAEnc3 4, 16 1/20, -ir 22,232,663 1,848 1,550 1,324 1,550
HighFCM 4, 32 1/1000 -ir 11,330,125 1,821 3,087 625 1,770

disambiguated by the position where is it inserted or updated. For each block according to
each “POSITION” we have the “INDEX B” (already described) and the “COUNTERS”. The
latter stores the counters with 2 bits precision in a unsigned char (4 symbols and 2 bits per
symbol gives the 8 bits). Each time a counter reaches the value 3, all the counters (for the
4 symbols) are normalized, and hence, divided by two (only integer division). This would be
problematic if the size of the context was small. A context of 20 is considered very large,
resulting in a very sparse table, if represented in that sense. As such, the cache-hash in
fact simulates a structure that can be seen as a middle point between a probabilistic and
dictionary model.

The cache-hash uses a fixed hash function, based on a well known hash family of functions
[107], defined as

ha,b(x) = (ax+ b) mod p (3.1)

where a and b are integers modulo p (p must be a prime) with a 6= 0. Specifically, for the
average hashed entries and DNA nature and according to the lower probability of collisions
(results reported in http://planetmath.org/goodhashtableprimes), we have chosen the
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Figure 3.3: Cache-hash scheme. The “POSITION” indicates the position of the last edited
block relatively to the hash index. Each hash index is shaped by both “INDEX A” and
“INDEX B”. The “COUNTERS” store the counts for each base. These are packed using a 2
bits per base approach that on overflow normalize all by half.

following parameters: a = 786433, b = 196613, p = 68719476735.
For searching in the cache-hash we need to compare each key, formed by “INDEX A” and

“INDEX B”, with the actual key, given by the context. This is a costly task, although needed.
To minimize the processing time, we start the search from the previous position relatively to
the current position, given by “POSITION”, and search from newest to oldest entries. This is
based on the characteristics of the genomic sequences that similar regions tend to be grouped
or near, giving to the model faster searching times.

3.2.2 Extended FCMs

An extended FCM (XFCM) uses the memory from a FCM with the same context-order
size although assigning a probability estimate that differs on the conditioning context that
is assumed to be seen. As such, for a conditioning context it is considered that s has always
been the most probable symbol, and hence the estimator

P (s|x′nn−k+1) =
N(s|x′nn−k+1) + α

N(x′nn−k+1) + α|Θ|
, (3.2)

where x′ is a copy of x that is edited according to

x′n+1 = argmax
∀s∈Θ

P (s|x′nn−k+1). (3.3)

This strategy enables to modify the context assumed to be seen without modifying the main
model memory. Since these models only make sense in low complexity regions, we have
created a way to turn them on or off, saving some time in the computation.

For the purpose, we permit t substitutions on the conditioning context k without being
discarded and, hence, turned off. For example, consider that s0 = AGATATAGAGA and the
past symbol occurrences are according to A = 3, C = 0, G = 0, T = 0, if the symbol that is
being compressed is T (contradicting the probabilistic model), in a regular FCM we now will
have a s1 = GATATAGAGAT . On the other hand, the XFCM will assign a s1 according to
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the most probable outcome (s1 = GATATAGAGAA). As such, the next probabilistic model
will be dependent on the past context assumed to be seen and, hence, it assumes that the
symbol that has been compressed is A.

The XFCM works well when using high orders. This also creates sparse occurrences that
can be efficiently supported by a cache-hash memory and, therefore, from now on we will use
cache-hashes when we use the XFCMs.

The XM algorithm [82] uses a copy-model that gives top compression genomic results
although at expense of huge amounts of memory and time. Our intention with the XFCM
is to approximate the copy-model using low and controllable memory, and to be as fast as
possible.

Figure 3.4: Extended FCM performance, varying the substitution threshold, over mutated
data and using the original as reference. The “a” represents the denominator of the parameter
of the estimator, α = 1/a, while “t” represents the t permitted substitutions without being
discarded. The “XM-50” stands for the XM compression model using 50 experts.

For simplicity, we have generated a synthetic sequence (using XS [108]), and mutated the
sequence with a defined substitution rate. Our intention is to simulate genomic sequences
given several degrees of mutations (and removing the self-redundancy of the sequence) and
compress it using the original as reference. In Fig. 3.4 we show the performance of the XFCMs,
compared with the XM model, using several values for parameter t. It can be seen that for a
high value of t the model adjusts better to the nature of the data.

In Fig. 3.5 it is possible to see that a regular FCM is not able to deal with mutations as
XFCMs and XM does. This was a disadvantage on our past models. Accordingly, when we
mix FCM and XFCM (“FCM-Mix”) we are able to get results even better that XM. Moreover,
we do not have two memory models, since they share the same cache-hash (because they have
the same context order). In fact, for the same statistics we have different predictors that
cooperate according to a mixture.
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Figure 3.5: Extended FCM performance, varying the substitution threshold, over mutated
data and using the original as reference. The “a” represents the denominator of the parameter
of the estimator, α = 1/a, while “t” represents the t permitted substitutions without being
discarded. The “XM-50” stands for the XM compression model using 50 experts. The “FCM-
MIX” uses a XFCM mixed with a FCM (the same as having t = 0) of the same context order.

3.2.3 Mixture of classes

The mixture is based on two model classes, those belonging to what we call reference set,
R, and those in the target set, T . The reference set contains the FCMs or XFCMs responsible
for modeling the conditioning string, i.e., the y of C(x|y), whereas the target set of FCMs
or XFCMs is used to represent x, when required. The C(x|y) represents the number of bits
when compressing object x given y and, thus, it can be seen as conditional compression.

Basically, the probability of the next symbol, xn+1, is given by

P (xn+1) =
∑
k∈R

Pr(xn+1|xnn−k+1) wrk,n +
∑
k∈T

Pt(xn+1|xnn−k+1) wtk,n, (3.4)

where Pr(xn+1|xnn−k+1) and Pt(xn+1|xnn−k+1) are, respectively, the probability assigned to the
next symbol by a model from the reference set and from the target set, and where wrk,n and

wtk,n denote the corresponding weighting factors, with

wrk,n ∝ (wrk,n−1)γPr(xn|ck,n−1) (3.5)

and
wtk,n ∝ (wtk,n−1)γPt(xn|ck,n−1), (3.6)

constrained to ∑
k∈R

wrk,n +
∑
k∈T

wtk,n = 1. (3.7)
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To compute C(x|y), the compression is performed in two phases. In the first phase, the
R class of models accumulates the counts regarding the y object. After the entire y object
was processed, the models are kept frozen and, hence, the second phase starts. At this point,
the x object starts to be compressed using the R models computed during the first phase, in
cooperation with the set of models of the T class, that dynamically accumulate the counts
only from x.

3.2.4 Software availability

The tool (GeCo), written in C language, with the implementation of the method is avail-
able at http://bioinformatics.ua.pt/software/geco, under GPL-2, and can be applied
to any genomic sequence data. GeCo can also be used to sequence analysis, with capability
to determine absolute measures, namely for many distance computations, and local mea-
sures, such as the information content contained in each element, providing a way to quantify
and locate specific genomic events. GeCo can handle individual compression and referential
compression.

3.2.5 Results

The experiments have been performed on a Linux server running Ubuntu with 16 Intel(R)
Xeon(R) CPU E7320 at 2.13 GHz and with 256 GB of RAM.

We have used seven datasets. Three datasets were used from the recent sequenced birds
project [109], namely duck1, peregrine falcon2 and cuckoo3. All of the birds datasets were
not assembled (in contig state), totaling more than 3.2 GB, and thus, they can be seen as
multi-FASTA derived format. On the other hand, the fourth dataset was the assembled
human genome GRC-b38 4 (with 24 sequences/chromosomes) totaling an approximation size
of 2.9 GB. The fifth dataset contains a FASTQ file used in [110] 5, while the sixth can be
achieved through 6. For fair comparison, the datasets have been filtered and transformed into
equivalent files in order to compare only genomic sequences (ACGT), using Goose framework
https://github.com/pratas/goose/. The final dataset, for reference compression, has been
downloaded from NCBI, including the assembled genomic sequences of human, chimpanzee,
gorilla and orangutan (chromosomes 5,11 and 18).

As it can be seen in Table 3.2, Gzip was unable to compress the human genome below 2
bits per base. On the other hand, the specific methods were able to compress with success.
DNACompact [88] used a very small amount of memory but at the expense of more compu-
tational time. The proposed algorithm, known as GeCo, provides a substantial compression
improvement to our previous algorithm (DNAEnc3 [85]) using much less resources. In fact,
GeCo is able to compress the human genome in less than 550 MB using memory equivalent
to a laptop computer and much faster than the previous approaches. Moreover, memory will
not explode with the size of the sequence, unlike DNAEnc3 and XM [82]. XM was unable to
compress two of the birds datasets, due to a processing error.

1ftp://climb.genomics.cn/pub/10.5524/101001_102000/101001/duck.scafSeq.gapFilled.noMito
2ftp://climb.genomics.cn/pub/10.5524/101001_102000/101006/peregrine.FG.2011.0223_sca.bk.fa
3ftp://climb.genomics.cn/pub/10.5524/101001_102000/101009/Cuculus_canorus.fa.gz
4ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/Assembled_chromosomes/seq/
5ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA001/SRA001546/SRX000706/
6ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR494/SRR494099/SRR494099.fastq.gz
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Table 3.3 depicts the benchmarks of two datasets using several tools, namely two state-
of-the-art FASTA dedicated tools: Deliminate [111] and MFCompress [112]. Moreover, two
state-of-the-art FASTQ tools are also used: faz comp [110] and Orcom [113]. As it can
be seen, GeCo provides substantial compression capabilities although at expense of more
computational time. The tool Orcom, an efficient disk-based tool, was not able to address
with much success these files, perhaps because it is more suitable for much larger files.

Table 3.4 includes several reference-based compressed tools, namely GReEn [102], iDo-
Comp [105], and GeCo (proposed). We have also ran GRS [96], however, as similar as in
[103], the sequences have some degree of dissimilarity and therefore the programs are not
suitable for this purposes (GRS even suggests for not to be used in these cases). Moreover,
GDC versions [99, 104] are suitable for large collections, since most of the cases they reported
a compression value above two bits per base. Notwithstanding, we can see that on aver-
age GeCo outperforms the specific reference compressors at the expense of some more time
and memory. In fact, we have only used the first reference mode (-l 11) and, therefore, the
compression factor might increase although at the expense of more space/time resources.

3.3 Conclusions

In this chapter, we have introduced a new compressor based on an algorithmic entropy
filter. The compressor uses multiple models that compete to represent a specific block of
symbols. However, it applies a preprocessing analysis technique, separating the high regions
of complexity from the low. This computation before compression can substantially improve
the savings in memory resources, particularly in the decompression process. Moreover, these
savings, together with appropriate high-order hash-tables, yield tremendous improvements
in the compression ratio, specially in highly repetitive genomic sequences, such as genomic
collections.

Despite the success on the compressor, it provides an asymmetrical compression and
decompression time. For storage purposes, this is an advantage, since we want to minimize
memory and time resources on the decompression side. However, for analysis, we only rely on
the compression part. Accordingly, we have presented a universal genomic compressor that
can be applied successfully to any genomic sequence both for non-referential and referential
compression. For this purpose, we used a mixture of Finite-Context Models of several orders
given by two models classes (reference and target). For high orders we have created a cache-
hash to ensure flexibility given hardware specifications. Moreover, we have introduced the
eXtended Finite-Context Models, which can be seen as very flexible context models (fault
tolerant). Finally, we have shown the very good adaptability of the compressor to multiple
types and characteristics of genomic sequences.
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Table 3.2: Compression benchmarks for state-of-the-art pure genomic compression tools.
Time is in minutes, while maximum memory peak is in MBytes. With the exception of Gzip,
the compressors are symmetric (time/memory compression and decompression are approx-
imately the same. Symbol “*” means that the compressor processed the dataset by parts
because of memory, time or testing purposes.

Dataset Method Mode Compression
Bits p/ base Time (m) Memory (MB)

Gzip -9 (best) 2.2010 26 6
Duck DNACompact default 1.8998 1,656 1,348

DNAEnc3 standard best 1.8676 118 10,668
size: 1.0 GB XM 50 experts 1.8601 1,131 32,879
SEQ XM 150 experts 1.8505 1,384 33,634

GeCo -l 6 1.8570 52 4,800
GeCo -l 7 1.8520 64 5,800

Gzip -9 (best) 2.1789 24 6
Cuckoo DNACompact default 1.9051 1,720 1,348

DNAEnc3 standard best 1.8462 128 11,071
size: 1.1 GB GeCo -l 6 1.8250 59 4,800
SEQ GeCo -l 7 1.8200 70 5,800

Gzip -9 (best) 2.2074 25 6
Peregrine Falcon DNACompact default 1.9038 1,818 1,455

DNAEnc3 standard best 1.8889 120 11,322
size: 1.1 GB GeCo -l 6 1.8790 58 4,800
SEQ GeCo -l 7 1.8740 71 5,800

Gzip -9 (best) 2.1108 70 6
Assembled DNACompact* default 1.7173 4,764 1,348
human genome DNAEnc3* standard best 1.6597 427 4,379
(GRC), DNAEnc3 standard best 1.6216 489 14,839

XM* 50 experts 1.6044 1,170 20,759
size: 2.9 GB XM* 150 experts 1.5832 1,594 22,295
SEQ GeCo -l 6 1.5750 131 4,800

GeCo -l 7 1.5710 148 5,800
GeCo -l 8 1.5690 155 6,400
GeCo -l 9 1.5680 156 7,800
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Table 3.3: Compression benchmarks for state-of-the-art compression tools derived from
FASTQ formats. Time is in minutes, while maximum memory peak in MBytes.

Dataset Method Mode Compression
Bits p/ base Time (m) Memory (MB)

Gzip -9 (best) 2.1927 8 6
fqz comp default 1.8029 1 79
fqz comp -e -b -s5+ 1.7652 1 199

SRR003168 fqz comp -e -b -s6+ 1.7607 1 583
fqz comp -e -b -s7+ 1.7602 2 2,070

361 MB fqz comp -e -b -s8+ 1.7660 2 8,263
(only bases) Orcom -t4 -b256 -p6 -s6 2.1809 1 1,180

Deliminate a 1.7381 1 780
MFCompress -1 1.7413 3 514
MFCompress -2 1.7012 4 514
MFCompress -3 1.6405 6 2,322

FASTQ derived GeCo -l 2 1.5500 17 4,800
GeCo -l 4 1.5491 16 3,900
GeCo -l 6 1.5344 18 4,800
GeCo -l 8 1.5322 20 6,400

Gzip -9 (best) 2.2136 11 6
fqz comp default 1.8064 1 79
fqz comp -e -b -s5+ 1.7714 2 199

SRR494099 fqz comp -e -b -s6+ 1.7496 2 583
fqz comp -e -b -s7+ 1.7390 2 2,070

486 MB fqz comp -e -b -s8+ 1.7418 2 8,263
(only bases) Orcom -t4 -b256 -p6 -s6 1.9495 1 1,252

Deliminate a 1.7995 1 780
MFCompress -1 1.8810 5 514
MFCompress -2 1.8459 5 514
MFCompress -3 1.8344 8 2,322

FASTQ derived GeCo -l 2 1.6670 23 4,800
GeCo -l 4 1.6789 22 3,900
GeCo -l 6 1.6662 25 4,800
GeCo -l 8 1.6856 28 6,400
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Table 3.4: Benchmarks for state-of-the-art genomic reference compressors using several refer-
ences and targets. Time is in minutes, while maximum memory peak in MBytes. The prefix
HS, PT, GG, PA, represent respectively human, chimpanzee, gorilla and orangutan. The
suffix with the numbers represent the chromosome number.

Reference seq Target seq Method Mode Compression
Bits p/ base Time (m) Memory (MB)

HS18 PT18 GReEnc - 1.2224 2 826
77 MB 71 MB iDoComp - 0.2408 2 599
SEQ GeCo -l 11 0.3176 5 3,938

GG18 GReEnc - 0.9800 2 826
72 MB iDoComp - 0.3568 2 599

GeCo -l 11 0.3672 5 3,938
PA18 GReEnc - 1.7056 2 826
71 MB iDoComp - 0.8224 2 599

GeCo -l 11 0.5992 5 3,938

PA11 HS11 GReEnc - 1.8784 4 1,112
119 MB 129 MB iDoComp - 1.2816 3 1,114
SEQ GeCo -l 11 0.6552 8 3,938

PT11 GReEnc - 1.5752 4 1,112
118 MB iDoComp - 1.1352 3 1,114

GeCo -l 11 0.6024 8 3,938
GG11 GReEnc - 1.5704 4 1,112
118 MB iDoComp - 1.2784 3 1,114

GeCo -l 11 0.6752 8 3,938

HS5 PT5 GReEnc - 1.3944 5 1,430
173 MB 167 MB iDoComp - 0.9352 4 1,420
SEQ GeCo -l 11 0.3568 10 3,938

GG5 GReEnc - 1.9040 5 1,430
147 MB iDoComp - 0.9200 4 1,420

GeCo -l 11 0.8632 10 3,938
PA5 GReEnc - 1.4632 5 1,430
165 MB iDoComp - 0.5640 4 1,420

GeCo -l 11 0.6344 11 3,938
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“if we conceive of a being whose
faculties are so sharpened that
he can follow every molecule in
its course, such a being, whose
attributes are as essentially fi-
nite as our own, would be able
to do what is impossible to us.”

J. C. Maxwell

4
Compression-based measures

4.1 Kolmogorov complexity

Consider a binary information source that generates symbols from Θ = {0, 1} and, there-
fore, |Θ| = 2. Also, consider that the information source has already generated the sequence
of n symbols, xn = x1x2 . . . xn, xi ∈ Θ. Now consider a second information source that
generates symbols, Y , from the same alphabet Θ. Moreover, Y has already generated the
sequence of p symbols, yp = y1y2 . . . yp, yj ∈ Θ. For convenience, assume that p ≈ n.

