
Compressing the human genome using
exclusively Markov models

Diogo Pratas and Armando J. Pinho

Abstract Models that rely exclusively on the Markov property, usually
known as finite-context models, can model DNA sequences without consider-
ing mechanisms that take direct advantage of exact and approximate repeats.
These models provide probability estimates that depend on the recent past
of the sequence and have been used for data compression. In this paper, we
investigate some properties of the finite-context models and we use these
properties in order to improve the compression. The results are presented
using the human genome as example.
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1 Introduction

The study of genetics, of which genetic diseases are an important particular
case, has been growing during the last decades. Making the genome data
easier to transfer over the Internet, as well as reducing its storage size, is
a key step to facilitate these studies. Also, the study of data compression
algorithms, besides the immediate aim of obtaining data reduction, provides
a means for discovering the structure of the data. In fact, in order to compress
data, the compression methods have underlying models that represent the
data more efficiently. Hence, the better the compression, the better these
models describe the information source associated to the data.

Essentially, DNA sequences have been modeled using a combination of
two paradigms, one relying on the Lempel-Ziv substitutional scheme, the
other one based on the Markov property. This approach is justified by the
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non-stationary nature of the DNA sequence data, which is characterized by
an alternation between regions of relatively high and low entropy. Usually,
the low entropy regions are modeled by the substitutional methods, whereas
those of higher entropy are better described by low-order Markov models.

In this paper, we address the problem of representating the human genome
exclusively by a combination of Markov models. To investigate this matter,
we used a method based on multiple competing finite-context models [5]. We
studied the implications of representing the data with different finite-context
models and we discovered some characteristics that allowed us to introduce
some techniques to improve the compression. Also, we compared the abil-
ity of the approach based on multiple competing finite-context models with
that provided by the current state-of-the-art DNA coding method, XM [3],
showing comparable results, but at the cost of much less computation time.
The XM method also uses finite-context modelling. The algorithm comprises
three types of experts: (1) order-2 Markov models; (2) order-1 context Markov
models (typically using information from the 512 previous symbols); (3) the
copy expert, that considers the next symbol as part of a copied region from
a particular offset.

2 Materials and methods

2.1 DNA sequences

In this study, we used the complete DNA sequence of the human genome.
The genome was obtained from the following source: Home sapiens, Build
33, from the National Center for Biotechnology Information (NCBI) (ftp:
//ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/April_14_2003);

2.2 Single finite-context models

We consider five pseudo-random i.i.d. sequences uniformly distributed over
the alphabet {A, C, G, T}, with sizes: Sequence 1, 106 symbols; Sequence 2,
107 symbols; Sequence 3, 108 symbols; Sequence 4, 109 symbols; Sequence 5,
1010 symbols.

These sequences have been compressed using a DNA compressor based
on finite-context models, described in [5], with sixteen different orders (con-
text depths), using single models (no competitive models). The final entropy
values have been plotted in Fig 1.

Observing Fig 1, it is possible to identify a property of the finite-context
models, characterized by a peak on the average number of bits per base (bpb)
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Fig. 1 The entropy of random sequences with different sizes, obtained using finite-context
models of several orders (depths).

curve for an order that depends on the size of the sequence. For comparing
the behaviour of these entropy curves that we have obtained for random
sequences with those generated with real DNA sequences, we have ran the
same procedure for all human chromosomes.
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Fig. 2 Entropy curve for chromosomes 1, 7, 16, 19, X and Y using sixteen single models.

We have observed that almost all chromosomes have an identical pattern,
although significantly different from that obtained with random sequences.
This pattern can be observed for three examples of chromosomes in Fig. 2.
In this case, the curves show a peak, although much less evident than it
is for the random sequences. Based on this observation, we conclude that
there are parts in these chromosomes that seem to be random. Furthermore,
we also observe that the horizontal position of the peak is correlated with
the sizes of the chromosomes (sizes of the samples): ≈ 219 million bases for
chromosome 1, ≈ 155 million bases for chromosome 7 and ≈ 80 million bases
for chromosome 16.

