
On the compression of FASTQ quality-scores

Diogo Pratas

pratas@ua.pt

Armando J. Pinho

ap@ua.pt

Signal Processing Lab, IEETA / DETI,

University of Aveiro,

3810–193 Aveiro, Portugal

Abstract

The genomics sequencing centers and the scientific community are being

flooded with data. A single sequencing machine can nowadays gener-

ate more data in one day than any existing machine could have produced

throughout the entire year of 2005. The pressure to find efficient com-

pression algorithms for next-generation sequencing (NGS) data is being

felt worldwide.

The NGS most used format, FASTQ, contains three channels of in-

formation, namely headers, DNA bases and quality-scores (QS). Together

with the DNA bases, the QS are the most demanding components in terms

of storage requirements and compressibility. In this paper, we analyze the

QS using several compression techniques aiming to find the best com-

pression model that describes this type of data.

1 Introduction

The scientific community is currently facing a shift in concern that was

probably not foreseen until recently: Genomic data are been produced

at a pace that exceeds the growth of the media capacity to store them.

Nowadays, it is common to find genomics sequencing projects having a

larger fraction of the budget allocated to the computational infrastructure

(including the storage component), than to the biological part.

Modern sequencing instruments are able to generate at least hundreds

of millions of short reads of genomic data and to store them in files with

a specific format, such as the most used FASTQ [4] format. The FASTQ

format, originally developed at the Wellcome Trust Sanger Institute, is a

text-based format for storing biological sequences (DNA bases) and its

corresponding QS, where both are identified with headers and encoded

with ASCII.

Several compression algorithms have been proposed to date. Tembe

et al. proposed G-SQZ [12] and DSRC [5] was proposed by Deorowicz et

al.. Both methods split the data into separate channels, namely headers,

sequences and QS, and compress them individually using the Lempel-Zip

algorithm and Huffman coding.

Kozanitis et al. and Hsi-Yang Fritz et al. proposed, respectively,

SlimGene [9] and mzip [6]. These are reference-based compression meth-

ods that exploit the redundant nature of the data by aligning reads to

a known reference genome sequence and storing genomic positions in-

stead of nucleotide sequences. Wan et al. proposed Q-scores [13], a

method based on lossless and lossy transformations for the compression

of FASTQ QS. Very recently, Jones et al. proposed Quip [7], a lossless

compressor based on the Markov property, reference-based compression

(for the DNA bases) and arithmetic coding, with fast execution and low

memory usage. However, these algorithms seem to have difficulties when

compressing the QS. Therefore, this work aims to study the nature of the

QS, using compression techniques, in order to serve as a starting point for

a future state-of-the-art compression algorithm.

2 Methods and Results

Compression can be seen as a two stage process: modelling and cod-

ing. Modelling is the process of studying the characteristics of the data

source to estimate the probability distribution of data. Coding involves the

transformation of data into a sequence of bits according to the probability

distribution acquired in the modelling process. Therefore, compression

of QS data is a problem that is tightly related with QS information mod-

elling. In order to study the model that better describes the QS, we have

compressed ten sequences from the 1000 Genomes Project1.

The results presented in Table 1 show better ratios for the compressors

based on finite-context modelling (FCM), comparing with BZIP2 (based

1http://www.1000genomes.org/

Figure 1: Context templates of finite-context models. First layer shows a

regular template with a context size of three. The second layer shows a

sparse template using also a context size of three.

Figure 2: Two-state model using a sparse template with context order of

three, exploiting the two-symbol periodicity of the QS.

on the Burrows-Wheeler transform [3] and LZ77 algorithms) and GZIP

(based on the DEFLATE algorithm). Moreover, for the most of the files,

an order-3 seems to produce the best compression ratios.

Thereafter, we have implemented a finite-context model [1] using a

sparse template (c135), as can be seen in the second layer of Fig. 1. This

implementation improves the compression ratios, if compared with a reg-

ular template (presented in the first layer of Fig 1).

Since in a previous work [11] we have explored a three-state model

for compressing the coding regions of DNA sequences, characterized by

a periodicity of three (codons have three nucleotides), and gathering the

information that the QS at a given position is highly correlated with the

score at the preceding position [9], we have explored a two-state finite-

context model.

A two-state finite-context model is causal, and the decoder is able to

reproduce identical probability estimates without side information. Fig-

ure 2 shows the two-state finite-context model using a sparse template

with context order of three. It differs from a (one-state) finite-context

model by the inclusion of two internal states. Each state is selected pe-

riodically, according to a two-symbol period (t mod 2). Each state com-

prises a finite-context model, similar to the one presented in the second

layer of Fig. 1.

