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ABSTRACT

The development and implementation of computational mod-

els to represent DNA sequences is a great challenge. Markov

models, usually known as finite-context models, have been

used for a long time in DNA compression. In a previous

work, we have shown that finite-context modelling can also be

used for sequence generation. Furthermore, it is known that

DNA is better represented by multiple finite-context models.

However, the previous generator only allowed a single finite-

context model to be used for generating a certain sequence.

In this paper, we present results regarding a synthetic DNA

generator based on multiple competing finite-context models.

Index Terms— Statistical generator, synthetic sequences,

Markov models, DNA entropy.

1. INTRODUCTION

DNA generation is the process of sequence design, bringing

into existence synthetic DNA sequence data, obtained by in-

direct measurement, based on pseudo-random models. In this

way, synthetic sequence generation has now an important role

in better understanding some biological characteristics. On

the other hand, looking for DNA generation algorithms is also

a way of finding models that describe the information source

associated to DNA.

Some methods have been proposed to date. As reviewed

by Shin et al. [1], those strategies rely on exhaustive search

[2], random search [3], template-map [4, 5], graph meth-

ods [6], stochastic methods [7], dynamic programming [8],

biologically-inspired methods [9, 10] and evolutionary algo-

rithms [11, 12, 13].

In a previous work [14] we have proposed a method for

DNA generation, relying exclusively on the Markov property.

It uses a model that captures the statistical information along

the sequence in order to generate the next symbol. As we

know from previous work [15], DNA sequence data is bet-

ter represented by multiple finite-context models, since DNA

sequence data are non-stationary. For this reason, we have im-

proved the previous DNA generator using multiple competing

finite-context models.

This paper is organized as follows. In Section 2, we de-

scribe our algorithm. In Section 3, we provide experimen-

tal results, including an information content analysis and the

Kullback-Leibler divergence assessment between the training

sequences and the corresponding synthetic sequences. Fi-

nally, in Section 4, we draw some conclusions.

2. THE GENERATION METHOD

DNA sequence data are non-stationary. In fact, one of the

reasons why most DNA encoding algorithms use a mixture

of two methods, one based on repetitions and the other rely-

ing on low-order finite-context models, is to try to cope with

the non-stationary nature of the data. We also follow this line

of reasoning, i.e., that of using different models along the se-

quence. However, unlike the other approaches, we use ex-

clusively the finite-context paradigm for modelling the data,

changing only the order of the model as the characteristics

of the data change. More precisely, we explore an approach

based on multiple finite-context models of different orders

that compete for generating the data.

For convenience, the DNA sequence is partitioned into

non-overlapping blocks of fixed size, which are then gener-

ated by one of the finite-context models (the block generating

model). Using several models with different orders allows

a better handling of DNA regions with diverse characteris-

tics. Therefore, although these multiple models are continu-

ously updated, only the generating model is used to generate

a given region (block). This model is chosen according to an-

other finite-context model, that operates on an alphabet with

size equal to the number of models, and that collects infor-

mation regarding the sequence of models that are used along

the DNA sequence. We call this sequence of models the side

information.

The generation proceeds in two phases. In the first phase,

a training DNA sequence is used for loading the statistics into

the several finite-context models. During this phase, the coun-

ters that collect the statistics are continuously updated. The

idea is to obtain a set of finite-context models that, because

they have been exposed to the statistical properties of the



training sequence, afterwords are able to generate synthetic

sequences with similar properties. In the second phase, the

models are kept frozen. This is the generating phase, where

the synthetic sequence is created according to the statistics

previously learned. Moreover, whereas the training phase is

deterministic, because it consists on collecting the regularities

of the training sequence, the generating phase is stochastic.

Figure 1 shows an example where two competing finite-

context models are used. In this example, each model col-

lects statistical information from a context of depth k1 =

5 and k2 = 11, respectively. At time n, the two condi-

tioning contexts are c1 = xn−k1+1 . . . xn−1xn and c2 =

xn−k2+1 . . . xn−1xn. For additional details concerning the

finite-context models see, for example, [16, 17, 15].

Fig. 1. Example of an overall model for estimating proba-

bilities using multiple finite-context models, in this case two.

The probability of the next outcome,Xn+1, is conditioned by

the k1 or k2 last outcomes, depending on the finite-context

model chosen for handling that particular DNA block. In this

example, k1 = 5 and k2 = 11.

