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Abstract

With the recently emergence of the high-throughput sequencing technolo-

gies, full genomic DNA sequences have been released to the public, al-

lowing for the first time large genomic computational studies between

species. One of those studies is chromosomal distances between Ho-

minidae primates in order to unveil insights of evolution.

The most successful and promising distance metrics seems to rely on

the compressed based type. Therefore, we propose and use an admissible

normalized compression distance, based on a specific conditional com-

pression analogue which internally is composed by a mixture of static

and dynamic finite-context models.

1 Introduction

The recent full genomic sequencing of primates (Hominidae) have brought

new challenges, such as the identification of chromosomal distances in

order to find insights of large genomic evolution. Although the exis-

tence of several distance metrics, such as Hamming and Levenshtein, the

compressed-based distances seem to be the most successful ones.

A compression-based distance measure assesses the distance between

two objects using the number of bits needed to describe one of them

when a description of the other is available. The foundations of com-

pression distances are built upon the Kolomogorov notion of complexity,

also known as algorithmic entropy, where K(x) of a string x is the length

of the shortest binary program x∗ that computes x in an appropriate uni-

versal Turing machine. As such, K(x) = |x∗|, the length of x∗, denotes

the number of bits of information from which x can be computationally

retrieved [6]. The conditional Kolomogorov complexity, K(x|y), denotes
the length of the shortest binary program, in the universal prefix Turing

machine, that on input y outputs x. A special case occurs when y is an

empty string, y = λ , and hence K(x|λ ) = K(x). Bennett introduced the

information distance [1], E(x,y) = max{K(x|y),K(y|x)}, defined as the

length of the shortest binary program for the reference universal prefix

Turing machine that with input x computes y, as well as with y computes

x. The normalized version (NID [7]) of E(x,y) is formally known as

NID(x,y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)}
, (1)

up to an additive logarithmic term. The normalized compression distance

(NCD) [2] emerged to efficiently compute the NID, formalized as

NCD(x,y) =
C(xy)−min{C(x),C(y)}

max{C(x),C(y)}
, (2)

up to an additive logarithmic term, where C(x) and C(y) represent, re-
spectively, the number of bits outputted in the compression of x and y,

and C(xy) the number of bits outputted by the compression of object x

concatenated with y (conjoint compression analogue).

In this paper, we propose an admissible normalized compression dis-

tance, based on an analogue conditional compressor, that builds an inter-

nal model of the data using a mixture of static and dynamic finite-context

models, in order to explore distances between the primates genomic se-

quences, namely, H. sapiens, P. troglodytes, G. gorilla and P. abelii.

2 Method

2.1 Admissible compression distance

Instead of using the conventional conjoint compression to deduce the mu-

tual information content in (2), we have created a specific analogue of

a conditional compressor, C(x|y) (see next subsection), in order to com-

pute (1). Therefore, the admissible NCD can be calculated using

NCD(x,y) =
max{C(x|y),C(y|x)}

max{C(x),C(y)}
, (3)

where, asymptotically,C(x|λ )=C(x),C(x|x)= 0,C(x|y)≤C(x),C(x|y)+
C(y) =C(y|x)+C(x) and C(x,y)+C(z) ≥C(x,z)+C(y,z), up to an ad-

ditive logarithmic term.

2.2 Conditional compressor

We have conducted a NCD compressor based on a mixture of two classes

(static and dynamic) with multiple finite-context models. Accordingly,

the compression is performed in two phases. In the first phase, the static

class of finite-context models, with variable orders, accumulate the counts

regarding the y object. When the entire y object is processed, the models

are kept frozen and, hence, the second phase starts. At this point, the x

object starts to be compressed using the static models, from the first phase,

in cooperation with the new multiple finite-context models, of variable

orders, that dynamically accumulate the counts only from the x object.

The per symbol information content average provided by the finite-

context model of order-k, after having processed n symbols, is given by

Hk,n =−
1

n

n−1

∑
i=0

log2P(xi+1|xi−k+1..i) bpb, (4)

where “bpb” stands for bits per base. The process of supervision is held

by mixture weights which relate each static and dynamic model. There-

fore, the probability estimate can be given by a weighted average of the

probabilities provided by each model, according to

P(xn+1) = ∑
k

P(xn+1|xn−k+1..n) wk,n, (5)

where wk,n denotes the weight assigned to model k and ∑kwk,n = 1.