As it can be seen in Table 1, the two-state finite-context model using

an order-3 sparse template (c135s2), on average, attains the best compres-

sion ratio.

Most of the recent NGS compression algorithms explore similari-

ties between DNA bases (for instance in reference-based compression),

achieving compression ratios better than those that do not use it. There-

fore, our intention is to study the QS with the aim of discovering if there

are similarities between different QS files.

In order to study the existence (or nonexistence) of similarities, we

used the Normalized Compression Distance (NCD). Li et al. [10], align-

ing ideas from Kolomogorov [8] and based on an information distance

proposed by Bennett et al. [2], defined this practical analog based on



Id Filename nα size P M Bin GZIP BZIP2 FCM-1 FCM-2 FCM-3 FCM-4 FCM-5 FCM-6 c135 c13s2 c135s2

S1 DRR000607 32 3,238,398 B & 5.000 3.515 3.308 3.079 2.989 3.027 3.198 3.489 3.757 3.023 2.944 3.043

S2 DRR000617 32 39,931,464 ! & 5.000 1.694 1.478 1.607 1.540 1.523 1.544 2.404 2.456 1.471 1.490 1.472

S3 ERR001517 27 472,896 ? @ 4.755 3.218 2.957 2.930 2.757 2.804 3.001 3.214 3.431 2.813 2.736 2.829

S4 ERR012631 33 92,698,824 # B 5.044 4.975 4.642 4.502 4.413 4.379 4.468 4.683 4.926 4.232 4.339 4.214

S5 ERR020142 32 432,671,250 % C 5.000 4.701 4.440 4.261 4.183 4.148 4.130 4.059 4.278 3.799 4.126 3.783

S6 ERR048940 31 17,468,418 % C 4.954 4.063 3.779 3.728 3.612 3.592 3.665 3.933 4.065 3.430 3.540 3.426

S7 SRR000921 35 92,283,120 F ! 5.129 2.110 1.808 1.655 1.607 1.573 1.576 2.929 2.932 1.531 1.552 1.513

S8 SRR001113 40 374,619,140 I H 5.322 3.897 3.758 3.491 3.414 3.385 3.429 4.442 - 3.370 3.359 3.348

S9 SRR004387 35 48,141,342 A ! 5.129 2.612 2.280 2.095 2.015 1.962 1.969 2.675 2.778 1.918 1.945 1.905

S10 SRR034542 32 19,940,184 # B 5.000 4.925 4.604 4.433 4.331 4.336 4.519 4.749 4.929 4.235 4.287 4.254

Table 1: Rates (bits per base) for GZIP, BZIP2 and FCM-C compressors over ten sequences. The number of symbols of the alphabet is represented

by nα and size stands for the number of quality scores in the file. ’P’ and ’M’ represent, respectively, the most and least occurring symbols. The Bin

identifier expresses the upper bound, given by: − log2P(nα). The ’-’ indicates an inability to run due to memory constraints.

Id S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 0.9535 1.0002 1.0117 1.0027 1.0007 1.0066 1.0127 1.0014 1.0155 1.0057

S2 1.0000 0.9845 1.0041 1.0073 1.0029 1.0181 1.0368 1.0037 1.0439 1.0142

S3 1.0116 1.0040 0.9014 1.0008 1.0003 1.0035 1.0033 1.0003 1.0045 1.0019

S4 1.0027 1.0077 1.0008 0.9925 1.0157 1.0120 1.0290 1.0201 1.0313 0.9984

S5 1.0007 1.0027 1.0003 1.0156 0.9978 1.0003 1.0123 1.0295 1.0116 1.0051

S6 1.0066 1.0187 1.0035 1.0120 1.0003 0.9770 1.0303 1.0062 1.0429 1.0284

S7 1.0124 1.0359 1.0033 1.0287 1.0122 1.0301 0.9877 1.0099 1.0094 1.0342

S8 1.0014 1.0038 1.0003 1.0201 1.0301 1.0063 1.0098 0.9945 1.0085 1.0069

S9 1.0153 1.0430 1.0046 1.0310 1.0114 1.0427 1.0099 1.0085 0.9844 1.0575

S10 1.0058 1.0145 1.0019 0.9983 1.0052 1.0284 1.0344 1.0069 1.0578 0.9800

Table 2: Normalized Compression Distance (NCD) values over the ten sequences. The bold values (without underlining) represent the NCD performed

with the own sequence (diagonal). The bold and underlining values represent the measures below one.

standard compressors as

NCD(A,B) =
C(AB)−min{C(A),C(B)}

max{C(A),C(B)}
, (1)

where C(A) and C(B) denote, respectively, the number of bits needed

by the (lossless) compression program to represent A and B, and C(AB)
denotes the number of bits required to compress the concatenation of A

and B. Notice that, ideally, NCD(A,A) = 0 (this implies C(AA) =C(A)).
However, practical compression algorithms usually yield NCD(A,A)> 0.