3. EXPERIMENTAL RESULTS

In this study, we used all the chromosomes from the human

genome. However, due to space restrictions, we only present

results regarding four chromosomes (1, 7, 21 and Y). The

genome was obtained from the National Center for Biotech-

nology Information (NCBI) (ftp://ftp.ncbi.nlm.

nih.gov/genomes/H_sapiens/April_14_2003),

Homo sapiens, Build 33.

In a first phase, we generated three sequences (A, B, C),

based on the first million of bases of human chromosome 1.

In a second phase, we generated four sequences (D, E, F,

G), based on the twenty second million of bases of chromo-

some Y. The main reason for using these sequences is their

high repetitiveness [18] and consequently better coverage of

Table 1. Parameters used in the generation of each synthetic

sequence. Models stands for the number of finite-context

models used. SI represents the context depth of the side infor-

mation needed for representing the identification of the model

used for each block.

Seq. Models SI Block size Size

A 1 - - 1,000,000

B 4 5 100 1,000,000

C 8 5 100 1,000,000

D 8 0 100 1,000,000

E 8 1 100 1,000,000

F 8 3 100 1,000,000

G 8 5 100 1,000,000

low entropy regions. These are the regions that are more dif-

ficult to represent by the finite-context models and, therefore,

we wanted to see how the generator would behave in this case.

Table 1 illustrates the generation parameters used to create

these synthetic sequences.

3.1. Analysis of the information content

In order to compare the results between the previous method

and the current one, we used the state-of-the-art XM encoder

[19] to analyze the information content of the synthetic se-

quences, as can be seen in Fig. 2.

The synthetic sequence A was generated using a single

finite-context model with context depth k = 6. The synthetic

sequence Bwas generated using four competing finite-context

models with context depths k = 4, 8, 12, 16. Sequence C was

generated using eight competing finite-context models with

context depths k = 2, 4, 6, 8, 10, 12, 14, 16. In Fig. 2, it is

possible to observe that the synthetic sequence A is almost

absent of low entropy valleys, and, therefore, it is very dif-

ferent from what we observe in real sequences. On the other

hand, the synthetic sequences B and C, which have been gen-

erated with more than one model, have low entropy valleys, a

characteristic more evident in sequence C. In fact, the number

of models used to generate the sequences seems to be very im-

portant for increasing the number of low entropy valleys, ren-

dering the synthetic sequences more similar to the real ones.

This provides evidence to the conjecture that multiple com-

peting finite-context models provide better generating results

than single finite-context models.

Since the generator relies on the side information finite-

context model for selecting the generating model that is used

for each data block, we analysed how the produced sequences

depend on this parameter (the SI column in Table 1). Ob-

serving Fig. 3, it seems that the low entropy valleys in the

synthetic sequences are related to the side information con-

text depth, showing that this parameter is important. In fact,



Fig. 2. Plots of the information content related to three syn-

thetic sequences (A, B, C). The first row shows the informa-

tion content of the sequence A, the second row of sequence B

and the last row of sequence C. The sequences have been pro-

cessed in both directions, low-pass filtered using averaging

and a Blackman window of size 21, and combined according

to the minimum value attained in each direction.

increasing the side information context depth provides more

low entropy valleys in the information sequences. Given these

results, we conclude that the approach based on multiple com-

peting finite-context models provides better sequence repre-

sentation, as can be verified through the observation of the

information profiles.

3.2. Kullback-Leibler divergence

We used the Kullback-Leibler (KL) divergence to measure

the difference between the probability distribution of the

original sequences and the probability distribution of the cor-

responding synthetic sequences, according to different word

sizes (w). Table 2 presents the values of this divergence for

several values of w.

As can be seen, the divergence is small even for words of

larger size, strengthening the idea that the synthetic sequences

are statistically similar to the original sequences. It can also

be observed that the divergence increases when the size of

the sequence decreases. This is due to the fact that, when the

depth of a model increases, the available original data might

not be sufficient.

4. CONCLUSIONS

In a previous work [14], we have shown that finite-context

modelling can be used for sequence generation. Also, it is

Fig. 3. Plots of the information content of the synthetic se-

quences (from top to bottom, D, E, F, G) based on the XM

information content analysis.

known that DNA is better represented by multiple finite-

context models [15] than by single models. For this reason,

we have improved the generator, allowing the generation of

sequences by multiple competing finite-context models.

We have studied the information content of the sequences

produced by this generator, and we arrived at the conclusion

that they present greater similarity to the real sequences, re-

vealing a significant increase in the low entropy valleys, and

attaining synthetic sequences that are statistically closer to

the training sequences than those produced by the previous

method, as shown by the Kullback-Leibler divergence dis-

tance.
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