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ABSTRACT

Symbolic sequences can be analysed using two main ap-
proaches. One is by means of algorithms specifically de-
signed for processing symbolic sequences. The other uses
signal processing techniques, after converting the sequence
from symbols to numbers. The latter approach depends on
the availability of meaningful numerical representations of
the sequences. In this paper, we present a technique that uses
finite-context models to generate numerical information se-
quences from the DNA symbolic data. We give some ex-
amples that illustrate the method and show that these infor-
mation sequences may reveal important structural properties
of the DNA sequences. Moreover, the proposed approach
is fast, allowing a quick bird’s-eye view of whole chromo-
somes, with the aim of locating potentially interesting re-
gions.

1. INTRODUCTION

DNA data sequences are symbolic and as such many of the
tools that have been applied in their analysis are symbol-
based (see, for example, [1, 2]). However, there is another
large and rich set of tools available for the processing and
analysis of numerical sequences. In principle, these tools
can also be applied to DNA data. In fact, Fourier methods,
correlation techniques and multi-resolution wavelet analy-
sis have been used for studying DNA sequences for almost
twenty years. Their application depends on several symbolic
to numerical mappings, such as those involving indicator se-
quences [3], DNA walks [4], the vertices of a regular tetra-
hedron [5], or complex representations [6], just to name a
few (see [7] for a review). Among the problems that are usu-
ally addressed using signal processing techniques, we point
out those related to the discovery of short and long range
correlations (see, for example, [3, 4, 8]) and the unveiling of
periodicities (some examples can be found in [5, 9]).

In this paper, we address the problem of converting DNA
data sequences into numerical sequences, through the gener-
ation of what are called “information sequences”, “complex-
ity sequences” or “complexity profiles”. The theory behind
these complexity profiles goes back to the works of several
researchers in the 60’s, such as Solomonoff, Kolmogorov,
Chaitin and Wallace et al., and is tightly related to the area of
data compression [10]. The profiles are obtained using com-
pression algorithms, because the size of the bitstream gener-
ated by a compression algorithm can be viewed as an upper
bound of the Kolmogorov complexity of the compressed ob-
ject.

In this context, the work of Allison et al. [11] has been of
particular interest, because they have been trying to relate the

information content of a DNA sequence (obtained by means
of the per symbol code length generated by the encoder) with
important characteristics of the DNA sequences. These in-
formation sequences were first presented in [11] and, more
recently, in [12], in which they are suggested as a tool for the
comparative analysis of long DNA sequences.

Most of the algorithms that have been proposed for com-
pressing DNA sequences rely on particular aspects that char-
acterize DNA, such as the existence of long exact or approxi-
mate repetitions, inverted complemented repeats and period-
icities. DNA is highly non-stationary, with zones of low and
high information content alternating frequently. This alter-
nation of complexity is modeled by most DNA compression
algorithms by a low order Markov chain model for the high
entropy regions and by a Lempel-Ziv dictionary based ap-
proach for the repetitive, low entropy, regions.

In fact, finite-context (Markov) modelling has been used
by most DNA sequence compression methods as a sec-
ondary, fall back solution. Usually, a low-order model
(order-2 or order-3) is called into action when the main tech-
nique, based on dictionaries, fails to provide competitive re-
sults. However, the ability of finite-context modelling to rep-
resent DNA data sequences seems to go beyond a simple
secondary role, as shown in recent work [13, 14], where the
combination of two finite-context models led to encouraging
results.

In this paper, we further explore the idea of using multi-
ple finite-context models of several orders, working compet-
itively, in this case for obtaining numerical sequences that
capture important characteristics of the original DNA se-
quence, and that can be processed afterward using well es-
tablished signal processing techniques. These numerical se-
quences represent the per DNA base information content (in
Shannon’s sense) and also the variation of model depth along
the sequence. Among other possible applications of the ap-
proach presented in this paper, we point out the possibility of
easily browsing along a chromosome, searching for regions
potentially worthing further analysis.

