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Abstract. Every data compression method assumes a certain model of
the information source that produces the data. When we improve a data
compression method, we are also improving the model of the source.
This happens because, when the probability distribution of the assumed
source model is closer to the true probability distribution of the source, a
smaller relative entropy results and, therefore, fewer redundancy bits are
required. This is why the importance of data compression goes beyond
the usual goal of reducing the storage space or the transmission time of
the information. In fact, in some situations, seeking better models is the
main aim. In our view, this is the case for DNA sequence data. In this
paper, we give hints on how finite-context (Markov) modeling may be
used for DNA sequence analysis, through the construction of complexity
profiles of the sequences. These profiles are able to unveil structures of
the DNA, some of them with potential biological relevance.

1 Introduction

Modeling plays a key role in data compression. With the invention of the first
practical algorithm for arithmetic coding [1], the problem of finding out an effi-
cient representation for a certain information source could be restated as a data
modeling problem. For our purposes, a model is a mathematical description of
the information source, providing a probability estimate of the next outcome.
The entropy of this model sets a lower bound on the compression performance
of the arithmetic encoder. This bound is tight, meaning that it is possible to
generate a bitstream with average entropy as close as desired to the entropy of
the model, suggesting that the effort should be made to find good models of the
information sources.

For about the last ten years, we have been addressing the problem of data
compression using arithmetic coding. Initially in the context of image coding
and, more recently, in the context of DNA coding, we have been relying on
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finite-context (Markov) models for describing the data in an efficient way. Finite-
context models assume that the source has Markovian properties, i.e., that the
probability of the next outcome of the information source depends only on some
finite number of (recent) past outcomes. This past is normally referred to as the
“context”, hence the name “finite-context model”.

In the context of DNA data compression, these models have been usually
associated with the task of providing compression when the main method fails.
However, they have also been used as the main method, both for representing
protein-coding regions of DNA [2] and for representing unrestricted DNA, i.e.,
DNA with coding and non-coding regions [3,4,5,6,7]. In this paper, we present
and discuss the problem of computing complexity profiles (or information se-
quences) using finite-context models. Basically, a complexity profile indicates
how many bits are required to represent each symbol (DNA base). These com-
plexity profiles are of interest because they reveal structures inside the chromo-
somes, structures that are often associated with regulatory functions of DNA
[8].

2 Finite-Context Models

Consider an information source that generates symbols, s, from an alphabet A,
and denote by xn = x1x2 . . . xn the sequence of symbols generated by the source
after n outcomes. A finite-context model of an information source (see Fig. 1 for
an example where A = {0, 1}) assigns probability estimates to the symbols of the
alphabet, according to a conditioning context computed over a finite and fixed
number, k, of past outcomes (order-k finite-context model) [9,10,11]. At instant
n, we represent these conditioning outcomes by cn = xn−k+1, . . . , xn−1, xn.
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Fig. 1. Example of a finite-context model for the binary alphabet, i.e., for A = {0, 1}.
The probability of the next outcome, Xn+1, is conditioned by the k last outcomes. In
this example, k = 5.



In practice, the probability that the next outcome,Xn+1, is s ∈ A, is obtained
using the estimator

P (Xn+1 = s|cn) =
Nn

s
+ α∑

a∈A

Nn

a
+ |A|α

, (1)

where |A| denotes the size of the alphabet, and Nn
s

represents the number of
times that, in the past, the information source generated symbol s having cn

as the conditioning context. The parameter α controls how much probability
is assigned to unseen (but possible) events, and plays a key role in the case of
high-order models. In fact, when k is large, the number of conditioning states,
|A|k, is high, implying that statistics have to be estimated using only a few
observations. This estimator reduces to Laplace’s estimator for α = 1 [12] and
to the frequently used Jeffreys/Krichevsky estimator when α = 1/2 [13,14].

Initially, when all counters are zero, the symbols have probability 1/|A|, i.e.,
they are assumed equally probable. The counters are updated each time a symbol
is encoded. Since the context is causal, the decoder is able to reproduce the same
probability estimates without needing additional information.

The block denoted “Encoder” in Fig. 1 is an arithmetic encoder. It is well
known that practical arithmetic coding generates output bitstreams with average
bitrates almost identical to the entropy of the model [9,10,11]. The number of
bits that are required to represent symbol xn+1 is given by − log2 P (Xn+1 =
xn+1|c

n). Therefore, the average bitrate (entropy) of the finite-context model
after encoding N symbols is given by

HN = −
1

N

N−1∑

n=0

log2 P (Xn+1 = xn+1|c
n) bps, (2)

where “bps” stands for “bits per symbol”.

3 Applications to DNA data

DNA sequences are sequences of symbols (bases) from a 4-symbol alphabet: ade-
nine (A), cytosine (C), guanine (G), and thymine (T). Several specific coding
methods have been proposed for compressing these sequences (see, for exam-
ple, [15,16,17,18,19,20,21,2,22,23,3,4,6,7]). Most of these methods are based on
searching procedures for finding exact or approximate repeats, both directly and
in their reversed complemented versions (A ↔ T, C ↔ G). Although this ap-
proach has been quite effective in terms of compression rates, it also requires
a significant computational effort. Low-order finite-context models are typically
used in those methods as a secondary, fall back mechanism. Our goal has been
to investigate DNA compression methods based only on finite-context models.

Modeling DNA data using only finite-context models has advantages over
the typical DNA compression approaches that mix purely statistical (for ex-
ample, finite-context models) with substitutional models (such as Lempel-Ziv



based algorithms): (1) finite-context models lead to much faster performance, a
characteristic of paramount importance for long sequences (for example, some
human chromosomes have more than 200 million bases); (2) the overall model
may be easier to interpret, because it is made of sub-models of the same type.