Consider the problem of quantifying the amount of information that an object x has. In
1965, Andrey Kolmogorov defined three approaches for this problem: combinatorial, proba-
bilistic and algorithmic [10]. The last one became the most used nowadays in this field and
is known as the Kolmogorov complexity or algorithmic entropy [13, 14, 10, 12, 114, 115]. For
an historical introduction see Chapter 1.

The Kolmogorov complexity of x, K(x) (sometimes called as the self-information of x), is
given by the length of a shortest binary program that computes x on a universal computer,
such as a universal Turing machine, and halts [5]. The conditional Kolmogorov complexity of
x given y, K(x|y), denotes the length of a shortest binary program that, having y furnished
as an auxiliary input, computes x and halts. For y = λ, where λ denotes an empty object,
K(x|λ) = K(x). The conjoint Kolmogorov complexity of x and y, K(x, y), defines the
length of a shortest binary program that, without auxiliary information to the computation,
computes both x and y (and how to separate them) and halts.

From now on we will disregard correcting terms, that asymptotically become irrelevant,
although for these kind of details see [116]. Accordingly, the three functions in Kolmogorov
complexity are related by the chain rule [116]

K(x, y) = K(x) +K(y|x). (4.1)

Given the symmetric property of the conjoint Kolmogorov complexity, K(x, y) = K(y, x),
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and the chain rule (Eq. 4.1), we can define the algorithmic mutual information, I(x : y), as

I(y : x) = K(x)−K(x|y), (4.2a)

I(x : y) = K(y)−K(y|x), (4.2b)

I(x : y) = K(x) +K(y)−K(x, y), (4.2c)

I(x : y) = K(x, y)−K(x|y)−K(y|x), (4.2d)

2I(x : y) = K(x) +K(y)−K(x|y)−K(y|x), (4.2e)

I(x : y) = I(y : x). (4.2f)

Fig. 4.1 depicts an illustration that is consistent with the formulations mentioned above
and with a certain degree of similarity relatively to the Shannon entropy. For inequalities and
bounds between both see [117].

I(x:y)

K(y)K(x)

K(x,y)

K(y|x)K(x|y)

Figure 4.1: Relation of the algorithmic mutual information, I(x : y), self information, K(x)
and K(y), conditional information, K(x|y) and K(y|x), and conjoint information, K(x, y), of
objects x and y.

An extensive treatment of this topic can be found in [116].

4.1.1 A distance of information

A distance can be seen as a function D in R+
0 , defined on the Cartesian product Ω × Ω

of a non empty set Ω. It is called a metric on Ω if for every x, y, z ∈ Ω respects the identity
property

D(x, y) = 0 ⇐⇒ x = y, (4.3)

the symmetry property

D(x, y) = D(y, x), (4.4)

and triangle inequality

D(x, y) +D(y, z) ≥ D(x, z). (4.5)

4.1.1.1 Information distance

The foundations of the Information Distance (ID) are built upon the Kolmogorov notion
of complexity [10, 118, 116]. Bennett introduced the ID [15], defined as the length of the
shortest binary program for the reference universal prefix Turing machine that, with input x,
computes y, as well as with input y computes x. Formally, it is defined as

ID(x, y) = max{K(x|y),K(y|x)}, (4.6)
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up to an additive logarithmic term. The normalized version of ID(x, y), called the Normalized
Information Distance (NID) [119], is formally defined as

NID(x, y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)}
, (4.7)

and it is universal in the sense that minimizes, up to an additive error term, all normalized
admissible distances in the class considered in [119]. However, the Kolmogorov complexity
is non-computable in the Turing sense [12]. Therefore, an admissible approximation is made
using (lossless) compression algorithms, denoted by C.

4.1.1.2 Normalized Compression Distance

Although the ID (defined in 4.6) is theoretically appealing, it is almost impractical since
it is not computable. Inspired by the ID, a computable metric emerged, the (Conditional)
Compression Distance (CD), defined as

CD(x, y) = max{C(x|y), C(y|x)}, (4.8)

where C(x|y) denotes the number of bits needed by the (lossless) compression program to
represent x given object y as an auxiliary input to the computation, while C(y|x) uses the
same scheme but changing y by x.

However, the conditional information content can not be handled by most of the existing
compressors. Therefore, using the chain rule (4.1), the following (conjoint) CD analog has
been proposed

CD(x, y) = max{C(x, y)− C(x), C(y, x)− C(y)}, (4.9)

up to an additive logarithmic term. The C(x) and C(y) denote, respectively, the number
of bits needed by the (lossless) compression program to represent x and y, and C(x, y) de-
notes the number of bits required to compress the conjoint information content of x and y
(concatenation of x and y) and the information of how to split them.

The CD is related with the algorithmic mutual information content, I(x : y), that can be
obtained by both conditional and/or conjoint compressions, as illustrated in Fig. 4.1. The
normalized version, known as the Normalized Compression Distance (NCD) [19], makes the
role of a quasi-universal distance, which was primarily defined as

NCD(x, y) =
max{C(x, y)− C(x), C(y, x)− C(y)}

max{C(x), C(y)}
, (4.10)

and finally as

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}
, (4.11)

up to an additive logarithmic term.
The NCD generates a non negative value in the interval 0 ≤ NCD(x, y) ≤ 1. Distances

near 1 indicate dissimilarity, while distances near 0 indicate similarity, as it can be seen with
the extreme example of similarity, x = y (equality), where NCD(x, x) = {C(xx)−C(x)}/C(x)
and finally, recalling the idempotency property (see below), NCD(x, x) ≈ 0.

In order to achieve an accurate and admissible NCD, the compressor, besides the need of
having the best possible model to represent the nature of the data, needs to be normal. A
compressor is normal if it satisfies the following conditions:
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1. Idempotency: C(xx) = C(x) and C(λ) = 0, where λ represents the empty object,

2. Monotonicity: C(xy) ≥ C(x),

3. Symmetry: C(xy) = C(yx),

4. Distributivity: C(xy) + C(z) ≤ C(xz) + C(yz),

up to an additive O(log n) term, with n the maximal length of an element involved in the
(in)equality concerned. For common pitfalls in compressor settings to calculate the NCD see
[120], while for a generic framework to compute the NCD see http://complearn.org/.

4.2 Global measures

There are many methods to estimate information or distance between digital objects, al-
though when we rely on sequences with low cardinality alphabets, such as genomic sequences,
the most popular are Kullback-Leibler divergence [121], the Hamming distance[122], Leven-
shtein distance [123] and compression-based metrics (such as the NCD).

The Kullback-Leibler divergence measures the dissimilarity between two probability distri-
butions, however is non-symmetric, and, therefore, is not a distance. The Hamming distance
can only be applied when the sequences are aligned with precision and have the same size,
requirements hardly found in large genomic sequences. The Levenshtein distance explores
transformations between the sequences, namely insertions, deletions and substitutions. Al-
though quite successful, its computational time is prohibitive for large sequences (the fastest
known implementation runs with time complexity O(n2/ log n)).

Compression-based approaches emerged as a natural way for measuring complexity, be-
cause, together with the appropriate decoder, the bitstream produced by a lossless compres-
sion algorithm allows the reconstruction of the original data and, therefore, can be seen as
an upper bound of the algorithmic entropy of the sequence. Several approaches have been
proposed (e.g., [124, 19, 125, 126, 127]) showing very good adaptability to diverse problems,
such as in clustering and classification.

A compression-based distance computes the distance between two (digital) objects using
the number of bits needed to describe one of them when a description of the other is available,
as well as the number of bits required to describe each of them.

We have introduced the Kolmogorov complexity and its most popular related distance
(NCD). In the following subsection we introduce the Normalized Conditional Compression
Distance, that can be seen as a direct computation of the NID (defined in 4.7). After, we
introduce the Normalized Relative Compression.

4.2.1 Normalized Conditional Compression Distance

A direct substitution of K by C in (4.7) would require the availability of compressors that
are able to produce conditional compression, i.e., C(x|y) and C(y|x). Most compressors do
not have this functionality and, therefore, the NCD avoids it by using suitable manipulations
of the NID (4.7) [19]. Instead of C(x|y) and C(y|x), a term corresponding to the conjoint
compression of x and y, C(x, y), was preferred. Usually, this C(x, y) term is interpreted as
the compression of the concatenation of x and y, but, in fact, it could be any other form of
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combination between x and y. Concatenation is often used because it is easy to obtain, but
in fact its use may hamper the efficiency of the measure [120].

To overcome several limitations, we propose to use the direct form of conditional compres-
sion. Independently, the same strategy was used in image distortion studies [128]. According,
the following expresses the Normalized Conditional Compression Distance (NCCD),

NCCD(x, y) =
max{C(x|y), C(y|x)}

max{C(x), C(y)}
, (4.12)

where “Conditional” means that the compressor C needs to be able to perform conditional
compression as described earlier. In fact, knowing the individual algorithmic complexities of
objects x and y provides a way to compute only one conditional complexity, according to

NCCD(x, y) =


C(x|y)

C(x)
, C(x) ≥ C(y)

C(y|x)

C(y)
, C(x) < C(y)

. (4.13)

This strategy enables the computation process of C(x|y) to be faster than C(x, y), mainly
because the conditional method only needs to load models of y (much faster than compress-
ing) while the conjoint needs to compress also y. In a big data scenario, involving many
computations, this strategy has a deep impact.

4.2.1.1 Parameterization, assessment and concerns

We have used a fixed setup of five reference models and three target models mixed using a
set of weights adapted by a forgetting mechanism with γ = 0.9 (see subsection 2.2.1.2). From
our experience, we have verified that γ = 0.99 maximizes the compression gain for bacterial
genomes, while for eukaryotic genomes γ = 0.9 seems to be the best choice. The reference
models context orders used were: 4, 6, 8, 10 and 15. The first four assumed a Laplacian
estimator (α = 1), whereas the last used α = 0.001. Usually, a small α is only important
in high orders (above ten). Moreover, the high order used (15) ensures C(xx) ≈ C(x), as
Fig. 4.2 depicts.

The lossy approach, assuming always the best FCM, shows that up to 32k size the curve
is due to the adaptation of the method when not enough data is present, inferring that a
very small sequence size may harm the identity property, as well as in very big sequence
sizes. Nevertheless, the last may be overcome using higher FCM context orders, sacrificing
computational memory.

On the other hand, the three target model context orders used were: 4, 10 and 15, where
the first two used α = 1 and the last one α = 0.05. In the last two models the inverted
repeats technique has been used. The maximum counters used in each reference models were,
respectively, 29, 212 and 212. This acts also as a forgetting mechanism, since every counter
overflow is divided by two, which after some counter updating makes the older counters losing
importance. More details about FCM parameterization can be found in [91, 84].

The DNA sequences are products of sequencing techniques, which have a sequencing
quality, coverage and assembly technique associated [129]. Although these external factors
intuitively may constitute a problem, we believe that generally they are dissipated and over-
come by the compressor and metric. For a study on noise resistance, using the NCD, see
[130].
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Figure 4.2: NCCD performance, on uniform stochastic DNA (synthetic) sequences with cus-
tom sizes, on testing several high orders.

Nevertheless, since we use a metric based on conditionals, we have assessed the impact of
uniform distributed mutations, namely substitutions, insertions and deletions, over 50 MB of
real (first 50 MB of chromosome 1 from H. sapiens) and synthetic (simulated using XS from
Exon [131]) genomic data, as it can be seen in Fig. 4.3.

Specifically, substitutions seem to be slightly the most difficult mutation type to be han-
dled by the compressor and, hence, the NCCD. Nevertheless, it is clear that the method is
still reporting reasonable distances for sequences with 10 % of mutations, both in real and
synthetic sequences.

Finally, we have assessed the importance of sequence completeness using progressive miss-
ing data, as Fig. 4.4 depicts. As expected, it is characterized by an approximately linear
behavior. However, there is a gap between real and synthetic sequences, specially when there
are lower missing rates. This is due to the nature of the sequences, namely self-similarity,
since the beginning of the real sequence is composed by a telomeric zone (highly-repetitive).
On the other hand, the synthetic sequence does not have a precise zero NCCD value when the
missing rate is zero, because it has been simulated with several approximated repeating zones.
Once more, this concern may be overcome with high FCM orders, using more computational
memory.

4.2.1.2 Materials

The experiments were performed in a Linux server running Ubuntu with 16 Intel(R)
Xeon(R) CPU E7320 at 2.13 GHz and with 256 GB of RAM. The NCCD values have been
computed using an implementation in C programming language of the method referred in
Section 3.2 with the parameters described in Section 4.2.1.1. The software application is freely
available for non-commercial usage at http://bioinformatics.ua.pt/software/nccd. The
evolutionary tree has been processed using T-REX [132], TreeDyn [133] web servers and
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Figure 4.3: NCCD performance on synthetic and real 50 Mb of genomic mutated data.

further customized.

The data set is composed by 15 genomes, described in Table 4.1, downloaded from NCBI
(ftp://ftp.ncbi.nlm.nih.gov/genomes).

4.2.1.3 Results

Using the materials described in Section 4.2.1.2, we have conducted several NCCD mea-
sures in order to unveil important relations of data, namely chromosomal and genomic sim-
ilarities, where the first is further subdivided in the relations between chromosomes of the
same species (intra-genomics) and across different species (inter-genomics).

The NCCD has been used to measure the distance between chromosomes of the same
species, namely in H. sapiens, P. troglodytes, G. gorilla, P. abelii, M. musculus, R. norvegicus,
G. gallus and M. gallopavo genomes, respectively described in Fig 4.5. At glance, the approach
all with all highlights the identity property, since the diagonals have distances near zero.
However, looking into the self-relations of chromosomes Y in M. musculus and chromosome
32 in G. gallus, the distance seems away from zero (not preserving the identity). Nevertheless,
according to [120], this is due to the size of the sequence and/or high self-similarity (small
complexity). In fact, we have verified that M. musculus chromosome Y has in fact a very
high self-similarity (99.9% according to [134]) and G. gallus chromosome 32 has slightly more
than 1000 bases (very small). These are particular characteristics of the data for calculating
the NCCD.

Biologically, as expected in both species, the mitochondria sequence (M) is very different
from the rest of the sequences [135], confirmed by the largest NCCD values. On the other
hand, primates chromosome X has a small distance relatively to several large chromosomes,
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Figure 4.4: NCCD performance on progressive block missing data in real and synthetic se-
quences.

while M. musculus has a small distance relatively to average size and several small chro-
mosomes. Moreover, overall and according to [136], M. musculus seems to have a curious
different pattern compared to R. norvegicus, a pattern that is normally opposite to common
species such as those from primates and turkey-chicken relations.

Although the existence of other relevant lower NCCD values that express chromosome
similarity, the NCCD between X and Y, in the H. sapiens genome, stands immediately out,
while in the P. troglodytes and M. musculus genomes can be seen with much higher distances.
According to a recent study [137], this insight is probably due to the genetic information
exchange between X and Y chromosomes in the recombination process.

More than a century ago, Huxley [138] and Darwin [139] launched the hypothesis of a
common ancestor between humans and great apes, while modern molecular studies confirmed
and extended those predictions. Using an automatized approach, that can be used on every
chromosome in every sequenced species we quantify the distance, as depicted by the intensities
in Fig. 4.6.

Accordingly, the approach all with all in primates shows a direct correlation (diagonal)
with respect to the same chromosomal number/identification, except for humans on chromo-
some 2 with 2A and 2B. This is justified by a hypothetical chromosomal fusion that made
human evolve from previous ancestors [140]. Moreover, we found a high distance, compared to
the other distances in the diagonal, between orangutan chromosome 1 and human-chimpanzee-
gorilla chromosomes 1.

Supported by the results from this section, we can conclude that the H. sapiens Y chro-
mosome has a large distance comparing to the P. troglodytes Y chromosome, which agrees
with a surprising recent study [137]. Consequently, there is an increasing distance relatively
to the deviation of the primates species between chromosome X and human chromosome Y.

Although the existence of other relevant unveiled lower NCCD values that express chro-
mosome similarity, mainly by duplicated segments that have been shown to be associated
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Table 4.1: Data set table. The number of expected chromosome pairs for each species is
represented by ’Exp’, while ’Missing’ denotes a non-existent sequence and Mb represents the
approximated size in Mega bases.

Organism Build Exp Missing Mb

Homo sapiens 37.p10 23 - 2,861
Pan troglodytes 2.1.4 24 - 2,756
Gorilla gorilla r100 24 Y 2,719

Pongo abelii 1.3 24 Y 3,028
Macaca mulatta 2.1 21 Y 2,725

Callithrix jacchus 1.2 23 M 2,664
Mus musculus 38.p1 20 - 2,716

Rattus norvegicus 5.1 21 Y 2,443
Bos taurus 6.1 30 - 2,679

Equus caballus 3.1 32 Y 2,335
Canis familiaris 3.1 39 Y 2,318

Gallus gallus r102 39 29-31, 33-38 999
Danio rerio 5.1 25 - 1,355

Meleagris gallopavo 1.1 40 31-39 917
Felis catus r100 19 Y 2,353

with rapid gene innovation and chromosomal rearrangement in primates genomes[141], there
is a linkage present in all primates, namely in chromosomes 13 and 14. More relevant, there is
a very low distance between G. gorilla and H. sapiens 5 and 17 chromosomes [142], justified
by a translocation of part of chromosome 5 to 17 in the G. gorilla genome, that can only be
detected in homologous species.

Relatively to M. musculus, there is an obvious similarity with R. norvegicus, although
smaller than P. maniculatus / M. norvegicus correlations [136]. When compared with hu-
man and chimpanzee, no important similarities are found (in a genomic level), specially in
human/chimpanzee chromosomes 19 and 22. Moreover, it seems that only the mithocondrial
sequences achieve some level of similarity. Nevertheless, M. musculus (MM) and R. norvegi-
cus (RN) diagonal is very dissipated for such a low distance depicted in the mithocondrial
sequence. In fact, only chromosome (chr) 18 and X seem to be bias homologous (in the
diagonal). Subsequent analysis show strong similarity between MM chr2 / RN chr3, MM
chr9 / RN chr8 and MM chr11 / RN chr10, and considerable similarity between MM chr4 /
RN chr5, MM chr6 / RN chr4, MM chr12 / RN chr6 and MM chr14 / RN chr15, without
detracting other important patterns.