2. FINITE-CONTEXT MODELLING OF DNA
SEQUENCES

Consider an information source that generates symbols, s,
from the alphabet A = {A,C,G,T}. Also, consider that the
information source has already generated the sequence of n
symbols x1..n = x1x2 . . .xn, xi ∈ A . A finite-context model
assigns probability estimates to the symbols of the alpha-
bet, regarding the next outcome of the information source,
according to a conditioning context computed over a fi-
nite and fixed number, k > 0, of the most recent past out-
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P (Xn+1 = s|xn−k+1..n)

Figure 1: Example of setup using two competing finite-
context models. The probability of the next outcome, Xn+1,
is conditioned by the k = k1 or k = k2 last outcomes, de-
pending on the finite-context model chosen for encoding that
particular DNA block. In this example, k1 = 3 and k2 = 11.

comes xn−k+1..n= xn−k+1 . . .xn (order-k finite-context model)
[15–17]. The number of conditioning states of the model is

|A |k, where |A | denotes the size of the alphabet.
The probability estimates, P(Xn+1 = s|xn−k+1..n),∀s∈A ,

are usually calculated using symbol counts that are accumu-
lated while the sequence is processed. Thus, they depend not
only on the past k symbols but also on n, i.e., these probabil-
ity estimates are generally time-varying.

The theoretical per symbol information content average
provided by the finite-context model after having processed
n symbols is given by

Hk,n =−
1

n

n−1

∑
i=0

log2P(Xi+1 = xi+1|xi−k+1..i) bpb, (1)

where “bpb” stands for “bits per base”. Recall that the en-
tropy of any sequence of four symbols is limited to two bits
per symbol, a value that is obtained when the symbols are
independent and equally likely.

In practice, the probability that the next outcome, Xn+1,
is s ∈ A , is obtained using the estimator

P(Xn+1 = s|xn−k+1..n) =
C(s|xn−k+1..n)+α

C(xn−k+1..n)+4α
, (2)

where C(s|xn−k+1..n) represents the number of times that, in
the past, the information source generated symbol s having
xn−k+1..n as the conditioning context and where

C(xn−k+1..n) = ∑
a∈A

C(a|xn−k+1..n) (3)

is the total number of events that occurred so far in associa-
tion with context xn−k+1..n. Parameter α controls how much
probability is assigned to unseen (but possible) events, and
plays a key role in the case of high order models. When k is

large, the number of conditioning states, 4k, is high, which
implies that statistics have to be estimated using only a few
observations.

For the multiple competing case, the several finite-
context models are continuously updated, but only the best
one is used for encoding a given region. For convenience, the
DNA sequence is partitioned into non-overlapping blocks of
fixed size, which are then encoded by the best model. Fig-
ure 1 gives an example of a setup using two competing mod-
els, one of depth k1 = 3 and the other with depth k2 = 11.

3. EXPERIMENTAL RESULTS

In this section, we provide some results obtained with the
multiple competing finite-context models described previ-
ously. Two DNA sequences have been used for illustrating
the method, namely the chromosomes 1 and 3 of the Saccha-
romyces cerevisiae (yeast) organism. Each of the sequences
was processed using eight competing finite-context models
with context depths k = 2,4,6,8,10,12,14,16. The decision
of which depth to use was taken on a block by block basis,
using blocks of ten DNA bases.

The probabilities associated to the finite-context mod-
els were estimated using (2), with α = 1 (corresponding to
Laplace’s estimator) for model orders k = 2,4,6,8,10 and
with α = 0.05 for model orders k= 12,14,16. As previously
mentioned, the value of α is not of much importance for low-
order models, but it is fundamental in high-order cases. Note
that, when the order of the model is high, the number of times
that a given context occurs is generally small, rendering the
estimation of the probability strongly dependent of α . Ac-
cording to our experience, α = 0.05 provides, on average,
good results.