On the other hand, if knowing A does not help reducing the size of B,

then we have C(AB) ≈C(A)+C(B) and NCD(A,B) ≈ 1. In conclusion,

smaller values of NCD(A,B) indicate more similar sequences.

According to Table 2, the NCD values are all greater or equal to one,

with the exception of the diagonals (C(AA) scenario) and the relation of

Id10 with Id4 in both directions (still remains close to one). Therefore,

overall, there are not similarities between QS files, leading to infer that

a reference-based compression should not be the best implementation for

this type of information.

3 Conclusions

In this paper, we have analyzed the QS, using several compression tech-

niques, in order to find the best compression model that describes this

type of data, which appears to be two-state finite-context modelling using

sparse context order of three. Moreover, we have seen that a reference-

based compression is not ideal to this type of information, since there are

not relevant similarities between QS files. Several hypotheses for testing

multiple models will be considered future work.

Funding

Supported by the European Fund for Regional Development (FEDER)

through the Operational Program Competitiveness Factors (COMPETE)

and by the Portuguese Foundation for Science and Technology (FCT) in

the context of the project FCOMP-01-0124-FEDER-022682 (FCT refer-

ence PEst-C/EEI/UI0127/2011).

References

[1] T. C. Bell, J. G. Cleary, and I. H. Witten. Text compression. Prentice

Hall, 1990.

[2] C. H. Bennett, P. Gács, M. Li P. M. B. Vitányi, and W. H. Zurek.

Information distance. IEEE Trans. on Information Theory, 44(4):

1407–1423, July 1998.

[3] M. Burrows and D. J. Wheeler. A block-sorting lossless data com-

pression algorithm. Digital Systems Research Center, May 1994.

[4] P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice.

The Sanger FASTQ file format for sequences with quality scores,

and the Solexa/Illumina FASTQ variants. Nucleic Acids Research,

38(6):1767–1771, 2010.

[5] S. Deorowicz and S. Grabowski. Compression of DNA sequence

reads in FASTQ format. Bioinformatics, 27(6):860–862, 2011. doi:

10.1093/bioinformatics/btr014.

[6] M. H.-Y. Fritz, R. Leinonen, G. Cochrane, and E. Birney. Efficient

storage of high throughput DNA sequencing data using reference-

based compression. Genome Research, 21:734–740, 2011. doi:

10.1101/gr.114819.110.

[7] Daniel C. Jones, Walter L. Ruzzo, Xinxia Peng, and Michael G.

Katze. Compression of next-generation sequencing reads aided by

highly efficient de novo assembly. Nucleic Acids Research, 40(22):

e171, 2012. doi: 10.1093/nar/gks754.

[8] A. N. Kolmogorov. Three approaches to the quantitative definition

of information. Problems of Information Transmission, 1(1):1–7,

1965.

[9] C. Kozanitis, C. Saunders, S. Kruglyak, V. Bafna, and G. Varghese.

Compressing genomic sequence fragments using SlimGene. Jour-

nal of Computational Biology, 18(3):401–413, 2011.

[10] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi. The similar-

ity metric. IEEE Trans. on Information Theory, 50(12):3250–3264,

December 2004.

[11] A. J. Pinho, A. J. R. Neves, V. Afreixo, Carlos A. C. Bastos, and

P. J. S. G. Ferreira. A three-state model for DNA protein-coding re-

gions. IEEE Trans. on Biomedical Engineering, 53(11):2148–2155,

November 2006.

[12] W. Tembe, J. Lowey, and E. Suh. G-SQZ: compact encoding of

genomic sequence and quality data. Bioinformatics, 26(17):2192–

2194, 2010. doi: 10.1093/bioinformatics/btq346.

[13] R. Wan, V. N. Anh, and K. Asai. Transformations for the compres-

sion of FASTQ quality scores of next-generation sequencing data.

Bioinformatics, 28(5):628–635, 2012.

2