However, chromosomes 19 (≈ 56 million bases), X (≈ 148 million bases)
and Y (≈ 23 million bases) do not show an entropy pattern similar to the
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others, specially chromosome Y. Chromosomes 19 and X are generally bet-
ter compressed than the others (apart from chromosome Y), revealing that
there are more repetitive zones and less random parts in these chromosomes.
Chromosome 19 is the one containing the largest number of small repeats [1],
thus justifying the shape of the peak in the corresponding entropy curve.

Chromosome Y showed the most different behaviour in this process, lack-
ing the peak in the entropy curve. As reported before [4], the Y chromosome
is highly repetitive, a property that agrees with the observations and that
strengthens the conclusion that the main reason for peak absence is the ex-
istence of extensive repetitive zones in this chromosome.

2.3 Competitive finite-context models

It is known that DNA data is better represented by multiple finite-context
models [5], because the data are non-stationary. Having observed the pres-
ence of a peak in the entropy curve when using single models, we now address
the case of using multiple competing models to investigate if this property
still holds. Therefore, we compressed the random sequences using the sixteen
models, one by one, but now competing with a fixed order-1 model, using a
block size of one base. In this evaluation, we did not include the additional
information needed to describe which of the two models is used for each base
and, therefore, the presented values do not correspond to real compression
values (which, of course, cannot be lower than two bits per base for ran-
dom sequences). Here, we just wanted to assess the peak property with the
competitive models.
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Fig. 3 Entropy curve for random sequences, using two competing models: one fixed with
order-1, the other varying from order one to sixteen.

Apparently, in Fig 3 the peak has been inverted, if we compare with the
previous results (Fig 1). Moreover, we tested the same process with more
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competitive models and the peak remained inverted. Using this property, it
is possible to know where the best theoretical compression model order is.
However, random sequences and DNA sequences are different, so we used the
same method to test if a similar behaviour would also appear in the DNA
sequences. Fig 4 is an example of that test (using a block size of ten bases).
It shows an inverted peak in all chromosomes, as occurred with the random
sequences, apparently revealing the best compression model orders for the
corresponding block size and models usage.
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Fig. 4 Entropy curve for chromosome 1, 7, 16, 19, X and Y using one fixed order-1 model
competing with sixteen single models.

2.4 Sequence concatenation

Finite-context modelling provides probability estimates that depend on the
recent past of the sequences. Generally, bigger sequences provide better
statistics, consequently providing more accurate models. Normally, the hu-
man genome (like other eukaryote organism) is compressed chromosome by
chromosome, which prevents the model from exploring inter-chromosome
correlations[2]. In order to explore the advantage of using these models in
more than one chromosome at the same time, we compressed chromosome 1
concatenated with chromosome 2 and compared the compression ratio with
the average resulting from compressing the chromosomes individually. Table 1
shows the results.

In this case, the average rate without concatenation would stand for 1.7221
bpb. Although, with concatenation, the ratio value is 1.7147 bpb, indicating
that there is an advantage of using concatenation in finite-context models.
Moreover, we used this method with more sequences and also including more
competing models, consistently obtaining better compression results.
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Table 1 Compressing results regarding chromosome 1, chromosome 2 and a concatenation

of chromosomes 1 and 2. It has been used two competitive models (order-3 and order-16)
and a block size of 50 bases.

Sequence Rate (bpb) Time (min.) Length (Mb)

Chromosome 1 1.7121 9.33 218.71

Chromosome 2 1.7314 14.10 237.04

Concatenated 1.7147 20.92 455.75

3 Results and discussion

In the previous section, we presented a property of finite-context models,
based on the observation of a peak in the entropy curve obtained as a func-
tion of the model order, apparently revealing the most repetitive chromo-
somes. Consequently, we discovered that the peak observed in the single
finite-context models indicated one of the best models to compress the se-
quences using the competitive finite-context models. On the other hand, we
realized that using concatenated sequences we could archive better compres-
sion results. Therefore, we concatenated all chromosomes from the human
genome and addressed it as a single sequence.