When the model goes along the sequence, it is able to
gather statistics and to “learn” its characteristics. Therefore,
if after seeing a particular pattern the same (or approximate)
pattern is seen again, then the information content will be
lower than when it was observed for the first time. In other
words, if some pattern is repeated, the information content
associated with the consecutive appearances of the pattern
will decrease (for each additional appearance the surprise
will be lower, which, according to Shannon’s information,
leads to less bits of information). However, this procedure
is directional, i.e., if the sequence is processed in one direc-
tion, then some characteristics may not be unveiled, the same
happening if the opposite direction is used. To eliminate this
directional dependency we ran the model first in one direc-
tion, to obtain one information sequence. Then, we ran the
model in the opposite direction to obtain another. The final
information sequence was obtained by picking the minimum
value of the two at each point.

Figures 2 and 3 display several curves obtained using
the DNA data sequences of chromosomes 1 and 3 of the
S. cerevisiae. The top row shows the information content
along these two chromosomes when the sequence is pro-
cessed from left to right (5’ to 3’, using the notation of molec-
ular biology). The row below displays the corresponding
curves after the sequences have been processed from right
to left (3’ to 5’). As can be clearly seen, different structures
are revealed depending on the direction of processing. When
the two directional curves are combined (by picking the min-
imum values of each one), we obtain the curves shown in the
third row of Figs. 2 and 3.

The last row of the graphics of Figs. 2 and 3 shows how
the order of the finite-context model varies along the se-
quences (these have been obtained by averaging the two di-
rectional curves). As can be observed, although these curves
seem to be correlated with the information sequences, some
features appear only in one of them, suggesting that they are
both potentially useful.

All of the curves displayed in Figs. 2 and 3 have been
low-pass filtered. Filtering was done by averaging the sam-
ples using a Blackman window of size 401 centered at the
sample under consideration. Varying the filter window size
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Figure 2: Plots of the information content and model order for chromosomes 1 of S. cerevisiae. The first row shows the infor-
mation content when the sequence is processed from the left to the right. The second row shows the result when processing is
done in the opposite direction. A combined version of both, using the minimum value of each one, is shown in the third row.
Finally, the bottom row shows the order of the model along the sequence (based on the average value obtained by processing
in both directions).

allows to conceal (larger windows) or unveil (smaller win-
dows) different structures. Figure 4 shows the combined
information profile of chromosome 1 filtered using window
sizes of 21, 101, 201 and 1001 samples.

4. DISCUSSION AND CONCLUSION

There is a large number of powerful signal processing tech-
niques that might be of great value for the field of molecu-
lar biology. However, for these techniques to be useful, the
symbolic sequences need first to be converted into meaning-
ful numerical sequences. There are several methods through
which this can be accomplished, from indicator sequences to
mappings into the complex plane.

In this paper a different viewpoint was taken, which
brought into play the information content of the sequence.
Although the idea of generating these information sequences
is not new, to the best of our knowledge it is the first time that
they are generated using multiple competing finite-context
models.

As shown in the presented examples, these information
profiles are of interest because they reveal structures inside
the chromosomes, structures that are often associated with

regulatory functions of DNA. For example, the patterns that
appear near the beginning and end of the combined infor-
mation curve of chromosome 1, reveling an almost identical
profile, although reflected, are telomeric repeats called W ′,
flanked by DNA sequences closely related to the yeast FLO1
gene [18]. Other interesting structures can also be easily
identified, depending on the scale used. In this work, we used
a simple low-pass filter for being able to observe the profiles
at different scales. However, much more sophisticated tools
could be used for this purpose, such as wavelets.

The method that we propose has the great advantage of
being fast. It is possible to process one of the largest hu-
man chromosomes (more than 200 million bases) in about
one hour using a simple laptop. Therefore, for a certain DNA
sequence, with this method it is possible to have a quick indi-
cation of regions of the sequence that might be worth looking
at in more detail.
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Figure 3: Similar plots as those of Fig. 2, but in this case for chromosome 3 of S. cerevisiae.
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