
Authorship attribution using relative compression

Armando J. Pinho, Diogo Pratas, and Paulo J. S. G. Ferreira

IEETA - Institute of Electronics and Informatics Engineering of Aveiro
DETI - Department of Electronics, Telecommunications and Informatics

University of Aveiro, 3810-193 Aveiro, Portugal
{ap,pratas,pjf}@ua.pt

Abstract

Authorship attribution is a classical classification problem. We use it here to illustrate the
performance of a compression-based measure that relies on the notion of relative compres-
sion. Besides comparing with recent approaches that use multiple discriminant analysis
and support vector machines, we compare it with the Normalized Conditional Compression
Distance (a direct approximation of the Normalized Information Distance) and the popular
Normalized Compression Distance. The Normalized Relative Compression (NRC) attained
100% correct classification in the data set used, showing consistency between the compres-
sion ratio and the classification performance, a characteristic not always present in other
compression-based measures.

Introduction

We consider the problem of authorship attribution to assess the performance of
three compression-based measures, namely, the Normalized Compression Distance
(NCD), the Normalized Conditional Compression Distance (NCCD), and a new ap-
proach, the Normalized Relative Compression (NRC). For comparison with other
non compression-based approaches, we rely on recent benchmarking results available
for the data set used in [1]. To attenuate the potential impact of using different
compressors for each measure, we implemented a generic compressor, based on mix-
tures of finite-context models (FCMs), that is able to operate in several modes: the
usual non-referential compression mode, denoted C(x), the (referential) conditional
compression mode, denoted C(x|y), and the (referential) relative compression mode,
denoted C(x‖y), where, without loss of generality, x and y can be considered binary
strings.

In the conditional compression mode, the compressor starts by building an internal
model of y, using a combination of FCMs of several orders (see below for more details).
After processing y, these models are kept fixed. In the second phase, x is compressed
using the (fixed) models of y and another set of FCMs that learn the statistics of x as
it is processed. Each symbol of x is encoded using a probability estimate, resulting
from a mixture of the probabilities produced by each of the FCMs (those modeling y
and those modeling x). This implements the C(x|y), required to compute the NCCD.

The relative compression mode, C(x‖y), differs in how the internal models of the
encoder are built. In this case, as in C(x|y), a set of FCMs are loaded with the
information of y and kept fixed afterwards. However, contrarily to C(x|y), there is
no modeling of x during the encoding phase, i.e., x is encoded exclusively using the
models built from y.



Some compression-based measures

Almost two decades ago, Bennett et al. proposed an information distance that mi-
norizes, in an appropriate sense, every effective metric [2], i.e., if two strings are
closely related according to any “admissible distance”, then they will also be close to
each other according to the Information Distance (ID) [3]. The ID and its normalized
version, the Normalized Information Distance (NID) [3], are defined in terms of the
Kolmogorov complexity of the involved strings, K(x) and K(y), as well as of the
complexity of one of them when the other is provided, i.e., K(x|y) and K(y|x),

NID(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}
. (1)

Because the Kolmogorov complexity is noncomputable, alternatives to (1) have
been proposed to render it practical. Its compression-based direct counterpart de-
pends on C(x|y), i.e., the number of bits of the compressed version of x when y is
given as additional input to the compressor, leading to the Normalized Conditional
Compression Distance (NCCD)

NCCD(x, y) =
max{C(x|y), C(y|x)}

max{C(x), C(y)}
. (2)

This measure was used, e.g., by Nikvand et al. to estimate image distortion [4, 5].
A well known and popular alternative to the NCCD is the Normalized Compres-

sion Distance (NCD) [3, 6], defined as

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}
, (3)

where C(x) and C(y) represent, respectively, the number of bits of a compressed
version of x and y, and C(xy) the number of bits of a compressed version of x and
y concatenated. The main advantage of the NCD is not requiring special purpose
compressors for computing the conditional compression, C(x|y).