The last map demonstrates that most chicken (G. gallus, GG) chromosomes appear to
correspond to single orthologous turkey (M. gallopavo, MG) chromosomes with a few excep-
tions, namely GG chr2 shares high similarity with MG chr3 and MG chr6, while GG chr4 is
similar to MG chr4 and MG chr9. These phenomenons have been proposed as centric fission
events on turkey lineage [143]. Moreover, MG chr8 and chr2 are, respectively, homologous to
GG chr6 and chr3. From MG chr10 with GG chr8 orthologous, a straight linear homology
(diagonal) is present, with exception for GG chr32 and GG/MG chrW. As explained in the
previous subsection GG chr32 is very small and GG/MG chrW are have high self-repetitive
nature [144].
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Figure 4.5: Intra-genomics chromosomal NCCD heatmaps for H. sapiens, P. troglodytes, G.
gorilla, P. abelii, M. musculus, R. norvegicus, G. gallus and M. gallopavo. The heatmap scale
quantifies the NCCD distance.

In Fig. 4.7 are presented the chromosomal distances of P. troglodytes, G. gorilla and P.
abelii (chromosomes 2A and 2B have been concatenated) according to H. sapiens chromo-
somes order, while above are the differences of sizes according to H. sapiens. At glance, P.
troglodytes has the lowest distance relatively to H. sapiens [145], and after G. gorilla [146] and
P. abelii [147], respectively (for most of the chromosomes). Specifically, G. gorilla chromo-
somes 5 and 17 have large distances because of the previous mentioned translocation, while P.
abelii seems to have a very different chromosome 1 besides other relevant dissimilarities. Mi-
tochondria sequences, as expected, show that P. troglodytes is the nearest H. sapiens species,
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Figure 4.6: Inter-genomics chromosomal NCCD heatmaps between several species, namely
H. sapiens and P. troglodytes, H. sapiens and G. gorilla, H. sapiens and P. abelii, G. gorilla
and P. abelii, M. musculus and H. sapiens, M. musculus and P. troglodytes, M. musculus and
R. norvegicus, M. gallopavo and G. gallus.

followed by the G. gorilla and, lastly, by P. abelii, although this is further explored in the
next section.

Finally, we have detected G. gorilla chromosomes 4, 12 and 18 with distances lower to H.
sapiens than to the respective P. troglodytes chromosomes, while G. gorilla chromosomes 5
and 17 have higher distances than P. abelii chromosomes. Measuring these distances may also
be important in the sense that metagenomics high compression gains can be achieved with
reference-based compression, both in chromosomes and genomes, using the lowest distance
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Figure 4.7: Homo sapiens, Pan troglodytes and Pongo abelii related chromosomal normalized
conditional compression distance values.

inter-genomic sequences.

Further analysis of the computation of the NCCD on related objects, such as chromosomes
or entire genomes, can led to the development of evolutionary trees. Accordingly, we used
chromosomes 18 of human, chimpanzee, gorilla, orangutan and rhesus to give an example.
As it can be seen in Fig. 4.8, the NCCD values in line with the two most recent evolutionary
theories [148, 149]. The computation of the tree has been made with the whole chromosome
sequences in a common laptop in about 30 minutes. Moreover, there is no limitation to the
input, since it can deal with whole genomes.

4.2.2 Normalized Relative Compression

The relative compression can be seen as the number of bits used to represent an object x
having exclusively the information from object y, and hence, is defined as C(x‖y). As such,
we are interested in data compressors that comply with relations

1. C(x‖y) ≈ 0 iff y contains x;

2. C(x‖y) ≈ |x| iff C(x|y) ≈ C(x),

based on which we define the Normalized Relative Compression on x given exclusively y as

NRC(x, y) =
C(x‖y)

|x|
. (4.14)

Note that in the usual conditional compression, denoted by C(x|y), we should have C(x|y) ≈
C(x) iff K(x|y) ≈ K(x) (i.e., when x and y are totally unrelated), and K(x|y) ≈ |x| iff
C(x|y) ≈ |x| (i.e., when x and y are totally unrelated and x is incompressible).

We call C(x‖y) a relative compressor, because it has y and only y available to represent x.
In other words, this compressor cannot use self-similarities that might occur in x. A relative
compressor starts by building an appropriate model of y (in the limit, it can retain the whole
y). Then, it represents x using only the information from the model of y. Hence, in essence
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Figure 4.8: Distance Tree given by the Normalized Conditional Compression Distance on chro-
mosome 18 sequences of human, chimpanzee, gorilla, orangutan and rhesus species. Distances
have been computed relatively to human. The NCCD has been computed using GeCo with
mode 14 for conditional compression, namely C(x|y) and C(y|x), and mode 9 for individual
compression, namely C(x) and C(y).

it captures the notion of model-freezing discussed in Section 3.2. It differs from Section 3.2
only in the part that it does not use target models (class T ), and rather only reference models
(class R).

4.2.2.1 Is the NRC a distance?

For the NRC to be considered a distance it needs to respect all the properties formulated
in Section 4.1.1.2, namely identity, symmetry and triangle inequality, as well as being always
non-negative. Since |x| ≥ C(x‖y) the quotient between the terms in the NRC is always
0 < NRC ≤ 1. The identity property is also straightforward to see, since C(x‖x) must be
approximately zero, and therefore C(x‖x)/|x| ≈ 0.

For the other two properties we give the respective proofs considering three random strings
x, y, z where y ∈ x, z ∈ x (x is given by the concatenation of y and z), z 6= y (no information
is shared between y and z) and |y| > |z|. These conditions can be better understood using
Fig. 4.9.

Figure 4.9: Illustration with three random objects x, y, z, where x is made by the concatena-
tion of object y and z. There is no information shared between y and z.

Lemma 4.2.1. The Normalized Relative Compression is not symmetric and, thus NRC(x, y) 6=
NRC(y, x).
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Proof. Considering that it is symmetric, NRC(x, y) = NRC(y, x), on substituting we get
C(x‖y)/|x| = C(y‖x)/|y|. Accordingly, C(y‖x) ≈ 0, and hence, NRC(y, x) ≈ 0. On the
other hand, C(x‖y) ≈ |z|, and hence, NRC(x, y) ≈ |z|/|x|. Therefore, by r.a.a., the non
symmetric property is true.

Lemma 4.2.2. The Normalized Relative Compression does not respect triangle inequality,
NRC(x, y) +NRC(y, z) � NRC(x, z).

Proof. Considering that it respects the triangle inequality and, henceNRC(x, y)+NRC(y, z) ≥
NRC(x, z), when substituting we get C(x‖y)/|x| + C(y‖z)/|y| ≥ C(x‖z)/|x|. Accordingly,
C(x‖y) ≈ |z|, and hence, NRC(x, y) ≈ |z|/|x|. On the other hand, C(y‖z) ≈ 0, and hence,
NRC(y, z) ≈ 0. Finally, C(x‖z) ≈ |y|, so, NRC(y, z) ≈ |y|/|x|. Substituting, we get
|z|/|x| ≥ |y|/|x|. Since |y| > |z|, this is false. Therefore, by r.a.a., the NRC does not respect
the triangle inequality property.

Therefore, given the negative proofs on the properties to be considered a distance, the
NRC can not be considered a distance.

4.2.2.2 Advantages

The main advantage of the NRC is the absence of a self-similarity term, C(x). Accordingly,
the computation time and resources needed to compute the NRC are much lesser than to
compute the NCCD. In fact, the NRC can be interpreted as the fraction of an object that
cannot be represented by the other object (instead of a ratio of information quantities), which
may be better correlated with the human notion of proximity. Contrarily to the NCCD,
which depends on the ratio of compression terms, with implications on the convergence of
the approximations, the NRC depends only on one term. Moreover, the setting up of the
parameters for the relative compressor are much simpler, namely because it is only needed
to set the parameters from the models according to the reference, R. Furthermore, this is
also related with less memory usage, namely because we do not need to create models to the
target, T . Finally, unlike the NCCD, the NRC behaves in a predictable way, where better
compression gains cannot have a negative impact on quantification. This because, the NCCD
uses a ratio between two approximation functions [150], while the NRC uses only one.

4.2.2.3 Method and tool

We have built a compressor based on a mixture of FCMs and XFCMs of only one model
class, specifically belonging to the reference set R, and respecting the conditions of a relative
compressor enumerated above. The compressor is able to process n objects (x, y, ..., z) using
one as reference.

As indicated before, the computation of C(x‖y) is faster than C(x|y). Nevertheless, we
also use multi-threading to compute each object (having the reference frozen in memory). This
enables a much faster computation. We have created a tool with the described method to
show some experimental results. The tool (smash-global), written in C language, is available
at https://github.com/pratas/smash-global/, under GPL-2, and can be applied to any
FASTA and multi-FASTA files. The tool, completely unsupervised, is being able to compute
n sequences and automatically constructing a heatmap depicting the metrics in an image.
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4.2.2.4 Experimental results

The NRC can not answer specific questions relatively to distances, since it is non symmet-
ric and does not obey the triangular inequality, although it can infer insights into dissimilarity
or completeness, for example those related to genomic proximity. We have computed the NRC
using an avian and a primate dataset.

From the Avian Phylogenomics Project 1 we have downloaded several RNA sequences,
namely representing the following species: Rifleman, Peking duck, Chuck will’s widow, Bar
tailed trogon, Emperor penguin, Grey crowned crane, Rhinoceros hornbill, Anna’s humming-
bird, Red legged seriema, Turkey vulture, Chimney swift, Killdeer, Macqueen’s bustard,
Speckled mousebird, Pigeon, American crow, Common cuckoo, Little egret, Sunbittern, Pere-
grine falcon, Northern fulmar, Red throated loon, Medium ground finch, White tailed eagle,
Bald eagle, Cuckoo roller, Golden collared manakin, Budgerigar, Carmine bee eater, Brown
mesite, Kea, Crested ibis, Hoatzin, Dalmatian pelican, White tailed tropicbird, Great cor-
morant, American flamingo, Downy woodpecker, Great crested grebe, Yellow thoated sand-
grouse, Adelie penguin, Common ostrich, Zebra finch, Red crested turaco, White throated
tinamou, Barn owl.

We have computed the NRC in the RNA sequences of the mentioned species, where the
result is depicted in Fig. 4.10. As it can be seen, there are several species that have a low
NRC value, namely the bald eagle / white tailed eagle, adelie penguin / emperor penguin.
These are species that are known to be genetically close [109]. On the other hand, white
throated thinamus, duck and ostrich seem to give lower compression capabilities when they
are used as a reference, a characteristic that agrees with the possible age of the species [109].
There are several other patterns, however, we leave them to future analysis.

In Fig. 4.11 we present a heatmap corresponding to the NRC between the human and two
primates (chimpanzee and gorilla). Moreover, we have also included the unlocalized, unplaced
and mitochondrial sequences. Accordingly, we easily identify the same characteristics present
in the NCCD heatmap. Besides, there are new evidences that have been hidden by the derived
information distance, namely a high degree of homology from chromosome 19 relatively to
others which conforms with a study showing that the largest number of small repeats is
in chromosome 19 [151]. Moreover, we are able to see several correlations between extra
sequence chromosomes (unplaced and unlocalized) and many chromosomes. The existence of
extra sequences results from problems in assembling (that did not identify their chromosome
origins). Nevertheless, the measure is able to bypass these problems. In spite of having more
associated patterns we emphasize the high representability of mitochondrial DNA (mtDNA)
given exclusively human chromosome 5. It is believed that sequences provided by mtDNA
existe in chromosomes, although not concentrated in any specific chromosome [152], unlike
the results reported by the measure. This point is extended to relative complexity profiles,
addressed in Section 4.3.3 and in Fig. 4.19, showing where these low complexities occur in
the mtDNA.

4.3 Local measures

This section is about looking at sequences or, more precisely, at graphical representations
of sequences. In other words, it is about the summarization of data bearing in mind graphical

1http://avian.genomics.cn/en/jsp/database.shtml
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Figure 4.10: Inter-species RNA sequences heatmaps reporting Normalized Relative Compres-
sion values for 45 bird species according to [109].

representations, a problem related to some of the current challenges in large-scale computing
[153].

The idea is old, as the sayings “a picture is worth a thousand words” and the century-
old advertisement title “one look is worth a thousand words” show. In fact, the association
of graphical information to sequences, namely DNA sequences, has been pursued for long.
Sequence logos [154] and the chaos game display (CGR) [155] are two well-known examples.
Most often, the underlying motivation is to look for and to display information related to the
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Figure 4.11: Inter-species chromosomal heatmaps reporting Normalized Relative Compression
(NRC) values for H. sapiens (HS), P. troglodytes (PT) and G. gorilla (GG). The “UL”, “UP”
and “MT” represent respectively, unlocalized, unplaced and mitochondrial sequences. The
higher the similarity, the lower the NRC. The tool (smash-global) ran with mode 25, using
four reference models in a mixture.

degree of randomness of the sequences, hoping to find meaningful structure. The degree of
randomness is intimately related with the complexity, predictability, compressibility, repeata-
bility and, ultimately, with the information theoretic notion of entropy of a sequence. Other
methods, use the graphical paradigm for presenting several parameters that can be obtained
from a DNA sequence. For example, the Genome Atlas of Jensen et al. [156] allows the visual-
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ization of information related to repeats, nucleotide composition, and structural parameters,
in microbial genomes (the genome of E. coli is analyzed in [157] using this approach).

Some methods provide visual information of global properties of the DNA sequences.
For example, CGR uses the distribution of points in an image to express the frequency of
the oligonucleotides that compose the sequence [158]. From these CGR images, other global
representations can be derived, such as genomic signatures [159, 160] or entropic profiles [161].

Originally [161], entropic profiles were estimated using global histograms of the oligonu-
cleotide frequencies, calculated using CGR images. Later, they have been generalized by
Vinga et al. [162] in order to calculate and visualize local entropic information. Other ap-
proaches for estimating the randomness along the sequence have also been proposed. For
example, Crochemore et al. [163] used the number of different oligonucleotides that are found
in a window of predefined size for estimating the entropy. Troyanskaya et al. [164] pro-
posed the linguistic complexity, also calculated on a sliding window, as a measure of the local
complexity of the DNA sequence.

Both the global and the local estimates of the randomness of a sequence provide useful
information and both have shortcomings. The global estimates do not show how the char-
acteristics change along the sequence and the local estimates fail to take into consideration
the global properties of the sequence. This last drawback was addressed by Clift et al. [165]
using the concept of sequence landscape. Using directed acyclic word graphs, they were able
to construct plots displaying the number of times that oligonucleotides from the target se-
quence occur in a given source sequence. If the target and source sequences coincide, then
the landscape provides information about self-similarities (repeats) of the target sequence.

The sequence landscapes of Clift et al. [165] seem to have been the first attempt of
displaying local information while taking into account the global structure of the sequence.
This idea was also pursed by Allison et al. [166], using a model that considers a sequence as
a mixture of regions with little structure and regions that are approximate repeats. Based on
this statistical model, they have produced information sequences, which quantify the amount
of surprise of having a given base at a given position, knowing the remaining left (or right)
part of the sequence. When plotted, these information sequences provide a quick overview of
certain properties of the original symbolic sequence, allowing for example to easily identify
zones of rich repetitive content [167, 82, 168].

The interest of complexity measures for DNA sequence analysis has been explored by
several researchers, such as in [169, 170, 171]. The key measure is again the Kolmogorov com-
plexity. As mentioned, the Kolmogorov complexity measure is non-computable and is usu-
ally approximated by other computable measures, such as, Lempel-Ziv complexity measures
[172, 169], linguistic complexity measures [173], or compression-based complexity measures
[73, 168, 85].

The information sequences of Allison et al. [166] are intimately related to data com-
pression. The importance of data compression for pattern discovery in the context of DNA
sequences was already recognized by Grumbach et al. [69] and, since then, it has been rein-
forced by others (e.g. [174, 167]). In fact, the existence of regularities in a sequence renders it
algorithmically compressible. The algorithmic information content of a sequence is the size,
in bits, of the shortest accurate description of the sequence.

In this section, we further explore the idea of information sequences. We take im-
portant steps forward, in what concerns the notion and foundations of complexity pro-
files, conditional complexity profiles and conditional exclusive profiles. Moreover, we give
several applications for the different cases explored with specific developed computational
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tools written in C/C++ language and available at http://http://bioinformatics.ua.pt/
software/dna-at-glance/ and http://http://bioinformatics.ua.pt/software/geco/

(introduced in Chapter 3). The tools are used in different cases exploring the S. pombe
genome (uid 127) and H. sapiens genome, both obtained from the NCBI (ftp://ftp.ncbi.
nlm.nih.gov/genomes/).

4.3.1 Complexity profiles

A complexity profile can be seen as a numerical sequence
−→
N (xi) containing values that

express the predictability of each element from x given a compression function C(x). As such,
we define

−→
N (xi) = C(xi|xi−1

1 ). (4.15)

Moreover, C(x) has a causal effect, which means that it is assumed that for
−→
N (xi), we have to

previously access the elements
−→
N (x1),

−→
N (x...),

−→
N (xi) by order. Nevertheless, there might exist

some classes of compression functions where the access might not need to respect causality
or order, namely those more simplistic but with lower description capabilities.

The number of bits needed to describe the object x, can be computed as the sum of the
number of bits of each xi, namely

C(x) =

|x|∑
i=1

−→
N (xi), (4.16)

where as i increases, the compressor is asymptotically able to better predict the following
outcomes, because it creates an internal model of the data. In other words, C is learning.