Initially, we proposed a three-state finite-context model for DNA protein-
coding regions, i.e., for the parts of the DNA that carry information regarding
how proteins are synthesized [2]. This three-state model proved to be better
than a single-state model, giving additional evidence of a phenomenon that is
common in these protein-coding regions, the periodicity of period three.

More recently [3,4,6,7], we investigated the performance of finite-context
models for unrestricted DNA, i.e., DNA including coding and non-coding parts.
In that work, we have shown that a characteristic usually found in DNA se-
quences, the occurrence of inverted repeats, which is used by most of the DNA
coding methods (see, for example, [18,19,20]), can also be successfully integrated
in finite-context models. Inverted repeats are copies of DNA sub-sequences that
appear reversed and complemented in some parts of the DNA.
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Fig. 2. Example of the use of multiple finite-context models for encoding DNA data.
In this case, two models are used, one with a depth-5 context and the other using an
order-11 context.

DNA is non-stationary, with regions of low information content (low entropy)
alternating with regions with average entropy close to two bits per base. This al-
ternation is modeled by most DNA compression algorithms by using a low-order
finite-context model for the high entropy regions and a Lempel-Ziv dictionary-
based approach for the repetitive, low entropy regions. We have been studying
approaches relying only on finite-context models for representing both regions,



leading us to conclude that DNA can be much better represented by Markov
models than what it was previously believed.

Moreover, our studies have shown that multiple finite-context models can
be more effective in capturing the statistical information along the sequence
[4,6,7]. Figure 2 gives an example of these multiple models, that can operate in
a competitive or cooperative way. When in competitive mode, the best of the
models is chosen for encoding each DNA block, i.e., the one that requires less
bits is used for representing the current block [7]. When in cooperative mode of
operation, the probability estimates of the several models are combined using
an adaptive mixture model [6].

4 Complexity profiles of DNA

The work of researchers such as Solomonoff, Kolmogorov, Chaitin and others
[24,25,26,27,28,29], related to the problem of defining a complexity measure of a
string, has been of paramount importance for several areas of knowledge. How-
ever, because it is not computable, the Kolmogorov complexity of a string A,
K(A), is usually approximated by some computable measure, such as Lempel-Ziv
complexity measures [30], linguistic complexity measures [31] or compression-
based complexity measures [32].

One of the important problems that can be formulated using the Kolmogorov
theory is the definition of similarity. Following this line, Li et al. [33] proposed a
similarity metric based on an information distance [34], defined as the length of
the shortest binary program that is needed to transform strings A and B into
each other. This distance depends not only on the Kolmogorov complexity of
A and B, respectively K(A) and K(B), but also on conditional complexities,
for example K(A|B), that indicates how complex string A is when string B
is known. Because this distance is based on the Kolmogorov complexity (not
computable), they proposed a practical analog based on standard compressors,
which they call the normalized compression distance [33].

According to [33], a compression method needs to be “normal” in order to be
used in the normalized compression distance. One of the conditions for a com-
pression method to be normal is that compressing string AA (the concatenation
of A with A) should generate essentially the same number of bits as compress-
ing A alone [35]. This characteristic holds, for example, in Lempel-Ziv based
compressors, making them a frequent choice in this kind of applications.

The construction and analysis of DNA complexity profiles has been an im-
portant topic of research, due to its applicability in the study of regulatory
functions of DNA, comparative analysis of organisms, genomic evolution and
others [36,37]. For example, it has been observed that low complexity regions of
DNA are often associated with important regulatory functions [38].

Several measures have also been proposed for evaluating the complexity of
DNA sequences. Among those, we find the compression-based approaches the
most promising and natural, because compression efficiency is clearly defined (it
can be measured by the number of bits generated by the encoder).



Fig. 3. Complexity profile of chromosome 1 of the Cyanidioschyzon merolae organism,
obtained with a multiple finite-context modeling approach. We can see several regions
where the complexity value goes well below the baseline level that, for an entropy-based
complexity profile of DNA, can be set at two bits per DNA nucleotide. The two regions
which we have marked with letters A and B correspond to telomeric inverted repeated
sequences.

One of the key advantages of DNA compression based on finite-context mod-
els is that the encoders are fast and have O(n) time complexity. As we mentioned
already, most of the effort spent by previous DNA compressors is in the task of
finding exact or approximate repeats of sub-sequences or of their inverted com-
plements. No doubt, this approach has proved to give good returns in terms of
compression gains, but normally at the cost of long compression times. Although
slow encoders could be tolerated for storage purposes (compression could be ran
in batch mode), for interactive applications they are certainly not appropri-
ate. For example, the currently best performing DNA compression techniques,
such as NML-1 [22] or XM [23], could take hours for compressing a single hu-
man chromosome. Compressing one of the largest human chromosomes with the
techniques based on finite-context models takes less than ten minutes in a 1.66
GHz laptop computer. These DNA sequences have about 240 million bases.

Figure 3 shows an example of one of those complexity profiles (corresponding
to chromosome 1 of the Cyanidioschyzon merolae) as generated by a multiple
finite-context model DNA encoder. We can observe several regions where the
complexity is very small, meaning that a reduced number of bits was required
for compression those regions. Of particular interest are the two regions which we
have marked with letters A and B, corresponding to telomeric inverted repeated
sequences.

5 Conclusion

It has been shown that finite-context models are a powerful tool for representing
DNA sequences, as demonstrated by the good compression results that they
are able to provide [6,7]. However, they may also be useful in other tasks, such
as in data analysis. The construction of complexity profiles is an obvious case.
These information sequences allow a quick analysis of long sequences, unveiling
locations of low information content, which are usually associated with DNA
regions of potential biological interest. This seems to be a very promising line of
research, clearly deserving further investigation.
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