We also consider a measure based on the notion of relative compression, denoted
by C(x‖y), representing the compression of x relatively to y. This measure obeys to

1. C(x‖y) ≈ 0 iff string x can be built efficiently from y;

2. C(x‖y) ≈ |x| iff K(x|y) ≈ K(x),

based on which we define the Normalized Relative Compression (NRC) of string x
given string y as

NRC(x, y) =
C(x‖y)

|x|
, (4)

where |x| denotes the length of x. Notice that in the more common interpretation
of conditional compression, denoted by C(x|y), we have C(x|y) ≈ C(x) iff K(x|y) ≈
K(x) (i.e., when x and y are totally unrelated), and C(x|y) ≈ |x| iff K(x|y) ≈ |x|
(i.e., when x and y are totally unrelated and x is incompressible).



The idea of relative compression was used before in several different forms, for
various purposes. For example, Watanabe et al. [7, 8] proposed the pattern represen-
tation scheme using data compression (PRDC) for media data analysis, in which we
can find ideas close to those of the relative compression concept. Similar ideas were
used to estimate the relative entropy from the data contained in the x and y strings,
for posterior estimation of the distance between them [9–11]. Also, Cao et al. [11]
proposed estimators for the relative entropy based on the Burrows-Wheeler block
sorting transform [12] and on the context-tree weighting data compression method
[13], revisiting the key idea of model-freezing, initially proposed by Dawy et al. [14].
In fact, model-freezing is a central idea in relative compression.

A generic encoder based on mixtures of finite-context models

We developed an encoder based on mixtures of FCMs, whose mixture weights are
continuously adapted during compression, according to the performance of each in-
dividual probabilistic model. After seeing the first n symbols of x, denoted xn

1 , the
average number of bits generated by an order-k FCM is (logarithms are base-2)

Hk,n = −
1

n

n∑

i=1

logP (xi|x
i−1

i−k), (5)

where we assume the convention that x0
1−k is known to both the encoder and decoder.

Hk,n can be viewed as a measure of the average performance of model k until position
n. Therefore, the overall probability estimate for position n + 1 can be given by
the weighted average of the probabilities provided by each model, according to their
individual performance, i.e.,

P (xn+1) =
∑

k∈K

P (xn+1|x
n
n−k+1) wk,n, (6)

where K denotes the set of |K| models involved in the mixture, and

wk,n = P (k|xn
1 ), (7)

i.e., the weights correspond to the probabilities that each model has generated xn
1 .

Hence, we have
wk,n = P (k|xn

1 ) ∝ P (xn
1 |k)P (k), (8)

where P (xn
1 |k) denotes the likelihood of sequence xn

1 being generated by model k and
P (k) denotes the prior probability of model k. Assuming P (k) = 1/|K|, we also
obtain

wk,n ∝ P (xn
1 |k). (9)

Calculating the logarithm of this probability we get

logP (xn
1 |k) = log

n∏

i=1

P (xi|k, x
i−1
1 ) = log

n∏

i=1

P (xi|x
i−1

i−k) =
n∑

i=1

logP (xi|x
i−1

i−k), (10)



which is related to the number of bits that would be required by model k to rep-
resent the sequence xn

1 . Therefore, it is related to the accumulated measure of the
performance of model k until position n.

To facilitate faster adaptation to non-stationarities of the data, instead of using
the whole accumulated performance of the model, we adopt a progressive forget-
ting mechanism. The idea is to let each model to progressively forget the distant
past and, consequently, to give more importance to recent performance results. To
accommodate this, we first rewrite (10) as

logP (xn
1 |k) =

n−1∑

i=1

logP (xi|x
i−1

i−k) + logP (xn|x
n−1

n−k) (11)

and then
log pk,n = γ log pk,n−1 + logP (xn|x

n−1

n−k), (12)

where γ ∈ [0, 1) is the forgetting factor and (− log pk,n) represents the estimated
number of bits that would be required by model k to represent the sequence xn