However, for a detection application, such as in motif searching, its computation might
have some problems, namely because only after seeing the second time some repetitive region,

C is able to describe it in
−→
N (x). Therefore, if we are searching for similar regions we might

need to proceed in a more specific way, such as in computing the minimum of each element

after computing
−→
N (x) and

←−
N (x), where

←−
N (x|x|−i+1) = C(x|x|−i+1|x

|x|−i+2
|x| ), (4.17)

assuming that it respects the order i = 1, 2, ..., |x|. Both (4.15) and (4.17) can be com-
puted parallel. However, only after having their complete numerical sequences we are able to
compute

−→←−
N (xi) = min

{−→
N (xi),

←−
N (xi)

}
, (4.18)

where for a global measure we have

−→←−
N (x) =

|x|∑
i=1

−→←−
N (xi). (4.19)

Accordingly, in terms of complexity, the function
−→←−
N (x) describes a lower bound given by the

model when assuming that there is an oracle giving information from future outcomes.
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4.3.1.1 Applications

According to the defined compressor, we have extracted the complexity profiles,
−→←−
N (x),

for each of the three S. pombe chromosomes. These results are presented in Fig. 4.12. As it
can be seen, there are locations of low information content which are clearly associated with
DNA regions of biological interest, such as telomeric and centromere regions. Therefore, we
have marked with letters A, C, D, F, G and I the telomeric regions and with letters B, E and
H the centromere regions. Yet, these marked letters clearly identifies what is the long arm
(q) and short arm (p) on each chromosome.

Figure 4.12: Complexity profiles for chromosome 1 (first row), chromosome 2 (second row)
and chromosome 3 (third row) of S. pombe. The information content was processed in both
directions, combined using the minimum value of each direction, and low-pass filtered using
and a Blackman window of 1001 bases.

In some species, the centromeres are regions hard to find, due to the size of the sequence
and nature. However, as Wood et al. [175] investigated, the S. pombe centromeres are large
comparing to the budding yeast S. cerevisiae. In this way, we could easily identify them with
complexity profiles (B, E and H). Moreover, as it can be seen in Fig. 4.13, the sizes of the
centromeric regions vary inversely with the length of the chromosomes.

Figure 4.13: Complexity profiles of the centromeres from chromosome 1 (C1), 2 (C2) and 3
(C3). The information content was processed in both directions, combined using the minimum
value of each direction, and low-pass filtered using a Blackman window of 1001 bases.
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According to Wood et al. [175], possibly more extended centromeric regions are required
for proper mitotic and meitotic behavior when the chromosome arms are shorter.

4.3.2 Conditional complexity profiles

A conditional complexity profile is a complexity profile that explores the existence of extra
information, namely the information from an object y, where we define

−→
N (xi|y) = C(xi|xi−1

1 , y). (4.20)

For a global measure, we sum for all positions, i. e., we compute

C(x|y) =

|x|∑
i=1

−→
N (xi|y), (4.21)

According to the previous definitions, the NCCD can be computed symbol by symbol,
in other words, we can decompose it to element complexity. As such, if we know that the
complexity of x is higher or lower than of y, substituting on (4.13), we are able to write the
NCCD as

NCCD(x, y) =



∑|x|
i=1

−→
N (xi|y)∑|x|

i=1

−→
N (xi)

, C(x) ≥ C(y)∑|y|
i=1

−→
N (yi|x)∑|y|

i=1

−→
N (yi)

, C(x) < C(y)

(4.22)

In the same way, as in the complexity profiles, for a detection application, such as in motif

search, we compute the minimum of each element after computing
−→
N (x|y) and

←−
N (x|y), where

←−
N (x|x|−i+1|y) = C(x|x|−i+1|x

|x|−i+2
|x| , y), (4.23)

assuming that it respects the order i = 1, 2, ..., |x|. Both
−→
N (x|y) and

←−
N (x|y) can be computed

in parallel. However, only after having their complete numerical sequences we are able to
compute

−→←−
N (xi|y) = min{

−→
N (xi|y),

←−
N (xi|y)} (4.24)

where for a global measure we have

−→←−
N (x|y) =

|x|∑
i=1

−→←−
N (xi|y). (4.25)

In terms of complexity, the function
−→←−
C (x|y) describes a lower bound given by the model,

furnishing extra auxiliary information from y, when assuming that there is an oracle giving
information from future outcomes from x.
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4.3.2.1 Applications

Based on the conditional complexity profiles, we made an inter-chromosomal study of the

S. pombe genome. We have computed
−→←−
N (xi|y) using chromosome 3 as x and chromosome 1 as

y. Likewise, we have computed the same process, although using chromosome 2 as y instead
of chromosome 1. Both profiles are represented in Fig. 4.14, as well as the complexity profile−→←−
N (x) for chromosome 3, to unveil conditional information exclusively from y.

In Fig. 4.14, we have unveiled important regions marked with the letters A, B and C.
Starting with the letter B, this region contains the 2529 bases of gene eft202 (from base
537326 to 539854, in chr. 3). According, the statistics that unveiled this gene were extracted
also from 2529 bases of chromosome 1, which represent gene eft201 (from base 2907701 to
2910229, chr. 1, with ∼99% sequence similarity to gene eft202).

Figure 4.14: Conditional complexity profiles for chromosome 3 of S. pombe. The first row
shows a representation for chromosome 3 and their long repetitive zones. The second row
shows chromosome 3 (blue) with information added from chromosome 1 (green). The third
row shows chromosome 3 (blue) with information added from chromosome 2 (red). The
information content was processed in both directions, combined using the minimum value of
each direction, and low-pass filtered using a Blackman window size of 1001.

In relation to the region marked with letter A (Fig. 4.14), we have verified that chromo-
some 1 unveiled a repetition in chromosome 3, that represents two highly similar genes (ef1a-a
in chromosome 3 and ef1a-b in chromosome 1 with ∼98% sequence similarity). Moreover,
chromosome 2 unveiled another very similar gene, ef1a-c, with ∼98% sequence similarity to
both previous genes. In Fig. 4.15, there is an illustration that shows the relative position of
these genes. In this illustration, letter A marks a region from base 4095202 to 4096584 (1383
bases, chr. 1). Letter B refers to base 626106 to 627488 (1383 bases, chr. 2), and letter C
from base 268097 to 269479 (1383 bases, chr 3).

Interestingly, these very similar genes, present in all S. pombe chromosomes (a very rare
property) and always in the short arm, have homologous in the following species: human,
chimpanzee, dog, cow, rat, chicken, zebrafish, fruit fly, mosquito, C. elegans, S. cerevisiae, K.
lactis, E. gossypii, M. grisea and N. crassa.
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Figure 4.15: Illustration of the three chromosomes of S. pombe genome marked with genes
ef1a-b (A), ef1a-c (B) and ef1a-a (C).

4.3.3 Relative complexity profiles

A relative (or conditional exclusive) complexity profile is a complexity profile that explores
exclusively the existence of information from other object, namely the information from object
y, where −→

N (xi‖y) = C(xi‖y). (4.26)

For a global measure, we sum the instants

C(x‖y) =

|x|∑
i=1

−→
N (xi‖y). (4.27)

According to the previous definitions, the NRC can be decomposed by elements, in other
words, we can decompose it to element complexity. As such, substituting on (4.14), we are
able to decompose the NRC up to

NRC(x, y) =
1

|x|

|x|∑
i=1

−→
N (xi‖y). (4.28)

If we consider a lossy relative compressor (L), based on multiple FCMs that compete to
represent a certain block of b symbols, and ignore the side information (having b = 1) we
are able to say that for each NL(xi‖y) they have the same complexity, independently of the
direction they are processed, and hence

−→
NL(xi‖y) =

←−
NL(xi‖y). (4.29)

If we consider a lossless relative compressor, with side information, where b > 1 and |x|
mod b 6= 0 and our intention is to hold (4.29), then we need to synchronize the blocks (given

the processing direction). According to Fig. 4.16, the first block of
←−
N (xi‖y) will have |x|

mod b symbols, while the rest b symbols. Moreover, we assume that the side information
is not being compressed according to a causal context. At this point, we have a competing
lossless compressor that measures information regardless the order of the blocks. In fact, the
computation can be strongly parallelized (having a maximum number of threads equal to
|x|/b) without affecting the measure.

However, for compressors relying on competition, considering causal context side infor-
mation (namely encoded by a FCM), or mixtures led to the following inequality

−→
N (xi‖y) 6=

←−
N (xi‖y). (4.30)
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Figure 4.16: Synchronizing multiple blocks for processing
←−
N (xi‖y) (bottom map) after re-

versing
−→
N (xi‖y) (top map). The point b represents the block size, while e the extra given by

|x| mod b.

As an example we provide, in Fig. 4.17, a situation using a compressor based on a mixture,
described previously, where the relative profiles differ according to the DIFF profile. We
believe that, for large sequences and low b, these differences might turn to be insignificant.

Nevertheless, for overall quantities we get

C(x‖y) ≈
|x|∑
i=1

−→
N (xi‖y) ≈

|x|∑
i=1

←−
N (xi‖y), (4.31)

which agree with the overall compressed values according to Fig. 4.17, where
∑|x|

i=1

−→
N (xi‖y) =

29, 783, 776 and
∑|x|

i=1

←−
N (xi‖y) = 29, 784, 688 bits, as well as in what it concerns overall

resources (memory and computation time).
Therefore, both competing and cooperating approaches in learning processes create spe-

cific connections relatively to the direction, in spite of using in the overall approximately the
same relative complexity.

4.3.3.1 Applications

The direct application of C(xi‖y) can be used to locate regions of similar information,
such as identifying motifs. Fig. 4.18 depicts an example of a motif search analysis. In this
case, the gene DCC (Deleted in Colorectal Carcinoma netrin 1 receptor) is used as a sample
for a search in human chromosome 18 sequence. Accordingly, without loading a reference
model, GeCo will only use the target models, in agreement with the running mode and,
hence, will identify regions with high/low complexity in a blind mode search. These regions
are mostly related with repetitive elements, such as transposons, telomeres and centromeres.
Using a human reference DCC gene sequence, we easily identify the similar region containing
the DCC gene. Moreover, when we use the chimpanzee DCC gene as a reference we are also
able to identify the human DCC gene in the sequence of chromosome 18.

Another application is to further explore the results mentioned in Section 4.2.2.4. For the
purpose we have computed a relative complexity profile of the mitochondrial sequence, using
exclusively the human chromosome 5 as reference, according to Fig. 4.19. As it can be seen,
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Figure 4.17: Computation of
−→
N (xi‖y) (RIGHT) and

←−
N (xi‖y) (LEFT) using the chromosomes

18 of human, as y, and chimpanzee, as x. The relative profiles, as well as the difference between
them (DIFF), have been computed using GeCo tool and filtered with Goose framework. The
plot depicts the complexity values in bits per base according to each i. GeCo ran with the
following model parameters ”-rm 4:1:0:0/0 -rm 10:1:0:0/0 -rm 13:10:0:0/0 -rm 20:500:1:3/50
-c 30“. Goose filtering ran with a window of 1001, for LEFT and RIGHT, and 201, for DIFF.

there are many low complexity regions that are associated with important and annotated
genes (given the NCBI map). Moreover, the associations are linked to chromosome 5 in a
scattered way, where several are inversions.

There are many applications where these scenarios can be used, namely those who rely in
comparative analysis [176], as it is further developed in Chapter 5.

4.3.4 Connection to relative compression

We studied the connection between compression types, namely between compression, con-
ditional compression and relative compression, considering that the objects have been gener-
ated from a non-stationary source. As such, to relate them we need to follow a symbol by
symbol approach.

If we consider a compressor using FCMs based on competition, with one T model and
one R model, we are able to define a connection to relative compression, namely by

C(xi|y) = min{C(xi‖y), C(xi)}+ Si, (4.32)

where Si is the side information needed to describe the model that uses less bits to represent
each symbol. When computing the sums we get

C(x|y) =

|x|∑
i=1

min{C(xi‖y), C(xi)}+

|x|∑
i=1

Si

C(x|y) =

|x|∑
i=1

min{C(xi‖y), C(xi)}+ S.

(4.33)

As it can be seen, the min{C(xi‖y), C(xi)} acts as a lower bound and, therefore, the con-
nection also holds for Rn and Tm, in a competition scenario, without side information, and
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Figure 4.18: Human chromosome 18 redundancy profiles according to NCBI map; a) NCBI
map with annotated regions with vertical bars delimiting DCC gene; b) redundancy profile
without using conditional information, identifying mostly the centromere and several regions
that might need zoom inspection; c) redundancy profile using DCC gene as conditional in-
formation, identifying efficiently DCC gene; d) redundancy profile using DCC chimpanzee
gene as conditional information, identifying efficiently DCC gene in human. BLAST align
tool ranks 98 % of identity between human and chimpanzee DCC gene. All the redundancy
profiles have been computed using Ri = 2 − C(xi‖y). GeCo run with mode 1 and flag ”-e”.
Filtering has been parameterized, using Goose filter tool, with 20,000 bases in a Hamming
window.

hence,

CL(xi|y) = min{CL(xi‖y), CL(xi)}, (4.34)

where CL is a lossy compressor that ignores side information (which is related to the decision
of what is the best model) independently from the type of compression.

Although the minimum does not have an inverse, we can always approximate it as follows

CL(xi|y) = min{CL(xi‖y), CL(xi)}

CL(xi|y) ≈
(
CL(xi‖y)−p + CL(xi)

−p)−1/p

CL(xi|y)−p ≈ CL(xi‖y)−p + CL(xi)
−p

CL(xi‖y)−p ≈ CL(xi|y)−p − CL(xi)
−p,

(4.35)
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Figure 4.19: Relative profiles and maps for H. sapiens (HS) chromosome 5 and mitochondrial
genome, sharing a high degree of relative complexity. a) The map has been computed using
the smash tool (presented in Chapter 5), where green links represent inversions; b) the profile
has been computed with with GeCo using chromosome 5 as reference; c) NCBI map with
annotated regions.

and hence, for an isolated (lossy) conditional exclusive compression we get

CL(xi‖y) ≈ 1

(CL(xi|y)−p − CL(xi)
−p)1/p

, (4.36)

considering CL(xi|y) < CL(xi), since we are relying on an approximation, and where p is a
large number.

The usage of model mixing requires a more elaborated connection, mainly because there
is not direct side information, since the probabilities are mixed according to the performance
of the models.

4.4 Conclusions

Compression-based global measures are a remarkable way to quantify the amount of in-
formation within objects or across them. In this chapter, we have proposed a way to compute
the NID, without using the conjoint information but rather the conditional information. This
simplistic computation view requires the definition of a conditional compressor, that we have
described and explored. As an application, we have measured the distance between genomic
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sequences, mostly chromosomes, within the same species and between different species, re-
porting several insights of evolution already known, but also several undocumented.

We have introduced a way to quantify relative information, namely through the normalized
relative compression (NRC) that also requires a specific compressor. Its computation is deeply
simpler, using much less resources (time and memory), and has the possibility to be computed
using several parallel forms and, in some cases, it can be accessed without order (has we have
shown in the local measures). We have measured the NRC within several RNA bird species
and in chromosomes of several primates, being able to determinate most of the NCCD results
(in the case of primates), but also unveiling new ones.

We have explored local measures that derive from the global, presenting several definitions
and applications. The ability “to look at a DNA sequence” and immediately being able to
identify specific regions has been shown to be a valuable tool, namely for identification of
motif, centromere, telomere, homologous genes, among others. Finally, we have made a
connection between the compressors that approximate the Kolmogorov complexity and the
relative compression at a symbol scale. In the next chapter we will use the relative profiles
in an unsupervised method to detect and visualise genomic rearrangements.
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“Let’s put all the pieces to-
gether. Push that string!”

Spider

5
Genomic rearrangements

In Section 4.3.3 we have formalized the conditional exclusive profiles, that measure the
quantity of algorithmic information needed to describe a certain region given exclusively
other. This notion of relative information provides a way for clustering similar regions. In
this chapter, we develop a method to compute and visualise this type of regions that are
directly associated to structural genomic rearrangements.

In fact, structural genomic rearrangements are a major source of intra- and inter-species
variation. Chromosomal inversions, translocations, fissions and fusions, are part of the nat-
urally occurring genetic diversity of individuals, are selectable and can confer environment-
dependent advantages [177].

Chromosome rearrangements are also associated with disease, namely, developmental dis-
orders and cancer. For example, many leukaemia patients present a reciprocal translocation
between chromosomes 9 and 22, also known as the Philadelphia chromosome. This pro-
duces BCR-ABL fusion proteins that are constitutively active tyrosine kinases, contributing
to tumour growth and proliferation [178].

Another striking example is the human inversion polymorphism in the 17q21 region, which
contains the neurodegenerative disorder-associated gene MAPT (microtubule associated pro-
tein Tau). The direct oriented H1 haplotype is common and relates with increased Alzheimer’s
and Parkinson’s disease risk, while the inverted H2 haplotype has higher frequencies in South-
west Asia and Southern Europe populations, particularly around the Mediterranean [179, 180].
Recurrent inversions are found in the primate lineage, where the H2 haplotype is the ancestral
state, and recent work evidences that Neanderthals and Denisovans also carried the H1 allele
[181].

How genome architecture changes contribute to speciation and which macroevolutionary
events occurred through time are fundamental to understand the dynamics of chromosome
evolution, and hence, the origins of species. In addition, chromosome alterations are hallmarks
of cancer genomes with diagnosis and prognosis value [182], and are also used in prenatal and
postnatal clinical settings.

Several insights into chromosome structure and evolution have been traditionally achieved
by cytogenetic procedures such as G-banding, or molecular karyotyping approaches like fluo-
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rescence in situ hybridisation (FISH) and, more recently, array-based methods [183]. However,
in some groups, such as the great apes, access to samples is often difficult, e.g. due to ethical
reasons. Also, these approaches can be time-consuming, expensive, or lack resolution, as
opposed to computational solutions [184].

The advent of sequencing technology enabled the analysis of genomic sequences at nu-
cleotide resolution. Nowadays, next-generation sequencing is bringing a substantial increase
of speed, quality and reliability of the results for much less costs, although there is still promis-
ing space for improvements. The availability of sequenced genomes boosted computational
methods into a new era, allowing some expensive and/or lengthy wet lab processes to be
complemented by computational approaches [185].

Derived scientific insights from genomic sequences, including the conserved distribution
of genes on the chromosomes of different species or synteny, have been mostly explored us-
ing sequence alignments [186, 187, 188, 189, 190, 191, 192, 193, 194, 195], while for visual-
ization, a wide variety of strategies have been proposed [196, 197, 198, 199, 200]. Specif-
ically, at a macro level the most popular are Mauve [189], Cinteny [201], Apollo [200],
MEDEA (http://www.broadinstitute.org/annotation/medea), MizBee [202] and Circos
[203], which are discussed in a review [204]). Although, the circle-based visualization is be-
coming very popular, for detecting block alignments and re-arrangements across very similar
species, such as primates, an ideogram still seems to be the best approach.