For stationary sources, we could compute weights such that wk,n =
P(k|x1..n), i.e., according to the probability that model k has generated the

sequence until that point. In that case, we would get

wk,n = P(k|x1..n) ∝ P(x1..n|k)P(k), (6)

where P(x1..n|k) denotes the likelihood of sequence x1..n being gener-

ated by model k and P(k) denotes the prior probability of model k. As-

suming P(k) = 1
K , where K denotes the number of models, we obtain

wk,n ∝ P(x1..n|k). Calculating the logarithm we get

log2P(x1..n|k) = log2

n

∏
i=1

P(xi|k,x1..i−1) =
n

∑
i=1

log2P(xi|k,x1..i−1), (7)

which corresponds to the code length that would be required by model

k for representing the sequence x1..n. It is, therefore, the accumulated

measure of the performance of model k until instant n. However, since

the DNA sequences are not stationary, a good performance of a model in

a certain region of the sequence might not be attained in other regions.

Hence, the performance of the models have to be measured in the recent

past of the sequence, for example over a window of appropriate size, or

be equipped with a mechanism of progressive forgetting of past measures.

We opted for the latter possibility, using the recursive relation

n

∑
i=1

log2P(xi|k,x1..i−1) = (8a)

= γ
n−1

∑
i=1

log2P(xi|k,x1..i−1)+ log2P(xn|k,x1..n−1). (8b)

As can be verified, this relation corresponds to a first-order recursive fil-

ter that, for γ ∈ [0,1), has a low-pass characteristic and an exponentially

decaying impulse response. For more information on finite-context mod-

elling and mixtures see [8, 9].



Table 1: Data set table. The number of expected chromosome pairs for

each species is represented by ’Exp’, while ’Missing’ is a nonexistence

sequence and Mb represents the approximated size in Mega bases.

Organism Build Exp Missing Mb

Homo sapiens 37.p10 23 - 2,861

Pan troglodytes 2.1.4 24 - 2,756

Gorilla gorilla r100 24 Y 2,719

Pongo abelii 1.3 24 Y 3,028

Figure 1: P. troglodytes, G. gorilla and P. abelii inter-genomics chromo-

somal NCD heatmaps in relation to H. sapiens.

3 Results

The data set is composed by 4 genomes (Table 1), downloaded from the

NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes).

In Fig. 1 the inter-chromosomal NCD distance heatmaps for the three

species relatively to H. sapiens have been plotted in an approach all with

all. As it can be seen, for all species there is a direct correlation with

the respective chromosomal number, with the exception of chromosome

2 (related to 2A and 2B). This is justified by a presumed chromosomal

fusion in humans from previous ancestors [5].

Moreover, the human Y chromosome is highly related with the X

chromosome of all addressed species, namely for the P. troglodytes, be-

cause the Y chromosome exchanged genetic information with X in the

recombination process [3]. Furthermore, there is a low distance between

chromosomes 5 and 17 of G. gorilla and H. sapiens, justified by a chro-

mosomal translocation [10].

On the other hand, in Fig. 2 are presented the chromosomal dis-

tances of P. troglodytes, G. gorilla and P. abelii (chromosomes 2A and

2B have been concatenated) according to H. sapiens chromosomes or-

der. At glance, P. troglodytes has got the lowest distance relatively to H.

sapiens, and after G. gorilla and P. abelii, respectively. Specifically, G.

gorilla chromosomes 5 and 17 have large distances because of the previ-

ous mentioned translocation, while P. abelii seems to have a very different

chromosome 1, besides other relevant dissimilarities.

According to [4], besides the high divergence of Y chromosome,

there are several breakpoints in chromosomes 4, 5 and 12, which were

tested by fluorscense in situ hybridization (FISH), in P. troglodytes using

H. sapiens as reference. Fig. 2 reports the same dissimilarities, surpris-

ingly adding chromosome 17.

Finally, we have found that chromosomes 4, 12 and 18 of G. gorilla

have lower distances to H. sapiens than to the respective P. troglodytes

chromosomes, while chromosomes 5 and 17 of G. gorilla have higher

distances than those of P. abelii. Mitochondrial sequences, as expected,

Figure 2: P. troglodytes, G. gorilla and P. abelii related chromosomal

NCD values using H. sapiens as reference.

show that P. troglodytes is the nearest H. sapiens species, followed by the

G. gorilla and, lastly, by P. abelii.

4 Conclusions

An admissible normalized compression distance has been proposed, based

on a specific conditional compression analogue. The compressor is con-

stituted by a set of multiple static and dynamic finite-context models that

are supervised by a mixture model.

We have addressed a study on chromosomal distances between Ho-

minidae primates, agreeing with several already documented results (us-

ing other approaches), but also unveiling undocumented ones.

The biggest advantage of this method is the process automation for

any kinds of genomic DNA sequences, while using biological techniques

can be a rather lengthy process.
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