1 (we
set pk,0 = 1), taking into account the forgetting mechanism. Removing logarithms,
we rewrite (12) as

pk,n = pγk,n−1
P (xn|x

n−1

n−k) (13)

and, finally, we set the weights to

wk,n =
pk,n∑

k∈K

pk,n
. (14)

The probability estimates P (xn+1|x
n
n−k+1) are calculated using symbol counts,

according to

P (0|xn
n−k+1) =

N(0|xn
n−k+1) + α

N(0|xn
n−k+1

) +N(1|xn
n−k+1

) + 2α
, (15)

where N(0|xn
n−k+1) represents the number of times that, in the past, the sequence

xn
n−k+10 was found. Parameter α allows balancing between the maximum likelihood

estimator and a uniform distribution (when the total number of events, n, is large, it
behaves as a maximum likelihood estimator). For α = 1, (15) reduces to the Laplace
estimator.

We consider up to two sets of FCMs—those belonging to what we call the reference
set,R, and those in the target set, T . The reference set contains the FCMs responsible
for modeling the conditioning string, i.e., the y of C(x|y) or of C(x‖y), whereas the
target set of FCMs is used to represent x, when required.

Basically, the probability of the next symbol, xn+1, is given by

P (xn+1) =
∑

k∈R

Pr(xn+1|x
n
n−k+1) w

r
k,n +

∑

k∈T

Pt(xn+1|x
n
n−k+1) w

t
k,n, (16)

where Pr(xn+1|x
n
n−k+1) and Pt(xn+1|x

n
n−k+1) are, respectively, the probability assigned

to the next symbol by a FCM from the reference set and from the target set, and



where wr
k,n and wt

k,n denote the corresponding weighting factors, with

wr
k,n ∝ (wr

k,n−1)
γPr(xn|x

n−1

n−k) and wt
k,n ∝ (wt

k,n−1)
γPt(xn|x

n−1

n−k), (17)

constrained to ∑

k∈R

wr
k,n +

∑

k∈T

wt
k,n = 1. (18)

Experimental results on authorship attribution

Authorship attribution is a classical classification problem and we use it here to
illustrate the performance of the proposed approach. We use the same corpus of
168 English texts of known authorship described in [1]. The corpus was built from
original texts obtained from Project Gutenberg (http://www.gutenberg.org/) and
truncated to approximately the first 5,000 words [1]. The seven authors are: Sir
Arthur Conan Doyle (26 texts), Andrew Lang (14 texts), B. M. Bower (25 texts),
Charles Dickens (25 texts), Henry James (26 texts), Richard Harding Davis (26 texts),
and Zane Grey (26 texts).

We replaced single or multiple line breaks with a single space and multiple spaces
with a single space. The experiments intended to simulate the case where a text with
unknown authorship is compared against known works of several authors. There-
fore, for each target text, ti, i = 1, . . . , 168, the compression-based measures to the
seven references, rj, j = 1, . . . , 7, were computed and the author corresponding to the
smallest one was assigned.

In principle, the references should be built using all information available (al-
though obviously excluding the text under classification). However, because in this
data set one of the authors (Andrew Lang) has only about half of the texts of the
other authors, and to avoid biasing this author negatively, we forced each reference to
have approximately 390,000 characters. Apart from Andrew Lang, this was attained
by using only about the first half of the characters available in the texts of all other
authors.

Results using the NCD

We computed the NCD using several off-the-shelf, general purpose, compression tools,
namely gzip, bzip2, lzma, ppmd and zpaq. The worst performance was attained by
gzip, with 41 out of the 168 texts misclassified, whereas the best performance—only
one misclassified text—was provided by lzma and zpaq (see Tables 1 and 2).

Table 1 shows, for each compressor, the number of misclassifications and the size of
the compressed targets (each target compressed separately from the others). Hence,
the values presented correspond to

SCT =
168∑

i=1

C(ti),

where C(ti) denotes the number of bytes required by compressor C (gzip, ppmd,
lzma, . . . ) to compress text ti.