We propose a computational method to detect signatures of chromosome evolution. The
method is completely alignment-free and is based on the information content of the sequences
being compared. The information content itself is estimated using data compression tech-
niques. The resulting stand-alone algorithm depends only on two parameters.

We developed a tool by means of which the method can be tested in practice. The tool
has been made publicly available and is described in detail. It is capable of producing an
SVG image that shows the correspondence of regions between two sequences, together with
a file reporting the respective positions and types of rearrangements.

Its performance is demonstrated with the help of several examples. Those involving syn-
thetic sequences are intended to illustrate the underlying principles. More realistic case
studies, involving prokaryotic and eukaryotic genomes, are also discussed. In particular, for
intra-species and inter-species analysis, where for the later we obtain human/chimpanzee and
human/orangutan complete chromosome maps.

For clarity, the potential and limitations of the tool and some of its design tradeoffs are
discussed separately, following the description of the method. This separates limitations that
are inherent to the method from those that are by-products of the current implementation,
and that as such might be removed in future implementations.

5.1 The method

5.1.1 Creating models of the data

The method identifies small-scale or large-scale rearrangements between pairs of DNA
sequences called the reference and the target. The method applies to arbitrary sequences,
and therefore the reference and the target can be as large as an entire chromosome or genome.
The goal of the method is to automatically detect regions in the target sequence that have
information content similar to regions found in the reference. The method yields a set of
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segments of the target sequence and, for each of these, the corresponding segment found in
the reference sequence.

Both sequences are preprocessed such that their alphabet is Θ = {A,C,G,T}. Symbols
originally not belonging to Θ (for example, N’s) are substituted by uniformly distributed
symbols from Θ, in order to keep the original length of the sequence. These pseudo-random
generated segments have high entropy relatively to the compressor (since the compressor is
not able to determine the generation function and they have uniform distribution), therefore,
with high probability will not share information with any other sequence, hence will not
interfere with the matching process.

The core of the method involves the estimation of the amount of conditional information
that is required to represent a certain region of the target, using exclusively information from
the reference and, hence, relative complexity. Basically, if x and y are, respectively, the target

and reference sequences, we compute a numerical sequence
−→
N (xi‖y), where 1 ≤ i ≤ n and n =

|x| is the size of the target sequence. For a position i in the target sequence,
−→
N (xi‖y) measures

the number of bits required to represent the symbol located in that position, according to the
aforementioned interpretation of conditional exclusive information (see Chapter 4).

To properly estimate
−→
N (xi‖y), it is crucial to have a good model of the reference sequence

y. We have chosen finite-context models (FCMs) for this purpose, namely because they seem
to be the models that represent better genomic sequences given the compression capabilities
using low computational resources, comparing with other models. An introduction to FCMs
is made in Section 2.2.1. In this case we opted to set the parameter α to 0.001, forcing
the estimator to behave approximately as a maximum likelihood estimator. In practice, this
makes the segmentation process easier (see below). The number of bits that is required to
represent symbol xi+1 using exclusively information from the reference sequence is given by

−→
N (xi+1‖y), (5.1)

according to the notion of relative complexity profiles in Section 4.3.3. We intend to clarify
that to estimate the information content, any model can be used as long as it is able to
perform conditional exclusive compression, and more specifically, be able to incorporate the
complete memory of these sequences (see [120] for complete object representability notions).

5.1.2 Finding information-similar regions

As explained before, the core idea of the method is to compute, along the target sequence
x, the amount of information required to represent x using exclusively information from the
reference sequence y. Therefore, at a first stage, we end up with a numerical information

sequence
−→
N (xi‖y) of size n = |x|. Figure 5.1 illustrates how the method operates, using

synthetic data generated with an appropriate tool (XS [108]). The target was created by
manipulating some parts of the reference, as described in the figure.

Regions where
−→
N (xi‖y) is small indicate a high level of information sharing with y. To

mark them, we compare a smoothed version of the information sequence with a threshold (T ).
The result is the set of regions of interest of x, for the given reference y, which are denoted
by x(l), l = 1, 2, ..., L.

It remains to find the regions of the reference y which are strongly associated with each
x(l). To do this we invert the roles of the reference and the target. More precisely, each
x(l) is now regarded as a reference, and y is taken as the target. We thus compute, for each
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Figure 5.1: Similarity discovery, step by step. (A), scan the target to identify those of its
regions that significantly share information content with the reference. (B) scan the reference
to find those of its regions associated with each region identified at step A. Step (C), (D),
(E), (F), repeat step B for each region identified at step A.

l = 1, 2, ..., L, the information sequences
−→
N (yi‖x(l)), from which the regions of y associated

with each x(l) can be found.

The described procedure can find pairs of regions that are similar in the sense of information-
sharing, but does not take into account possible inversions. For this purpose, the reference
sequence should be reverted, complemented and loaded into the FCM model. Then steps
entirely similar to those described above need to be taken. Having done this, both inversions
and direct homologies can be segmented in the target sequence.

If both the inverted and direct instances of a region are found to have high information
content, then the region shares no information with the rest of the data and therefore it is left
unmarked. This is the case with regions that are essentially unique and with unsequenced
regions (those that originally contained N’s, that have been replaced with random data).
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5.2 The tool

5.2.1 Software availability

An implementation of the method (Smash) is freely available, under GPL-2 license, at
http://github.com/pratas/smash. Smash is a tool that computes chromosome information
maps, with an ideogram output architecture. The colors for each block are automatically
calculated using the HSV (Hue, Saturation, Value) color space, where only the Hue varies.
For more information about Smash, see the manual that follow the tool.

5.2.2 The threshold T

Smash has a command-line option by means of which the threshold T can be varied in
the interval [0, 2]. The threshold can be regarded as a parameter. In general, the best T
is data-dependent. The guiding principle is to choose T so that it selects regions of com-
plexity sufficiently below the average. In practice, this is not difficult to achieve, but some
experimentation may be required to obtain the best results.

As a rule, T should be smaller when working with similar species than when working with
more distant species. For example, for the human/chimpanzee pair we used T = 1.3 but
for the chicken/turkey pair we used T = 1.95. When working with entire chromosomes, the
threshold can be adjusted to match the degree of divergence encountered.

5.2.3 Model depth

The model depth, described by the parameter k, must be an integer in the range [1, 28].
The default value (k = 20) works well for sequences, say, longer than 1 Mb (1,000,000 sym-
bols). The default also works well for smaller sequences, although in this case the actual
performance may depend on how repetitive they are. We have found out that there is often
little practical need to tune k.

The relation between the model depth k and the estimated probabilities (which are directly
related to the counters cy), and the capabilities of Markov models in the context of DNA
sequence modeling, have been treated in detail in [85, 205].

5.2.4 Compared with other methods

Accordingly, we have included two synthetic sequences of 4 kb each and made a com-
parative study with respect to other techniques: Mauve [189], and VISTA [191]. The syn-
thetic sequences of these figures were simulated using XS [108] and randomly permuted us-
ing different block sizes and inversions with a program from the Goose framework (https:
//github.com/pratas/goose/). The first one, Fig. 5.2, contains a small number of block
permutations and inversions to allow an easy comparison with the provided ground truth.
The second one, Fig. 5.3, contains overlapping permutations and, therefore, is more complex.

In Figs. 5.4 and 5.5, the methods are compared in real prokaryotic and eukaryotic se-
quences, respectively. Fig. 5.4 addresses a large-scale comparative study between Shigella
flexneri (NC 017328) and Escherichia coli (NC 017638), using Smash and Mauve. Regard-
ing the eukaryotic example, we have used chromosome 3 of human and orangutan, depicted
in Fig. 5.5. Smash spent 871 seconds (for the inside Smash map) and 1291 seconds (for the
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Figure 5.2: Comparison between Smash, Mauve and the VISTA methods on a synthetic
sequence (4,000 bases) with a ground truth. Smash was ran with T = 1.5, k = 10 and
discarding blocks smaller than 5 bases. VISTA was computed online, for both synteny and
alignments.
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Figure 5.3: Comparison between Smash, Mauve and the VISTA methods on a more complex
synthetic sequence (4,000 bases). Smash ran with T = 1.5, k = 10 and discarding blocks
smaller than 5 bases. VISTA was computed online (syntheny) and the maps were adapted
(colors instead of pointer lines) for better display. First sub-image depicts only the VISTA
alignments.

outside Smash map) using a maximum memory peak of 2.4 GB, while Mauve spent 2633 sec-
onds and used 6.1 GB of memory. The Mauve version used is already the improved (latest)
version.

5.2.5 Commutativity

The method is commutative, that is, it has the potential to lead to the same results when
the reference and the target are swapped. Smash can easily be made commutative as well.
However, in most usage scenarios, there is a natural reference sequence. Furthermore, the
assumption that one of the two sequences is the reference simplifies the algorithm and leads to
time savings. For these two reasons, the current implementation of Smash is approximately
commutative, but not exactly so.

Figure 5.4: Comparison between Smash and Mauve methods on S. flexneri and E. coli bac-
terial genomes. Smash was ran using T = 1.8, k = 20 and discarding blocks smaller than
20 kb.
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Figure 5.5: Comparison between Smash and Mauve methods on chromosome 3 of H. sapiens
and P. abelii. Smash was ran using T = 1.5 (inside Smash map) and T = 1.6 (outside Smash
map), k = 20 and discarding blocks smaller than 1 Mb.

To illustrate this, we performed additional experiments using both prokaryotic and eu-
karyotic genomes. For the prokaryotes, we have used Shigella flexneri (NC 017328) and
Escherichia coli (NC 017638). As can be seen in Fig. 5.6, the maps are similar (apart from
some differences in color and reversed pattern assignment, due to the automatic coloring
method used). Nevertheless, it is possible to spot small differences, mainly because we have
discarded matched regions smaller than 20 kb. Fig. 5.7, which illustrates the human/chimp
pair, shows that at a larger scale these small differences tend to disappear.

Figure 5.6: Smash result when the reference and the target are swapped. “SF” stands for S.
flexneri and “EC” for the E. coli bacterial genomes. Smash was ran using T = 1.8, k = 20
and discarding blocks smaller than 20 kb.

5.2.6 Working with distant genomes

Smash does work for more distant genomes than, say, the human/chimpanzee pair studied
in detail next. This is shown e.g. by the chicken/turkey map of chromosome 1 depicted in
Figure 5.8. According to TimeTree [206], Gallus gallus and Meleagris gallopavo have an
estimated divergence time of 44.6 million years (MY), while between Homo sapiens and Pan
troglodytes or Pongo abelii the divergence times are estimated as 6.3 MY and 15.7 MY,
respectively.

We emphasize, however, that Smash can be applied to pairs of sequences that are even
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Figure 5.7: Smash result when the reference and the target are swapped. “HS” denotes the
H. sapiens whereas “PT” indicates the P. troglodytes eukaryotic genomes. Smash was ran
using T = 1.3, k = 20 and discarding blocks smaller than 1 Mb.

Figure 5.8: Smash computation of the M. gallopavo (top map) and G. gallus (bottom map)
chromosome 1. Smash has been computed using a threshold T = 1.95, a context size of k = 20
and discarding blocks smaller than 1 Mb.

more distant. Regardless of the exact nature of the reference and target, Smash will find the
rearrangements present, even if one or both sequences are synthetic (computer generated).
This can be useful to develop a better understanding of how Smash works, or for testing
purposes.

5.2.7 Working with unassembled sequences or assembling errors

One of the advantages of Smash is that it works even when the reference is not assembled.
Therefore, it can be used with references composed of non-assembled reads obtained directly
from the NGS sequencers. In fact, although next-generation sequencing made low cost high
speed sequencing possible, it also decreased the size of sequencing reads [50]. On the other
hand, most of the primate assembled sequences use the human genome as a reference. This
might be problematic, because of the assumption that humans and the other primates exhibit
a high degree of homology, which might not always be true [137]. Hence, it might be important
to measure similarity against non-aligned references.

Fig. 5.9 depict the results of Smash over chromosome 18 of human and chimp using random
permutations of blocks with different size, showing its robustness when fragmented references
are used. Smash spent less than 8 minutes for each computation.

Smash is able to identify regions containing shared information even when one of the
sequences is block-permuted, a capability that may be of interest to measure sequence sim-
ilarity, e.g. when one of the sequences is not assembled, or when there are assembly errors.
Obviously, the identification of the precise genomic rearrangements that took place will have
to be deferred until final assembly takes place.

5.3 Results and Discussion

To illustrate the potential of the method, we show the chromosomal information maps in
a two line approach: (human) intra-species and (primates) inter-species. For the first one,
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Figure 5.9: Smash computation over P. troglodytes chromosome 18, using as reference per-
muted blocks of different sizes from H. sapiens chromosome 18. Colors are only consistent
for each run of the tool and, therefore, may not be consistent from one run to another run,
where the sequences or the parameters are changed. (A) Smash was executed using T = 1.3
and k = 20. (B) Smash was executed using a variable threshold T (upper value) and k = 20.
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Figure 5.10: Large-scale inversions between GRC (A) and HuRef (B) assemblies for each
chromosome. The information maps show exact or approximate inversions with length higher
than 500 kb. Each position associated with inversions, in the HuRef chromosomes, is reported
in the table and marked with a Greek letter according to the map.

since there is a high degree of similarity, we only assess the large-scale inversions larger than
500 kb, while for the second one we make a full large-scale analysis and also include several
small-scale analysis.

5.3.1 Human intra-species maps

Advances in sequencing technology have increased the number of digital human genomes,
raising conditions towards intra-species characteristics and diversity research. However, the
de novo assembly of the next generation sequencing (NGS) reads is still problematic, mainly
because the alignment of the reads from these new genomes to a high quality reference genome
remains a critical aspect of data interpretation. Nevertheless, the human reference assembly is
the highest quality mammalian assembly available. The main reference genome assemblies are
those from the Genome Reference Consortium (GRC 38) [129], the J. Craig Venter Institute
(HuRef) [207] and the Washington U. School of Medicine (CHM 1.1).

We use Smash on these different human assemblies, with respect to only inversions. Ac-
cording Fig. 5.10 shows the maps from the large-scale inversions between A (GRC) and B
(HuRef), while Fig. 5.11 shows the inversions between A (GRC) and C (CHM) assemblies. In
respect to A/B, there are inversions in chromosomes 1, 2, 7, 9, 10, 11, 15 and Y. Specifically to
chromosome 1, the inversions are contained in the pericentric regions (around 119 Mb). This
region is also inverted between human and chimpanzee species, although in a much larger
density, as it can be seen in further results on the next sub-section.
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Figure 5.11: Large-scale inversions between GRC (A) and CHM (C) assemblies for each
chromosome. The information maps show exact or approximate inversions with length higher
than 500 kb. Each position associated with inversions, in the CHM chromosomes, is reported
in the table and marked with a Greek letter according to the map.

On the other hand, for A/C the inversions are present between chromosomes 1, 2, 5, 7, 8,
9, 10, 11, 14, 15, 16, 17, 22, X. From these, most of the inversions are contained in pericentric
regions, a major factor of dynamism across individuals of the same species.

5.3.2 Primate inter-species maps

We used Smash to compute the chromosomal information maps for inter-species, namely in
the pairs human-chimpanzee, human-orangutan and also a translocation example in human-
gorilla. The Homo sapiens (GRC), Pan troglodytes, Gorilla Gorilla and Pongo abelii reference
assembled chromosomes were downloaded from the NCBI. In order to create the human-
chimpanzee map, we have concatenated chromosomes 2A and 2B of the chimpanzee, ran
Smash once per chromosome (totaling 23 runs), then manually corrected the associated pic-
ture regarding the hypothetical centromere between 2A and 2B, and finally grouped all the
maps in one global picture (the one shown in Fig. 5.12). A similar process was done for the
human/orangutan map, shown in Fig. 5.14. The results obtained confirm and extend previous
work based on orthologous gene distribution, array comparative genomic hybridisation (array
CGH) and FISH approaches [208, 209, 148].

Figure 5.12 shows the complete information maps between human and chimpanzee genomes,
using chromosome pairwise comparisons, which are characterized by several inversions, in
chromosomes 1, 4, 5, 7, 12, 15, 17, 18, and Y. All known pericentric inversions were detected
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Figure 5.12: Human chimpanzee chromosomal map, obtained from chromosome pairwise
comparison. Inversions can be observed in chromosomes 1, 4, 5, 7, 12, 15, 17, 18, and Y.
Chromosomes 2A and 2B of chimpanzee have been fused for a more concise representation.
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Figure 5.13: Progressive human and chimpanzee chromosome 7 information maps. For each
chromosomes two regions have been extracted (35 MB to 45 MB and 70 MB to 80 MB). The
progressive maps for these sub-regions show the genes involved in the paracentric inversions
detected.

by our method with the exception of inversions in chromosomes 9 and 16 that are located
in regions with limited available sequence information [129]. The structural rearrangements
observed in the chimpanzee Y chromosome agree with previous reports [137], where variable
copy number and position of Y-specific genes was found among chimpanzees (Pan troglodytes)
but not among bonobo (P. paniscus), gorilla (Gorilla gorilla gorilla and G. beringei graueri)
or orangutan (Pongo pygmaeus and P. abelii) lineages [210].

In addition, we identify inversions in chromosome 7 (Fig. 5.13) that were only partially
described before [209]. Despite their importance, inversions are traditionally difficult to de-
tect and new experimental approaches have been recently developed to improve the available
tools [211]. These two inversions are located in 7p14.1 and 7q11.23 around the GLI3 and
ELN genes, respectively, and both are associated with human disorders. Namely, the Greig
cephalopolysyndactyly syndrome is caused by mutations, deletion or rearrangements in the
region containing the GLI3 transcription factor that affect the development of the limbs, head
and face, and is characterized by the presence of extra fingers or toes [212]. The Williams-
Beuren syndrome (WBS) is a neurodevelopmental disease with distinctive facial and behav-
ioral features, as well as several degrees of intellectual disability, caused by deletions of genes
including ELN [213]. Curiously, inversion polymorphisms are present in a significant propor-
tion of parents from WBS patients [214, 213], which is also observed in the 17q21.31 region
[215], suggesting that structural variants enhance some microdeletion syndromes. Given the
structural differences observed in these chromosomal regions, one might speculate that they
have contributed to evolutionary innovation and the emergence of lineage-specific phenotypes.

