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Abstract

The development and implementation of computational

models to represent DNA sequences is a great challenge.

Models that rely exclusively on theMarkov property, usually

known as finite-context models, have been exploited in DNA

data compression. In this paper, we present preliminary re-

sults regarding a study that aims at finding how well DNA

synthetic sequences can be generated by finite-context mod-

els. These models provide probability estimates that depend

on the recent past of the sequence in order to generate the

next symbol. The experimental results show that synthetic

sequences can be generated using these models, motivating

further study.

1 Introduction

DNA generation is the process of sequence design,

bringing into existence synthetic DNA data based on

pseudo-random models. In this way, synthetic sequence

generation has now an important role in better understand-

ing some biological characteristics. Some methods have

been proposed to date [2], [8], [7].

In this paper, we propose a method for DNA generation,

relying on finite-context modelling, based exclusively on

the Markov property [6]. It uses a model that captures the

statistical information along the sequence in order to gener-

ate the next symbol. The preliminary results that we have

obtained are promising, motivating further research efforts.

1.1 Finite-context models

Consider an information source that generates symbols

(DNA bases), s, from the alphabet A = {A,C,G,T}.

Also, consider that the information source has already gen-

erated the sequence of n symbols xn = x1x2 . . . xn, xi ∈
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A. A finite-context model (see Fig. 1) assigns proba-

bility estimates to the symbols of the alphabet, regard-

ing the next outcome of the information source, accord-

ing to a conditioning context computed over a finite and

fixed number, k > 0, of the most recent past outcomes

c = xn−k+1 . . . xn−1xn (order-k finite-context model)

[1, 9, 10].

Figure 1. Example of a finite-context model:
the probability of the next outcome, Xn+1, is

conditioned by the last k outcomes. In this
example, A = {A,C,G,T} and k = 5.

The probability estimates, P (Xn+1 = s|c), ∀s∈A, are

usually calculated using symbol counts that are accumu-

lated while the sequence is processed, which makes them

dependent not only of the past k symbols, but also of n. In

other words, these probability estimates are generally time

varying.

In practice, the probability that the next outcome, Xn+1,

is s, where s ∈ A, is obtained using the estimator

P (Xn+1 = s|c) =
nc
s
+ α∑

a∈A

nc

a
+ 4α

, (1)

where nc
s

represents the number of times that, in the past,

the information source generated symbol s having c as the

conditioning context. Parameter α controls how much prob-

ability is assigned to unseen (but possible) events, and plays



a key role in the case of high order models. When k is large,

the number of conditioning states, 4k, is high, which implies

that statistics have to be estimated using only a few obser-

vations. Note that this estimator is the Laplace estimator

when α = 1 [5] and the Jeffreys [3] / Krichevsky-Trofimov

estimator [4] when α = 1/2.

2 Experimental results and conclusions

For the evaluation of the generation method we used

the release of April 14th, 2003 of the Human genome

(ftp://ftp.ncbi.nlm.nih.gov/genomes/H_

sapiens/April_14_2003), specially chromosome 2

and Y. From chromosome 2, it was chosen a sequence of

one million symbols. The sequence was compressed using

a finite-context model [6], for model orders from one to

14, and the final entropy value was obtained in each case.

Then, using the models created from the original sequence,

we generated the synthetic sequence, with the same size as

the original and α = 1/10. Then, the synthetic sequence

was compressed using the same method as for the original

sequence, and the final entropy value was obtained. Fig. 2

shows those entropy values. As can be seen, for low orders

the two curves coincide, but, as expected, for higher orders

the synthetic sequence is better compressed.
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Figure 2. Original and the corresponding syn-
thetic sequences compressed.

We have used the same process as described above, in

order to test chromosome Y. As we know from previous

studies, the Y chromosome is highly repetitive, a property

that produces high compression ratios. In Fig 3, it can be

seen that for high orders and α = 1/10 the synthetic se-

quences are better compressed. However, for α = 1 the

entropy approaches the 2 bits per symbol (bps) limit.

Finite-context modelling has been used for a long time

for DNA compression. In this paper, we have shown that

finite-context modelling can also be used for sequence gen-

eration. It is known that DNA is better represented by mul-
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Figure 3. Chromosome Y and the corre-
sponding synthetic sequence compressed

with different α values.

tiple finite-context models [6]. However, the current gener-

ator only allows a single finite-context model to be used for

generating a certain sequence. Therefore, in the future, we

intend to improve our generator by exploring this character-

istic.
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