Table 1: Authorship misclassifications using the NCD and several data compressors. It
is also shown the compressed size of all preprocessed texts (no linebreaks and only single
spaces) using those data compressors. The “mxfcm(tar)” compressor uses an optimized
mixture of FCMs over all the targets and over a parameter search space explained in the text.
The “mxfcm(best)” compressor was obtained after testing the classification performance of
several configurations and choosing the best one.

Size (bytes) Misclassifications
uncompressed 6,461,205 —
mxfcm(best) 2,965,030 1
gzip 2,635,064 41
mxfcm(tar) 2,600,534 8
lzma 2,480,973 1
bzip2 2,266,568 2
zpaq 2,079,993 1
ppmd 2,071,301 3
zpaq(max) 2,018,470 1

Table 2 shows the number of misclassifications and the size of the compressed
references, for each compressor. More precisely, the compression values correspond
to

SCR =
7∑

i=1

C(ri),

where the ri are the references.
It is interesting to observe that, although lzma was considerably worse than zpaq

in compressing both the individual targets and the references, both compression algo-
rithms attained the same classification performance. On the contrary, ppmd, which
was the second best in terms of compression, did not behave as well in classifying the
texts.

The poor performance of gzip is clearly due to the relatively small sliding window
of its dictionary (only 32 Kbytes), which is insufficient for this problem. On the
contrary, the default block size of bzip2 (900 Kbytes) was appropriate and hence its
relatively good performance.

We also include results provided by three versions of our compressor based on
mixtures of FCMs. Both “mxfcm(tar)” and “mxfcm(ref)” were found by searching
all possible combinations of model orders ranging from zero to eight, and picking the
combinations maximizing the compression of the targets and references, respectively.
Version “mxfcm(best)” was obtained after testing the classification performance of
those 511 configurations and choosing the best one.

Figure 1 shows a scatter plot of the number of misclassifications versus the com-
pressed size of the targets. It shows that for the same compressed size the number
of misclassifications may vary over a wide range. Figure 2 shows the number of mis-
classifications versus the compressed size of the references. As in the case of Fig. 1,



Table 2: Authorship misclassifications using the NCD and several data compressors. It is
also shown the compressed size of all preprocessed references (no linebreaks and only single
spaces) using those data compressors. The “mxfcm(ref)” compressor uses an optimized
mixture of FCMs over all references and over a parameter search space explained in the text.
The “mxfcm(best)” compressor was obtained after testing the classification performance of
several configurations and choosing the best one.

Size (bytes) Misclassifications
uncompressed 2,727,843 —
mxfcm(best) 1,096,238 1
gzip 1,062,552 41
lzma 907,553 1
mxfcm(ref) 893,549 5
bzip2 818,456 2
ppmd 762,662 3
zpaq 730,414 1
zpaq(max) 703,525 1

an increase in compression ratio does not necessarily lead to better classification per-
formance.

Results using the NCCD

The results in Tables 1 and 2 and the plots in Figs. 1 and 2 clearly show that the
Normalized Compression Distance, even when combined with some of the best cur-
rently available text compressors, is not able to provide 100% correct classification.
The results also show how difficult is to understand the impact of the compression
gain in the number of misclassifications.