Figure 5.14 depicts the complete information maps between human and orangutan. It
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Figure 5.14: Human orangutan chromosomal map, obtained from chromosome pairwise com-
parison. Inversions are present in chromosomes 2, 3, 4, 7, 8, 9, 10, 11, 16, 17, 18 and 20.
Chromosomes 2A and 2B of orangutan have been fused for a more concise representation.
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Figure 5.15: Detection of a translocation between the whole genome of gorilla, GG (all
chromosomes concatenated), and human chromosome 5, HS C5. Smash was ran twice using
the default parameters. In the first case, GG was used as the reference and HS C5 as the
target (it required ≈ 22 GB of memory and ≈ 224 minutes), while in the second case HS C5
was used as reference and GG as the target (requiring ≈ 2 GB of memory and ≈ 115 minutes
to run).

Figure 5.16: Detection of a translocation between gorilla and human chromosomes 5 and 17.
The sequences have been concatenated (chromosome 5 and 17) in each species. In the middle
of each concatenation we introduced one million of N symbols to facilitate the location of the
concatenation breakpoint. Smash was ran using the default parameters.

shows that orangutan chromosome 1 is in the opposite direction as compared with human.
Moreover, there are large inversions in chromosomes 2, 3, 4, 7, 8, 9, 10, 11, 16, 17, 18 and
20. Although there are fewer data available, the results are consistent with previous cytoge-
netic approaches that identified new rearrangements on the orangutan genome, specifically, a
pericentric inversion on chromosome 1, complex rearrangements on chromosome 2 and a sub-
telomeric deletion on chromosome 19 [216]. Also, recent evidence suggests that the orangutan
genome maintains the ancestral chromosomal state with observable differences in most chro-
mosomes when compared with humans, including chromosomes 1, 2, 3, 7, 10, 11 and 18
[208].

The method and the implementation here described allows the detection of large-scale and
small-scale genomic rearrangements, including balanced translocations and inversions that are
not detected by array-CGH or chromosome alterations that are below the limits of microscopy,
thus, extending the possibilities of genome-wide structure characterization with a single tool.
In Figs. 5.15 and 5.16 we provide an example of a translocation between chromosomes 5
and 17 of human and gorilla. As it can be seen, after concatenating the sequences, Smash
was able to detect a well known translocation that is one of the bases of gorilla speciation
foundations [141].

Specifically, in Fig. 5.15 we present the detection results provided by Smash both for the
case where the whole concatenated genome of the gorilla is used as reference (top) as well as
when used as target (bottom). In the first case (top map), the ≈ 3 GB of reference required
≈ 22 GB of memory to run. We can clearly identify the region with homology to the human
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chromosome splited in two major blocks, placed in the regions corresponding to the positions
of chromosomes 5 and 17 of gorilla (the precise locations can be obtained from the files
produced by Smash). The bottom map shows similar results, but at the cost of considerable
less resources (just 2 GB of memory and 115 minutes of computing time), because in this case
the shortest sequence played the role of reference sequence. Fig. 5.16 provides more detail
regarding this translocation, because in this case only chromosomes 5 and 17 of both species
were concatenated and hence considered.

Smash compares pairs of sequences. These pairs can be built using single chromosomes,
as shown in Figs. 5.12 and 5.14, or sets of chromosomes concatenated in a single sequence,
as in the example of the translocation shown in Figs. 5.15 and 5.16. In either case, Smash
looks for and reports the position of regions that are similar, from the point of view of
information content. Hence, in the examples provided in Figs. 5.12 and 5.14, only the regions
that are similar in each pair of chromosomes are reported. To have a full view, it would
be required either to run Smash in each possible pair of chromosomes (i.e., all possible pairs
formed between the set of human chromosomes and the set of chimpanzee chromosomes, or by
concatenating in a single sequence the whole genome of each species). Naturally, when very
large sequences are involved (for example, entire genomes concatenated), the visualization
granularity is reduced and the computational resources increase.

5.4 Conclusions

Chromosome rearrangements can drive adaptation and evolution of novel traits, but they
can be deleterious as well. Here, we show that compression-based models are remarkably
capable of detecting signatures of genomic chromosomal evolution, namely to determine how
information flows between sequences of the same species and across species. The method
is alignment-free and universal, in the sense that it can accept any input pair of genomic
sequences, and depends only on two parameters.

A tool that implements the method has been made available for download. General
guidelines have been given on how to select the values of its two parameters, which do not
affect its performance in an overly sensitive way. Its advantages and limitations have been
discussed.

The tool and the ideas that underlie its design may lead to new insights about impor-
tant genomic questions, since it allows blind unsupervised detection of rearrangements and
similarities between genomic sequences. An obvious example is the detection of evolutionary
patterns across species, as demonstrated in the examples, but the tool has similar potential
for diagnosis and genetic counselling. The detection of rearrangements in cancer genomes at
high resolution levels is also considered important, in connection with risk stratification and
personalized therapeutics.
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“Sometimes say it best, specif-
ically about something, when
you say exactly nothing at all.”

P. J. Green

6
Relative uniqueness

In the previous Chapter we have emphasized the regions that share relative information.
In this Chapter, we address their complement, in other words, we focus on regions that occur
in a given sequence but are absent from other or others. Therefore, our intention is to detect
relative uniqueness. For the purpose we introduce the notion of relative absent words (RAWs).

RAWs are sub-sequences that do not occur in a given sequence (reference) and occur in
another specific sequence (target). Consider a target sequence, x, and a reference sequence,
y, both drawn from the finite alphabet Θ. We say that β is a factor of x if x can be expressed
as x = uβv, with uv denoting the concatenation between sequences u and v. We denote by
Wk(x) the set of all k-size words (or factors) of x. Also, we represent the set of all k-size
words not in x as Wk(x). For each word size k, we define the set of all words that exist in x
but do not exist in y by

Rk(x, y) =Wk(x) ∩Wk(y). (6.1)

We define the subset of words that are minimal as

Mk(x, y) = {β ∈ Rk(x, y) :Wk−1(β) ∩Mk−1(x, y) = ∅}, (6.2)

i.e., a minimal absent word of size k cannot contain any minimal absent word of size less than
k. In particular, lβr is a minimal absent word of sequence x, where l and r are single letters
from Θ, if lβr is not a word of x but both lβ and βr are (see [217] for more).

In order to unveil the presence of RAWs in a sequence x, we compute a binary sequence
reporting their presence or absence along the sequence, using exclusively the model of y. As
such, a relative uniqueness profile is given by

U(xi‖y), (6.3)

where U does not need to respect causality. Therefore, after loading the model from y and
freezing we can access to any i.

Fig. 6.1 depicts the behavior, on changing the order of the model (k), of relative unique-
ness and relative complexity (on synthetic data). Accordingly, we see that as the order of
the model increases, its describing capabilities increase. Therefore, they start to behave as
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Figure 6.1: Visual perception of relative complexity and relative uniqueness U(xi‖y), given
a reference (REF) and target (TAR) sequences. The relative complexity has been computed
using a single FCM model where only the context-order (k) vary. The relative uniqueness has
been computed using a binary model of k-order. The first panel depicts a smash map with the
relations between reference and target sequence according to the procedure described in the
previous chapter. The sequences have been pseudo-random simulated using Goose framework
(http://github.com/pratas/goose) where the distribution of the symbols is according to
A = T = 30% and C = G = 20%. The “BPS” stands for bits per symbol, while “RAW%” for
the percentage of unique relative k-words.

complementary models. Nevertheless, the relative complexity model is based on counts, while
the relative uniqueness profile is binary. Thus, if in a probabilistic model the counts of the
relative complexity are uniform, both profiles will not behave exactly as complementary. In
fact, the binary model can be seen as a simplification of a model based on counts.

Although minimal absent words have been studied before to describe properties of prokary-
otic and eukaryotic genomes and to develop methods for phylogeny construction or PCR
primer design [218, 219, 220, 217, 221], their practical usage as an entire set, for personalized
medicine, is limited. According, one has to rely on relative comparisons, mainly because there
is the need for differential identification of sequences that are derived from a pathogen genome
but absent from its host. Moreover, they need to be minimal to maximize the probability,
when concatenating the word to another word, of still being absent words in a presence of
some alteration. Therefore, we are particularly interested in the non-empty set Mk(x, ȳ)
corresponding to the smallest k, referred as Minimal Relative Absent Words (MRAWs), for
a personalized medicine application, while the interest in RAWs (not minimal) stands for
relative uniqueness detection.
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6.1 Personalized medicine application

For a personalized medicine application we use a large reference sequence, namely one
corresponding to the human genome, while the target (or targets) are usually very small,
namely those corresponding to a virus or bacteria. Since y � x, for detecting MRAWs the
algorithm will spent most of its time loading each k-mer of y, for k ∈ {k1, k2, ..., kn}.

Every kj is computed according to (6.3), using a k-mer model that uses a numerical index
between 0 and |Θ|kj − 1. Each index is updated, with the information of presence or absence
of each respective word, in a simple table array for kj ≤ 16, while for larger kj in a hash
table. Although there is the possibility to search for a kj > 16, in practice the MRAWs are
used for kj ≤ 16. The memory, Ω, required for k is given by

Ωk = χ

kn∑
j=k1

|Θ|j , (6.4)

where χ is the precision of the memory. Current implementation sets χ = 8 bits, although
it can be easily decreased to 1 bit. For a common search, having k =∈ {11, 12, 13, 14}, it
would be needed 340 MBytes. As it can be seen, Ωk = 340 MBytes regardless the size of y,
in nowadays computers, are very low memory numbers.

On the other hand, the time resource is a demanding task in this situation, namely because
there is the need to load each kj from y (large sequence). Aware of this, we have created a
method that uses parallel computing for loading each k-mer model. Therefore, for each kj we
compute it with a thread, Tj , having a speedup near 1.

After loading the reference, the models are kept frozen. Here it starts the detection of
RAWs for each target sequence according to equation 6.1. In this phase there is no need for
parallel computing since, for practical applications, the size of the target(s) are very small.

6.1.1 Software availability

The tool (EAGLE), written in C language, with the implementation of the method, sup-
porting multi-threading, is available at http://bioinformatics.ua.pt/software/eagle,
under GPL-2, and can be applied to any emerging pathogens or to show evidence of evolu-
tionary patterns and signatures across species.

6.1.2 Ebola virus in human

Ebola virus (EBOV) is a negative strand-RNA virus from the Filoviridae family that
causes high mortality hemorrhagic fevers, for which no vaccine or treatment currently exist
[222]. There are five Ebolavirus species, namely,

• Zaire,

• Sudan,

• Bundibugyo,

• Tai Forest,

• Reston,
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with the first (1976) and major (2014) outbreaks caused by the type species Zaire ebolavirus
[223]. The numbers of the largest ever EBOV outbreak are worrying and continue escalating,
with over 25500 cases and 10500 deaths (April 8, 2015) from the virus mainly in Guinea,
Liberia, and Sierra Leone, according to the World Health Organization. The current out-
break is also the first where transmission has occurred outside Africa, with reported cases
in Europe (Spain) and America (USA) [224]. Promising vaccine candidate tests are being
rushed to face the epidemics and could be available within a few months [225]. These yet
experimental therapies include, for example, recombinant viral vectors [226] or antibodies
that target the viral glycoprotein (GP) [227, 222], but innovative approaches are still needed
for the development of diagnosis tools and identification of druggable targets.

We used the current EBOV outbreak sequences, which were recently published [228],
to discover and characterize the minimal relative absent words that are present in EBOV
genomes but absent from the human genome. Moreover, we show that these words are also
absent from the other Ebolavirus species and even from the genomes obtained from previous
outbreaks. Thus, the sequences that we identify are species-specific and important for future
development of diagnosis or therapeutic strategies for EBOV.

We have used the full GRC-38 human reference genome [129] downloaded from the NCBI,
including the mitochondrial, unplaced and unlocalized sequences. The sequences of 99 EBOV
genomes from the current outbreak in Sierra Leone [228] and additional 66 Ebolavirus genomes
have been also downloaded from NCBI (see in https://github.com/pratas/eagle/ scripts
to download and process all the results. See [229] for additional sequence references).

Fig. 6.2 shows the computation for word sizes 12, 13, and 14. As expected, the number of
absent words decreases as the k-mer size decreases. Specifically, for k = 11 (not represented),
there are no EBOV RAWs. On the other hand, for k = 12, three groups of points emerge
(RAW1, RAW2 and RAW3) representing the position of a relative absent word in each of the
99 unaligned viral genomes (Fig. 6.2-a). Alignments of 124 Ebolavirus sequences including
additional EBOV genomes from the current outbreak in Guinea [223] and from previous
outbreaks, show that the identified MRAWs fall into conserved protein regions (Fig. 6.2-
b). However, several mutations can be found in the genomes that discriminate between
the different species of Ebolavirus and even between EBOV sequences from the current and
previous outbreaks (Fig. 6.2-c).

The identification of these viral genome signatures is important for quick diagnosis in
outbreak scenarios. Additional analysis with all 165 Ebolavirus genomes confirmed these
results (see Fig. 6.1.2). In particular, RAW1 is conserved within EBOV and can distinguish
EBOV from other Ebolavirus species. RAW2 is conserved in all sequences from the West
African 2014 outbreak in Guinea, Sierra Leone and Liberia, and only one nucleotide difference
exists between these sequences and unrelated outbreak genomes. RAW3 is also conserved at
the species level, excluding the four EBOV 1976/77 genomes, and can distinguish between all
Ebolavirus species, as it can be seen in Fig. 6.1.2.

From the three EBOV sequence motifs absent in the human genome, the first (RAW1) is
included in the virus nucleoprotein (NP), while the other two (RAW2 and RAW3) fall within
the sequence of the viral RNA-polymerase (L-protein) (Fig. 6.2-c). Previous studies show
that the N-terminal region of EBOV NP participates in both the formation of nucleocapsid-
like structures through NP-NP interactions and in the replication of the viral genome [230],
and RAW1 sequence (TTTCGCCCGACT) is part of this N-terminal region. The L-protein
(LP) produces the viral transcripts to be translated by host ribosomes and is involved in the
replication of the viral genome as well. The LP contains the two additional MRAWs, RAW2
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Figure 6.2: Ebola virus minimal absent words relatively to the human complete genome.
(a) Relative absent words (RAWs) were identified in 99 unaligned genomes from the current
outbreak in Sierra Leone (2014) and are highlighted in red (k = 12), blue (k = 13) and
gray (k = 14). (b) Whole genome alignments from 124 published Ebolavirus genomes were
obtained from [228] and visualized in Geneious (created by Biomatters, available from http:

//www.geneious.com). Sequence logos and identity define conserved regions. (c) Regions
corresponding to the identified RAWs are shown in genome location and both as nucleic acid
and protein alignments. The Ebolavirus reference genomes are displayed, as well as selected
representative sequences where nucleotide differences are observed.
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Figure 6.3: Identification of relative absent words in 165 Ebolavirus genomes with the hu-
man genome as reference. RAW sequences are shown in red (k=11), dark red (k=12), blue
(k=13) and gray (k=14). 11-mer RAWs are exclusive of Reston ebolavirus. 1-24, Zaire
ebolavirus (EBOV) genomes from previous outbreaks; 25-28, EBOV genomes from the 2014
DRC (Democratic Republic of the Congo) unrelated outbreak; 29-142, EBOV genomes from
the West African 2014 (current) outbreak; 143-147, Bundibugyo ebolavirus (BDBV) genomes;
148-154, Reston ebolavirus (RESTV) genomes; 155-164, Sudan ebolavirus (SUDV) genomes;
and 165, Tai Forest ebolavirus (TAFV) genome.

(TACGCCCTATCG) and RAW3 (CCTACGCGCAAA). Both NP and LP are critical for the
virus life cycle and constitute good targets for therapeutic intervention.

Screening for new antiviral compounds could benefit from knowledge of their protein
structures. For EBOV, most protein structures are unknown except for the C-terminal domain
of NP, GP, VP24 and VP35 [231], thus, we have predicted the structure of the N-terminal
regions of the EBOV NP and LP by homology modeling (Fig. 6.4, 6.5 and 6.6). These
structural models show that the amino acids corresponding to the RAW1 motif are enclosed
within the structure, while RAW2 and RAW3 are exposed at the protein surface, which can
justify its higher degree of conservation.

Figure 6.4: Structure of the N-terminal region from the Ebola virus Nucleoprotein (residues
1-380). a) Superposition of the model (wheat color) and corresponding template structure
(green). b and c) Surface view of template and model respectively. Amino acid residues
corresponding to the RAW sequence are highlighted.
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Figure 6.5: Structure of the N-terminal region from the Ebola virus RNA-polymerase (residues
177-805). a) Superposition of the model (wheat color) and corresponding template structure
(green). b and c) Surface view of template and model respectively. Amino acid residues
corresponding to the RAW sequence are highlighted.

Figure 6.6: Evaluation of the model for Ebola virus Nucleoprotein (NP) and RNA-polymerase
(LP). The quality of the predicted 3D structures for Ebola virus NP (left) and LP (right), over-
all (top) and locally (bottom) was estimated in ProSA-web. The models were obtained with
MODELLER using the Nipah virus nucleoprotein (PDB ID:4CO6) and the BVDV (bovine
viral diarrhea virus) RNA polymerase (PDB ID:1S48) as templates, respectively.

91



The personalized medicine field is now closer to clinical practice with the advances of
next-generation sequencing technologies. Personalized therapeutics are a possibility and their
development is essential with the emergence of resistance to current available drugs. Addition-
ally, quick diagnosis is required for emerging pathogens and in epidemics such as the current
Ebola outbreak. Here, we have detected MRAWs in the human genome that are present
in EBOV genomes, and identified nucleotide differences in some of these sequences that can
distinguish between Ebolavirus species and outbreaks. Also, we show that the corresponding
amino acid sequences are conserved within EBOV. These results can now be further explored
for diagnosis and therapeutics, sometimes mentioned as theranostics [232]. Namely, RAW
nucleotide sequences can be used in diagnosis to design primers that identify Ebolavirus in-
fections or distinguish between Ebolavirus species. For PCR-based methods, longer sequences
and multiplex reactions can be developed to avoid primer binding bias. Additional nucleotide
or protein-based strategies for therapeutics can be envisaged, as discussed below.