The version of the human genome that we are using has about 2.6 × 109

bases (excluding the unknown symbols). Since the human genome is bigger
than Sequence 4 (109 symbols) and smaller than Sequence 5 (1010 symbols),
then its entropy curve should show a peak between order-13 and order-15 (see
Fig 3) and, more probably, between order-13 and order-14. For the reason
explained below, of uniform model order distribution, we chose order-13.

We recall that, due to the non-stationary characteristic of the DNA data,
the multiple finite-context models should combine, at least, a low order model
and a high order one. Accordingly, we used an order-4 model, because to
compress the human genome with competing models, model order-4 seems
to have the best compression ratio in the low order category. For the high
order category, an order-16 model seems to be the best. Together with the
order-13 indicated by the presence of the peak for this sequence size, we get
three models with depths 4, 13 and 16. However, since there is a difference
of 3 between model order-13 and order-16, we decided to include an addi-
tional model for order 7 and, therefore, to have an uniformly model order
distribution: 4, 7, 13, 16.

The size of the data block is also a parameter that needs to be chosen. To
assess how this paramenter may affect the performance of the compression
algorithm, we performed an exhaustive search in the interval from size 80 to
size 120, using the four models mentioned above. Fig 5 shows the compression
results obtained, revealing that a block size of 105 bases lead to the best
compression. Nevertheless, as can be seen in the graphic, for this range the
exact block size does not affect the compression ratio in a significant way.
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Fig. 5 Entropy curve for the compression of the human genome using four models, as a
function of the block size.

Table 2 Compressing results of the human genome with different approaches. The FCM-
S, FCM-C and FCM-CA columns contain, respectively, the results provided by the single
finite-context models, by the eight competitive finite-context models on the individual

chromosomes, and by the four competitive finite-context models on the complete genome
sequence. The XM-50 and XM-200 columns show the results obtained with the XM algo-
rithm, using 50 and 200 experts.

Method FCM-S FCM-C FCM-CA XM-50 XM-200

Rate (bpb) 1.739 1.695 1.643 1.644 1.618

Time (min) 46 323 197 1035 1780

The experimental results included in Table 2 show that previous com-
pression results of the human genome with competitive finite-context models
(FCM-C), using eight order models (2, 4, 6, 8, 10, 12, 14 and 16), indicated
a ratio of 1.695 bpb. In this work (FCM-CA), we were able to compress the
human genome slightly better than the state-of-the-art XM encoder [3] (with
50 experts). Moreover, FCM-CA was 5 times faster than XM-50. Regard-
ing XM-200, also associated to the XM technique but using 200 experts, it
has better compression ratio (0.025 bpb) than FCM-CA, but FCM-CA is
approximately 9 times faster.

4 Conclusion

We have pointed out a property of finite-context models, characterized by a
peak in the entropy curve obtained using different model orders. The ampli-
tude of this peak seems to be related with the amount of repetitiveness of
the sequence (the higher the randomness, the more pronounced the peak),
whereas the position of the peak depends on the size of the sequence. Using
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competitive finite-context modelling, the peak is inverted, indicating a model
order for which compression is efficient.

We concluded that using finite-context modelling in the concatenated hu-
man genome gives better compression results than when using the chromo-
somes one by one. This means that inter-chromosome information can be
used by these models. Using only Markov models, we were able to compress
the human genome with values that are competitive with the XM technique
and that require much less computation time.

Taking into account the results that we report in this paper, we can say,
perhaps somewhat surprisingly, that complete genomes can be quite well
described using only discrete Markov models, i.e., by models that rely on
short-term knowledge of the past.
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