The NCCD also suffers from this same problem, although because it is derived
directly from the NID, it might not be so severe. In fact, although we did not succeed
in achieving 100% correct classification using our FCM-based encoder associated to
the NCD, with the NCCD we were able to find some configurations of models leading
to error free authorship attribution in the data set considered. Note that, in this case,
the search space is much larger, because combinations of models for both the target
and reference components have to be assessed, rendering exhaustive search much more
demanding. Hence, since we were able to find some successful combinations by trial
and error, in this case we did not perform a systematic search. One of such configu-
rations comprised five FCMs for modeling the reference—orders one (α = 1/10), two
(α = 1/100), four (α = 1/1000), five (α = 1/1000) and six (α = 1/10000)—and seven
for modeling the target—orders zero (α = 1), one (α = 1/10), two (α = 1/100), three
(α = 1/500), four (α = 1/1000), five (α = 1/1000) and (α = 1/10000). The mixture
parameter was γ = 0.1.
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Figure 1: Number of wrong authorship attributions, using the NCD, as a function of the
total compression size of all targets. Each dot in the graph represents a particular configu-
ration of finite-context models in the encoder.

Results using the NRC

The NRC depends only on one term, C(x‖y). Hence, in this case it was practical
to perform a search over all possible combinations of models, ranging from order
zero until order eight. Experimental evidence has been showing that deeper models
generally benefit from a smaller α in the probability estimator defined in (15), hence
giving more importance to past observations [15]. Therefore, whereas for models from
zero-order until fourth-order we used α = 1 (Laplace estimator), for order five we used
α = 1/100 and for orders six to eight α = 1/1000. The mixture parameter was set to
γ = 0.1.

Figure 3 shows how the total relative compression size of all references, given by

SRCR =
7∑

i=1

7∑

j=1

C(ri‖rj), (19)

correlates with the number of misclassifications in the authorship attribution problem.
Note that SRCR can be seen as an indicator of the modeling power of the particular
configuration of FCMs used. Moreover, although it is straightforward to obtain such
indicator for the NRC, since it depends only on a compression term, it is not so
evident how to do it for measures that depend on several compression terms.

In the case addressed, for all 41 combinations of FCMs for which SRCR ≤ 5,892,933
bytes, we achieved 100% correct authorship attribution. The combination having the
second best value of SRCR comprised just three FCMs (recall that in the NRC only the
reference is modeled), with orders two, five and eight. In [1], the best result reported
was 96.4% of correct classification (162 out of 168).
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Figure 2: Number of wrong authorship attributions, using the NCD, as a function of the
total compression size of all references. Each dot in the graph represents a particular
configuration of finite-context models in the encoder.

Conclusion

Using the Normalized Relative Compression (NRC), we were able to obtain 100% cor-
rect classification performance in an authorship attribution problem. The NRC is also
generally less computationally demanding than other compression-based measures.
Notice that, to compute the NRC between several targets and a single reference, the
workload can be even more reduced because it suffices to build each reference model
once, and reuse it to compress each target in turn. Moreover, the NRC seems to
be consistent regarding compression gain, i.e., improvements in the compression gain
seem to provide consistent improvements in the classification performance, a charac-
teristic not always present in other compression-based measures, and that might be
related to the nonapproximability of the Normalized Information Distance [16].
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[11] H. Cai, S. R. Kulkarni, and S. Verdú, “Universal divergence estimation for finite-
alphabet sources,” IEEE T Inform Theory, vol. 52, pp. 3456–3475, Aug 2006.

[12] M. Burrows and D. J. Wheeler, A block-sorting lossless data compression algorithm,
Digital Systems Research Center, May 1994.

[13] F. M. J. Willems, Y. M. Shtarkov, T. J. Tjalkens, “The context-tree weighting method:
basic principles,” IEEE T Inform Theory, vol. 41, no. 3, pp. 653–664, May 1995.

[14] Z. Dawy, J. Hagenauer, and A. Hoffmann, “Implementing the context tree weighting
method for content recognition,” in Proc of DCC, Snowbird, Utah, 2004.

[15] A. J. Pinho, P. J. S. G. Ferreira, A. J. R. Neves, and C. A. C. Bastos, “On the
representability of complete genomes by multiple competing finite-context (Markov)
models,” PLoS ONE, vol. 6, no. 6, p. e21588, 2011.

[16] S. A. Terwijn, L. Torenvliet, and P. M. B. Vitányi, “Nonapproximability of the nor-
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