One problem in developing efficient EBOV treatments is the virus ability to evade the
immune system. The viral glycoprotein (GP) is a major target because it mediates attachment
and entry into the host cells. However, in addition to the surface envelope protein, the GP
gene also produces fragment, soluble glycoproteins that are secreted and direct the immune
system to produce antibodies for variable and non-essential regions of the virus [233, 234].

As current efforts based on the viral GP might prove ineffective, additional targets should
be sought. Our results show that the viral nucleoprotein (NP) and polymerase (LP) can
be attractive targets. As the amino acid sequences of all three 12-mer RAWs are conserved
within EBOV, these regions can be used to screen for small molecule inhibitors.

In particular, RAW1 is conserved in all Ebolavirus NP proteins, which can indicate a
functional or structural role. And, considering that the protein model predicts that RAW2
and RAW3 are relatively close in the 3D structure and in exposed domains, these regions can
be used to develop novel antibodies. Also, a recently described mechanism shows that the
polymerase (LP) from Ebola and Marburg viruses is capable of editing transcripts, resulting
in increased variability in the produced proteins, and that the most edited mRNAs are the
Ebola GP and Marburg nucleoprotein (NP) and LP itself [235]. Thus, the use of combined
therapies towards multiple proteins can be more effective, as suggested by studies to develop
vaccines for Lassa virus that target both NP and GP [236, 237].

RNA-based strategies such as RNA interference (RNAi) or antissense therapies are also
promising approaches to silence target specific gene expression. The RAW sequences that
we have identified can be used to develop RNAi or antissense probes that bind viral tran-
scripts and prevent their translation, thus, inhibiting viral replication without blocking the
host mRNAs. Translation of these technologies into clinical applications have been slowed
by challenges in the delivery of small RNAs into cells, but recent developments in delivery
systems are bridging the bench to bedside gap [238, 239]. Among these, gold or lipid nano-
particles [240, 241] were shown to be effective against cancer and viral infections, including
EBOV [242]. Gold-nanobeacons can be applied as a combined diagnosis and therapy tool for
effective testing, including in low-cost settings [243] and, with this purpose, advances in pep-
tide nucleic acid (PNA) probes for viral detection are also taking place [244, 44]. Whichever
the technology, the identification of genome signatures for rapid evolving species such as Ebola
viruses will be useful for the development of both diagnosis and therapeutics.
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6.2 Unique regions detection

The identification of regions that are present in a species but absent in other can be used
also to detect novelty and signatures across intra- and inter-species. Moreover, in a presence
of aligned sequences from one side of the sequences (targets) we are able to visualise where
they occur since we rely on uniqueness profiles (6.3).

According to the previous section, we are interested in creating a model of a reference to
detect sub-sequences that are present in a target, in order to detect novel regions relatively to
a reference, or better, we are interested to find RAWs. Unlike the previous section, we only
use a k-mer model. Besides, this model has higher depth (typically k = 30).

If we used a binary vector to store in memory (RAM) all the entries, and only using
(in computation) 1 bit to say if a k-mer exists or not, we would need 4k bits. Using a
regular k = 30, we would need 131072 Terabytes of memory. This is impracticable on current
computers.

Considering to use a hash table for such a model would become a feasible task. However,
the memory would become dependent on the number of inserted elements, because a hash
table increases as the number of new elements inserted increases. Moreover, for the volume
of data in this case would become a hard task, although feasible.

A third option is a probabilistic data structure, namely a Bloom filter [245], trading
space resources by precision. Notwithstanding, the usage of a very large Bloom filter (with
the number of hash functions optimized), can give very high probabilities of becoming very
similar to deterministic. Nevertheless, for this case, we do not need very large lengths and
precise results, since we want to find regions (RAWs) and not mRAWs. This seems the most
efficient choice.

For using a Bloom filter, we set a vector of dimension m and the number of hash functions
h, obtaining a balance that is also related with the number of elements that are filtered n.
Asymptotically, for a given m and n, the value of the number of hash functions that minimizes
the false positive probability is

h =
m

n
ln 2, (6.5)

that can be seen as

2−h ≈ 0.6185m/n. (6.6)

The more elements that are added to the set, the larger the probability of false positives. The
required number of bits m, given n and a desired false positive probability p, assuming that
the optimal value of h is used, can be computed by substituting the optimal value of h in

p =
(

1− e−(m/n ln 2)n/m
)(m/n ln 2)

(6.7)

that can be seen as

ln p = −m
n

(ln 2)2 , (6.8)

and finally

m = − n ln p

(ln 2)2
. (6.9)

This means that asymptotically, for a given false positive probability p, the length of a Bloom
filter m is proportional to the number of elements being filtered n.
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Figure 6.7: Visual description of the method. The genomic sequences contained in the files
R1, R2 and R3 are independently processed against a target, T1. From each computation
is generated a binary sequence, B1, B2 and B3, describing the presence/absence of a RAW
according to the order of T1. After, the binary files are computed using a logic Or (∨),
B1 ∨ B2 ∨ B3 and the result is JB1. The JB1 sequence is then (low-pass) filtered resulting
in the real sequence described as JBF1. Finally, a threshold (line in red) is used to segment
the information contained in the JBF1, where each segmented region is represented in the
RAWs map.

For finite values, the false positive probability for a finite Bloom filter with m bits, n
elements, and h hash functions is at most(

1− e−h(n+0.5)/(m−1)
)h
, (6.10)

having a penalty for at most half an extra element and at most one fewer bit. For more
information and details see [246].

This method allows whole genome analysis using Tn targets and Rn references. To solve
this we write to disk each RAW detected from Ri according to each Ti. After, for each Ti the
RAWs are only considered if they exist in all Ri. A file containing the whole genome RAWs
according to each Ti is stored (these are the unique regions).

An example of the method, from sequences to maps, using 3 reference sequences and 1
target is depicted in Fig. 6.7. For Tn targets, the process is repeated recursively n times.
Moreover, when using inverted repeats, the reverse complement sequence is also loaded into
memory (for the same reference model).

For visualizing the unique regions, after a low-pass filtering of a binary sequence containing
the presence/absence of RAWs, a threshold is used to segment these regions and then they
are computed in a visual map (see Fig. 6.7 for an example).

In Fig. 6.8 we have ran the tool (CHESTER) against several synthetic sequences, that
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Figure 6.8: Running CHESTER using several ground truth sequences. Blocks A1 and B2
have been edited according to the functions referred on the left. Function S stands for a
substitution mutation of the input block with the defined percentage. Function RC applies
the reverse complement of the input. CHESTER running parameters are defined on the right,
using a threshold of 0.5 and a k-mer size of 16, while only the bottom map has been run using
inversions. The blue color on the computed maps represents the unique regions according to
the RAWs.

have been suited manipulated to better understand the tool. According, the method identifies
as novel the regions that are mutated (in A1) and also the inversions (B2). When the tool ran
with the “-i” parameter, and therefore prepared to handle inversions, these where successfully
not reported. When dealing with sequenced data, the sequences might have several inverted
regions due to errors of assemblage or sequencing. As we have shown in Fig. 6.8, this method
is prepared to overcome those limitations.

6.2.1 Software availability

The tool (CHESTER), written in C language, with the implementation of the method is
available at http://github.com/pratas/chester, under GPL-2, and can be applied to any
genomic sequences, supporting FASTA, FASTQ and SEQ (ACGTN) format, which can be
used to find and visualise unique regions and signatures.

6.2.2 Unique human regions relatively to other primates

For the experiments we have used: the reference human genome (GRC-38) [129], the
reference chimpanzee genome (2.1.4), the reference gorilla genome (3.1) and the reference
orangutan genome (2.0.2). The sequences have been downloaded from the NCBI. The se-
quences of gorilla and orangutan representing the chromosome Y have not been yet sequenced
and therefore are not present in the study. On the other hand, we have also included the un-
localized, unplaced and mitochondrial sequences in order to bypass most assembly challenges.

We ran CHESTER on those sequences obtaining the map in Fig. 6.9. According, the
larger blue areas identify the centromeres, namely corresponding to very repetitive DNA.
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Figure 6.9: Human unique region maps according to chimpanzee, gorilla and orangutan using
CHESTER with t = 0.6 and k = 30. Chromosome Y of gorilla and orangutan were not
present, by lack of sequencing data, and therefore Y map is only according to chimpanzee.

On the other hand, the smaller areas contain several genes and pseudogenes (genes that are
not expressed [247]) associated for instance to immunology, blood, smell and brain. Besides
there are several identified motifs in these regions (on the NCBI and Ensemble), although
considered of importance their nature has not yet been understood.

From those sub-sequences which are reasonably understood, we highlight HCP5 HLA
complex P5, MAFK, GALNT9, OR11H12, OR11H11, SHOX short stature homebox.

For example, on human chromosome 14 the OR11H12 olfactory receptor is a gene associ-
ated with olfactory receptors that interact with odorant molecules in the nose, to initiate a
neuronal response that triggers the perception of a smell. These findings are confirmed with
other recent studies that show the loss of olfactory function only in the hominid evolution
and therefore the consequent genomic sequence alteration [248].

Genetic and/or genomic human relative uniqueness can, perhaps, be seen as a product of
genome interactions with environment, behavior and culture. These systems seem ultimately
linked with the irreversible process of learning [249]. As any thermodynamic semi-isolated
system can only, asymptotically, increase their complexity, and therefore, showing remark-
ably distinct unique features along time, specially when are characterized by higher learning
accelerations.

6.3 Conclusions

Relative uniqueness identifies regions present in a sequence that are absent from a sequence
or several sequences. The definition of relative uniqueness is specifically related with the
definition of relative absent words. Their fundamentals have been introduced along with two
applications: one for personalized medicine, namely using the Ebolavirus, and other for whole

96



genome analysis. The first one, identified three minimal sequences found in Ebolavirus that
are absent from human DNA. Moreover, these three sub-sequences proved to be sufficient to
classify different Ebolavirus sub-species. The second, was used to visualize where each human
chromosome is unique relatively to chimpanzee, gorilla and orangutan. The spoted regions
seem to be related with important genes, where several are already documented while others
seem to be new identifications.
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7
Conclusions and future work

Genomic sequences are large codified messages describing most of the structure of all
known living organisms. Since the presentation of the first genomic sequence, a huge amount
of genomics data have been generated, with diversified characteristics, rendering the data
deluge phenomenon a serious problem in most genomics centers. As such, most of the data
are discarded (when possible), while other are compressed using general purpose algorithms,
often attaining modest data reduction results.

To face this problem we have introduced a new compressor based on an algorithmic entropy
filter, applying a preprocessing analysis technique, leading to substantial improvements on
the savings in memory resources, particularly in the decompression process. Besides, it yields
tremendous improvements in the compression ratio, specially in highly repetitive datasets,
such as in genomic collections. In future work, we might develop different scalable levels of
algorithmic entropy.

However, it is mostly limited (by performance) to collections of similar sequences. There-
fore, we have proposed a universal (multiple purpose) genomic sequence compressor. We have
used a mixture of two classes, reference and target models, that we explore with finite-context
models (FCMs) or eXtended FCMs (XFCMs). The XFCMs have been introduced as new er-
ror tolerant high-order FCMs. Together with memory representability using cache-hashes
they ensure flexibility given hardware specifications. The results show very good adaptability
of the compressor to multiple types and characteristics of genomic sequences.

Ultimately, the compressor is a program that tries to learn and approximate the objects
nature. Therefore, it is directly related with the complexity of an object or between objects
and, hence, we use the compressors learning and describing capabilities and measure com-
plexity on genomic sequences. For this purpose, we have proposed a way to compute the
Normalized Information Distance (NID), without using the conjoint information, but rather
the conditional information. This simplistic computation requires the definition of a condi-
tional compressor, according to the universal genomic compressor that we have developed.
As an application, we have measured the distance between genomic sequences, mostly chro-
mosomes, within the same species and between different species, reporting several insights of
evolution already known, but also several undocumented.
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Moreover, we have introduced a way to quantify relative information, namely through
the normalized relative compression (NRC), also requiring a specific compressor. The NRC
computation is much simpler, using less resources (time and memory), and has the possibility
to be computed using several parallel forms and, in some cases, it can be accessed without
order (as we have shown in the local measures). We have measured the NRC within 45 RNA
bird species and in chromosomes of several primates, being able to confirm most of the NCCD
results, but also spotting a high correlation between mitochondrial DNA and chromosome 5.
The NRC gave proves to be a very important matter to explore in future work, namely a
suitable manipulation to turn it into a distance (for example, by maxims or sums). Moreover,
we believe that it can be related with a temporal notion, such as a relative logical depth.

We have explored local measures that cumulatively make the respective global measures,
presenting several definitions and applications. Mostly, the applications give the ability “to
look at a DNA sequence” and immediately identify specific regions, namely motif, centromere,
telomere, homologous genes, among others. As a specific automatic unsupervised tool we have
explored it in chromosome rearrangements. The tool and the ideas that underlie its design may
lead to new insights about important genomic questions, since it allows blind unsupervised
detection of rearrangements and similarities between genomic sequences. An example is the
detection of evolutionary patterns across species, as demonstrated in the examples. Mostly,
the tool led to the study and unveiling of important characteristics that may have happened
in the past. Actually, we are able to look and understand events from million years ago.
But the tool has similar potential for diagnosis and genetic counseling. The detection of
rearrangements in cancer genomes at high resolution levels is also considered important, in
connection with risk stratification and personalized therapeutics.

Finally, as a complement, we have introduced and explored relative uniqueness. Relative
uniqueness identifies regions present in a sequence that are absent from a sequence or several
sequences. The definition of relative uniqueness is specifically related to the definition of
relative absent words (RAWs). We introduced their fundamentals along with two applications:
one for personalized medicine, namely using the Ebolavirus, and other for whole genome
analysis. In the first one, we identified three minimal sequences found in Ebolavirus that are
absent from human DNA. These three sub-sequences proved to be enough to classify different
Ebolavirus sub-species. However, the method is not limited to the Ebolavirus, it can be used
in any hostage/pathogen. The second, was used to visualize where each human chromosome is
unique relatively to several primates. The spotted regions seem to be related with important
genes, specifying the roots of human evolution.

During this thesis we have presented several blind unsupervised methods to compute
relative complexity or uniqueness. These methods are fully automatic. Besides, they are
parallelizable, generally faster than the existing ones (when they exist), universal (in the sense
of genomic input) and with better describing capabilities. Therefore, after the development
of these methods we will assemble a fully automatic ANI (“Artificial Narrow Intelligence”)
being able to search for most characteristics that might exist within or between data. This
will require the continuous development of faster and better approximation tools, but mostly,
biologists to analyze the existent facts. We believe that the findings will increase faster than
the human capability to understand them.
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enclose footprints of past infections by giant virus relatives. Nature communications, 5,
2014.

[35] Jonathan Filée. Multiple occurrences of giant virus core genes acquired by eukaryotic
genomes: The visible part of the iceberg? Virology, 466:53–59, 2014.

[36] Philippe Colson, Xavier De Lamballerie, Natalya Yutin, Sassan Asgari, Yves Bigot,
Dennis K Bideshi, Xiao-Wen Cheng, Brian A Federici, James L Van Etten, Eugene V
Koonin, et al. megavirales, a proposed new order for eukaryotic nucleocytoplasmic large
dna viruses. Archives of virology, 158(12):2517–2521, 2013.

[37] Patrick Forterre, Mart Krupovic, and David Prangishvili. Cellular domains and viral
lineages. Trends in Microbiology, 22(10):554–558, 2014.

[38] Elizabeth Pennisi. Ever-bigger viruses shake tree of life. Science, 341(6143):226–227,
2013.

[39] Carlos Canchaya, Ghislain Fournous, Sandra Chibani-Chennoufi, Marie-Lise Dillmann,
and Harald Brüssow. Phage as agents of lateral gene transfer. Current opinion in
microbiology, 6(4):417–424, 2003.

[40] Felisa Wolfe-Simon, Jodi Switzer Blum, Thomas R. Kulp, Gwyneth W. Gordon, Shel-
ley E. Hoeft, Jennifer Pett-Ridge, John F. Stolz, Samuel M. Webb, Peter K. Weber,
Paul C. W. Davies, Ariel D. Anbar, and Ronald S. Oremland. A bacterium that can
grow by using arsenic instead of phosphorus. Science, 332(6034):1163–1166, 2011.

[41] Tobias J. Erb, Patrick Kiefer, Bodo Hattendorf, Detlef Gnther, and Julia A. Vorholt.
Gfaj-1 is an arsenate-resistant, phosphate-dependent organism. Science, 337(6093):467–
470, 2012.

[42] J. D. Watson and F. H. C. Crick. A structure for deoxyribose nucleic acid. Nature,
171:737–738, 1953.

[43] E. Chargaff. Chemical specificity of nucleic acids and mechanism of their enzymatic
degradation. Experientia, 6(6):201–209, 1950.

[44] Shang-Hong Zhang and Ya-Zhi Huang. Limited contribution of stem-loop potential to
symmetry of single-stranded genomic DNA. Bioinformatics, 26(4):478–485, 2010.

104



[45] David Mitchell and Robert Bridge. A test of Chargaff’s second rule. Biochemical and
Biophysical Research Communications, 340:90–94, 2006.

[46] G. E. Zentner and S. Henikoff. Regulation of nucleosome dynamics by histone modifi-
cations. Nature structural & molecular biology, 20(3):259–266, 2013.

[47] N. D. Hastie, M. Dempster, M. G. Dunlop, A. M. Thompson, D. K. Green, and R. C.
Allshire. Telomere reduction in human colorectal carcinoma and with ageing. Nature,
346(6287):866–868, 1990.

[48] M. Ridley. Genome: The Autobiography of a Species in 23 Chapters. HarperCollins,
2013.

[49] L. Rowen, G. Mahairas, and L. Hood. Sequencing the human genome. Science, 278:605–
607, October 1997.

[50] J. Tomkins. How genomes are sequenced and why it matters: Implications for studies in
comparative genomics of humans and chimpanzees. Answers Research Journal, 4:81–88,
2011.

[51] K. Sayood. Introduction to data compression. Morgan Kaufmann, 4th edition, 2012.

[52] D. Salomon. Data compression - The complete reference. Springer, 3nd edition, 2004.

[53] David Huffman. A method for the construction of minimum-redundancy codes. Pro-
ceedings of the IRE, 40(9):1098–1101, September 1952.

[54] S. Golomb. Run-length encodings. IEEE Trans. on Information Theory, 12(3):399–401,
July 1966.

[55] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm.
Digital Systems Research Center, May 1994.

[56] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Trans. on Information Theory, 23:337–343, 1977.

[57] J. Rissanen and G. G. Langdon, Jr. Arithmetic coding. IBM J. Res. Develop., 23(2):149–
162, March 1979.

[58] J. Rissanen and G. G. Langdon, Jr. Universal modeling and coding. IEEE Trans. on
Information Theory, 27(1):12–23, January 1981.

[59] T. C. Bell, J. G. Cleary, and I. H. Witten. Text compression. Prentice Hall, 1990.

[60] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compression.
Communications of the ACM, 30(6):520–540, June 1987.

[61] I. H. Witten and T. C. Bell. The zero-frequency problem: estimating the probabilities
of novel events in adaptive text compression. IEEE Trans. on Information Theory,
37(4):1085–1094, July 1991.

[62] A. Moffat, R. M. Neal, and I. H. Witten. Arithmetic coding revisited. ACM Trans. Inf.
Syst., 16(3):256–294, 1998.

105



[63] J. G. Cleary and I. H. Witten. Data compression using adaptive coding and partial
string matching. IEEE Trans. on Communications, 32(4):396–402, April 1984.

[64] M. V. Mahoney. Adaptive weighing of context models for lossless data compression.
Technical Report CS-2005-16, Florida Institute of Technology CS Dept., Melbourne,
FL, 2005.

[65] D. Salomon. Data compression - The complete reference. Springer, 4th edition, 2007.

[66] K. Sayood. Introduction to data compression. Morgan Kaufmann, 3rd edition, 2006.

[67] G. Street. Introduction to bioinformatics. Athens Auckland Bangkok Bogot Buenos
Aires, and Karachi Kolkata Kuala Lumpur Madrid Melbourne, 2002.

[68] F. Lillo, S. Basile, and R. Mantegna. Comparative genomics study of inverted repeats
in bacteria. Bioinformatics, 18(7):971–979, 2002.

[69] S. Grumbach and F. Tahi. Compression of DNA sequences. In Proc. of the Data
Compression Conf., DCC-93, pages 340–350, Snowbird, Utah, 1993.

[70] S. Grumbach and F. Tahi. A new challenge for compression algorithms: genetic se-
quences. Information Processing & Management, 30(6):875–886, 1994.

[71] E. Rivals, J.-P. Delahaye, M. Dauchet, and O. Delgrange. A guaranteed compression
scheme for repetitive DNA sequences. In Proc. of the Data Compression Conf., DCC-96,
page 453, Snowbird, Utah, 1996.

[72] D. Loewenstern and P. N. Yianilos. Significantly lower entropy estimates for natural
DNA sequences. In Proc. of the Data Compression Conf., DCC-97, pages 151–160,
Snowbird, Utah, March 1997.

[73] X. Chen, S. Kwong, and M. Li. A compression algorithm for DNA sequences and its
applications in genome comparison. In K. Asai, S. Miyano, and T. Takagi, editors,
Genome Informatics 1999: Proc. of the 10th Workshop, pages 51–61, Tokyo, Japan,
1999.

[74] T. Matsumoto, K. Sadakane, and H. Imai. Biological sequence compression algorithms.
In A. K. Dunker, A. Konagaya, S. Miyano, and T. Takagi, editors, Genome Informatics
2000: Proc. of the 11th Workshop, pages 43–52, Tokyo, Japan, 2000.

[75] X. Chen, S. Kwong, and M. Li. A compression algorithm for DNA sequences. IEEE
Engineering in Medicine and Biology Magazine, 20:61–66, 2001.

[76] X. Chen, M. Li, B. Ma, and J. Tromp. DNACompress: fast and effective DNA sequence
compression. Bioinformatics, 18(12):1696–1698, 2002.

[77] I. Tabus, G. Korodi, and J. Rissanen. DNA sequence compression using the normalized
maximum likelihood model for discrete regression. In Proc. of the Data Compression
Conf., DCC-2003, pages 253–262, Snowbird, Utah, 2003.

[78] G. Manzini and M. Rastero. A simple and fast DNA compressor. Software—Practice
and Experience, 34:1397–1411, 2004.

106



[79] G. Korodi and I. Tabus. An efficient normalized maximum likelihood algorithm for DNA
sequence compression. ACM Trans. on Information Systems, 23(1):3–34, January 2005.

[80] B. Behzadi and F. Le Fessant. DNA compression challenge revisited. In Combinatorial
Pattern Matching: Proc. of CPM-2005, volume 3537 of LNCS, pages 190–200, Jeju
Island, Korea, June 2005. Springer-Verlag.

[81] G. Korodi and I. Tabus. Normalized maximum likelihood model of order-1 for the
compression of DNA sequences. In Proc. of the Data Compression Conf., DCC-2007,
pages 33–42, Snowbird, Utah, March 2007.

[82] M. D. Cao, T. I. Dix, L. Allison, and C. Mears. A simple statistical algorithm for
biological sequence compression. In Proc. of the Data Compression Conf., DCC-2007,
pages 43–52, Snowbird, Utah, March 2007.

[83] Z. Zhu, J. Zhou, Z. Ji, and Y. Shi. DNA sequence compression using adaptive particle
swarm optimization-based memetic algorithm. IEEE Trans. on Evolutionary Compu-
tation, 15(5):643–658, 2011.

[84] A. J. Pinho, D. Pratas, and P. J. S. G. Ferreira. Bacteria DNA sequence compression
using a mixture of finite-context models. In Proc. of the IEEE Workshop on Statistical
Signal Processing, Nice, France, June 2011.

[85] A. J. Pinho, P. J. S. G. Ferreira, A. J. R. Neves, and C. A. C. Bastos. On the repre-
sentability of complete genomes by multiple competing finite-context (Markov) models.
PLoS ONE, 6(6):e21588, 2011.

[86] T. Bose, M. H. Mohammed, A. Dutta, and S. S. Mande. BIND–an algorithm for loss-
less compression of nucleotide sequence data. Journal of Biosciences, 37(4):785–789,
2012.

[87] W. Dai, H. Xiong, X. Jiang, and L. Ohno-Machado. An adaptive difference distribution-
based coding with hierarchical tree structure for DNA sequence compression. In Proc.
of the Data Compression Conf., DCC-2013, pages 371–380. IEEE, 2013.

[88] Pinghao Li, Shuang Wang, Jihoon Kim, Hongkai Xiong, Lucila Ohno-Machado, and
Xiaoqian Jiang. DNA-COMPACT: DNA compression based on a pattern-aware con-
textual modeling technique. PLoS ONE, 8(11):e80377, 2013.

[89] S. Wandelt, M. Bux, and U. Leser. Trends in genome compression. Current Bioinfor-
matics, 2013.

[90] S. Deorowicz and S. Grabowski. Data compression for sequencing data. Algorithms for
Molecular Biology, 8(1):25, 2013.

[91] D. Pratas and A. J. Pinho. Compressing the human genome using exclusively Markov
models. In Advances in Intelligent and Soft Computing, Proc. of the 5th Int. Conf.
on Practical Applications of Computational Biology & Bioinformatics, PACBB 2011,
volume 93, pages 213–220, April 2011.

[92] Diogo Pratas and Armando J. Pinho. M6: a method for compressing complete genomes
using markov models. In Doctoral Symposium in Informatics Engineering, page 6, 2012.

107



[93] E. S. Lander. Initial impact of the sequencing of the human genome. Nature, 470:187–
197, 2011.

[94] S. Christley, Y. Lu, C. Li, and X. Xie. Human genomes as email attachments. Bioin-
formatics, 25(2):274–275, 2009.

[95] M. C. Brandon, D. C. Wallace, and P. Baldi. Data structures and compression algo-
rithms for genomic sequence data. Bioinformatics, 25(14):1731–1738, 2009.

[96] C. Wang and D. Zhang. A novel compression tool for efficient storage of genome rese-
quencing data. Nucleic Acids Research, 39(7):e45, 2011.

[97] S. Kuruppu, S. J. Puglisi, and J. Zobel. Optimized relative Lempel-Ziv compression of
genomes. In Proc. of the 34th Australian Computer Science Conference, ACSC-2011,
volume 11, pages 91–98, 2011.

[98] W. Tembe, J. Lowey, and E. Suh. G-SQZ: compact encoding of genomic sequence and
quality data. Bioinformatics, 26(17):2192–2194, 2010.

[99] S. Deorowicz and S. Grabowski. Compression of DNA sequence reads in FASTQ format.
Bioinformatics, 27(6):860–862, 2011.

[100] M. H.-Y. Fritz, R. Leinonen, G. Cochrane, and E. Birney. Efficient storage of high
throughput DNA sequencing data using reference-based compression. Genome Re-
search, 21:734–740, 2011.

[101] C. Kozanitis, C. Saunders, S. Kruglyak, V. Bafna, and G. Varghese. Compress-
ing genomic sequence fragments using SlimGene. Journal of Computational Biology,
18(3):401–413, 2011.

[102] A. J. Pinho, D. Pratas, and S. P. Garcia. GReEn: a tool for efficient compression of
genome resequencing data. Nucleic Acids Research, 40(4):e27, 2012.

[103] S. Wandelt and U. Leser. FRESCO: referential compression of highly similar sequences.
IEEE/ACM Trans. on Computational Biology and Bioinformatics, 10(5):1275–1288,
2013.

[104] S. Deorowicz, A. Danek, and M. Niemiec. GDC 2: Compression of large collections of
genomes. Scientific Reports, 5(11565):1–12, 2015.

[105] I. Ochoa, M. Hernaez, and T. Weissman. iDoComp: a compression scheme for assembled
genomes. Bioinformatics, page btu698, 2014.

[106] A. J. Pinho, A. J. R. Neves, and P. J. S. G. Ferreira. Inverted-repeats-aware finite-
context models for DNA coding. In Proc. of the 16th European Signal Processing Conf.,
EUSIPCO-2008, Lausanne, Switzerland, August 2008.

[107] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, 1979.

[108] D. Pratas, A. J. Pinho, and J. M. O. S. Rodrigues. XS: a FASTQ read simulator. BMC
Research Notes, 7(1):40, 2014.

108



[109] Erich D Jarvis, Siavash Mirarab, Andre J Aberer, Bo Li, Peter Houde, Cai Li, Si-
mon YW Ho, Brant C Faircloth, Benoit Nabholz, Jason T Howard, et al. Whole-
genome analyses resolve early branches in the tree of life of modern birds. Science,
346(6215):1320–1331, 2014.

[110] J. K. Bonfield and M. V. Mahoney. Compression of FASTQ and SAM format sequencing
data. PLoS ONE, 8(3):e59190, March 2013.

[111] M. H. Mohammed, A. Dutta, T. Bose, S. Chadaram, and Sharmila S. Mande. DELIM-
INATE - a fast and efficient method for loss-less compression of genomic sequences.
Bioinformatics, 28(19):2527–2529, 2012.

[112] A. J. Pinho and D. Pratas. MFCompress: a compression tool for fasta and multi-fasta
data. Bioinformatics, October 2013.

[113] S. Grabowski, S. Deorowicz, and  L. Roguski. Disk-based compression of data from
genome sequencing. Bioinformatics, 31(9):1389–1395, 2015.

[114] C. S. Wallace and D. M. Boulton. An information measure for classification. The
Computer Journal, 11(2):185–194, August 1968.

[115] J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471, 1978.
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malized information distance. Journal of Computer and System Sciences, 77:738–742,
2011.

111



[151] I. Berg, D. Bosnacki, and P. Hilbers. Large scale analysis of small repeats via mining of
the human genome. In 20th Int. Workshop on Database and Expert Systems Application,
DEXA’09, pages 198–202, September 2009.

[152] Junko Tsuji, Martin C Frith, Kentaro Tomii, and Paul Horton. Mammalian numt
insertion is non-random. Nucleic acids research, 40(18):9073–9088, 2012.

[153] Pak Chung Wong, Han-Wei Shen, Christopher R. Jonhson, Chaomei Chen, and
Robert B. Ross. The top 10 challenges in extreme-scale visual analytics. IEEE Com-
puter Graphics and Applications, 32(4):63–67, 2012.

[154] T. D. Schneider and R. M. Stephens. Sequence logos: a new way to display consensus
sequences. Nucleic Acids Research, 18(20):6097–6100, 1990.

[155] H. J. Jeffrey. Chaos game representation of gene structure. Nucleic Acids Research,
18(8):2163–2170, 1990.

[156] L. J. Jensen, C. Friis, and D. W. Ussery. Three views of microbial genomes. Research
in Microbiology, 150:773–777, 1999.

[157] A. G. Pedersen, L. J. Jensen, S. Brunak, H.-H. Staerfeldt, and D. W. Ussery. A DNA
structural atlas for Escherichia coli. Journal of Molecular Biology, 299:907–930, 2000.

[158] N. Goldman. Nucleotide, dinucleotide and trinucleotide frequencies explain patterns
observed in chaos game representations of DNA sequences. Nucleic Acids Research,
21(10):2487–2491, 1993.

[159] P. J. Deschavanne, A. Giron, J. Vilain, G. Fagot, and B. Fertil. Genomic signature:
characterization and classification of species assessed by chaos game representation of
sequences. Molecular Biology and Evolution, 16(10):1391–1399, 1999.

[160] B. Fertil, M. Massin, S. Lespinats, C. Devic, P. Dumee, and A. Giron. GENSTYLE:
exploration and analysis of DNA sequences with genomic signature. Nucleic Acids
Research, 33:W512–W515, 2005.

[161] J. L. Oliver, P. Bernaola-Galván, J. Guerrero-Garćıa, and R. Román-Roldán. Entropic
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[163] M. Crochemore and R. Vérin. Zones of low entropy in genomic sequences. Computers
& Chemistry, pages 275–282, 1999.

[164] O. G. Troyanskaya, O. Arbell, Y. Koren, G. M. Landau, and A. Bolshoy. Sequence
complexity profiles of prokaryotic genomic sequences: a fast algorithm for calculating
linguistic complexity. Bioinformatics, 18(5):679–688, 2002.

[165] B. Clift, D. Haussler, R. McConnell, T. D. Schneider, and G. D Stormo. Sequence
landscapes. Nucleic Acids Research, 14(1):141–158, 1986.

112



[166] L. Allison, L. Stern, T. Edgoose, and T. I. Dix. Sequence complexity for biological
sequence analysis. Computers & Chemistry, 24:43–55, 2000.

[167] L. Stern, L. Allison, R. L. Coppel, and T. I. Dix. Discovering patterns in Plasmodium
falciparum genomic DNA. Molecular & Biochemical Parasitology, 118:174–186, 2001.

[168] T. I. Dix, D. R. Powell, L. Allison, J. Bernal, S. Jaeger, and L. Stern. Comparative
analysis of long DNA sequences by per element information content using different
contexts. BMC Bioinformatics, 8(Suppl. 2):S10, 2007.

[169] V. D. Gusev, L. A. Nemytikova, and N. A. Chuzhanova. On the complexity measures
of genetic sequences. Bioinformatics, 15(12):994–999, 1999.

[170] F. Nan and D. Adjeroh. On the complexity measures for biological sequences. In Proc.
of the IEEE Computational Systems Bioinformatics Conference, CSB-2004, Stanford,
CA, August 2004.

[171] L. Pirhaji, M. Kargar, A. Sheari, H. Poormohammadi, M. Sadeghi, H. Pezeshk, and
C. Eslahchi. The performances of the chi-square test and complexity measures for
signal recognition in biological sequences. Journal of Theoretical Biology, 251(2):380–
387, 2008.

[172] A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Trans. on Infor-
mation Theory, 22(1):75–81, January 1976.

[173] G. Gordon. Multi-dimensional linguistic complexity. Journal of Biomolecular Structure
& Dynamics, 20(6):747–750, 2003.

[174] E. Rivals, O. Delgrange, J.-P. Delahaye, M. Dauchet, M.-O. Delorme, A. Hénaut, and
E. Ollivier. Detection of significant patterns by compression algorithms: the case of
approximate tandem repeats in DNA sequences. Computer Applications in the Bio-
sciences, 13:131–136, 1997.

[175] V. Wood et al. The genome sequence of Schizosaccharomyces pombe. Nature,
415(6874):871–80, February 2002.

[176] D. Pratas, R. M. Silva, A. J. Pinho, and P. J. S. G. Ferreira. An alignment-free method
to find and visualise rearrangements between pairs of dna sequences. Scientific Reports,
5:10203, May 2015.

[177] A. Avelar, L. Perfeito, I. Gordo, and M. Ferreira. Genome architecture is a selectable
trait that can be maintained by antagonistic pleiotropy. Nature Communications, 4,
2013.

[178] H. Lee, J. Thompson, E. Wang, and M. Wetzler. Philadelphia chromosome-positive
acute lymphoblastic leukemia. Cancer, 117(8):1583–1594, 2011.

[179] M. Zody, Z. Jiang, H. Fung, F. Antonacci, L. Hillier, M. Cardone, T. Graves, J. Kidd,
Z. Cheng, Abouelleil A, et al. Evolutionary toggling of the MAPT 17q21. 31 inversion
region. Nature Genetics, 40(9):1076–1083, 2008.

113



[180] M. Donnelly, P. Paschou, E. Grigorenko, D. Gurwitz, S. Mehdi, S. Kajuna, C. Barta,
S. Kungulilo, N. Karoma, R. Lu, et al. The distribution and most recent common
ancestor of the 17q21 inversion in humans. The American Journal of Human Genetics,
86(2):161–171, 2010.
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