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Abstract

We overview and discuss several methods for the Fourier analysis of symbolic data, such as DNA
sequences, emphasizing their mutual connections. We consider the indicator sequence approach, the
vector and the symbolic autocorrelation methods, and methods such as the spectral envelope, that for
each frequency optimize the symbolic-no-numerigpiag to emphasize any periodic data features.

We discuss the equivalence or connections between these methods. We show that it is possible to
define the autocorrelation function of symbolic data, assuming only that we can compare any two
symbols and decide if they are equal or distinct. The autocorrelation is a numeric sequence, and its
Fourier transform can also be obtained by summing the squares of the Fourier transform of indicator
sequences (zero/one sequences indicating the position of the symbols). Another interpretation of the
spectrum is given, borrowing from the spectral envelope concept: among all symbolic-to-numeric
mappings there is one that maximizes the spectral energy at each frequency, and leads to the spec-
trum.
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1. Introduction

Protein and DNA data can be written as strings of symbeis(s)ock <, taken from a
finite alphabet. For simplicity, we will tacitly consider the alphapétC, G, 7}, although
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the results can also be applied to other finite alphabets. The wide availability of such data,

their volume and the interest of the applications have lead to a great deal of interest in

methods for detecting and revealing structure such as short and long range correlations,
periodicities, and so on.

Fourier or linear transform analysis are among the natural tools for this task, but the
symbolic nature of the data poses new challenges. It is true that Fourier analysis is possible
and quite useful in finite fields and even in groups, Abelian or noncommutative. But even
in these cases, the group structure provides an underlying algebraic framework that can be
totally absent in the case of symbolic data.

The computation of Fourier and other linear transforms of symbolic data, without as-
suming any underlyinglgebraic structure, is a probletmat has already been faced in the
context of DNA data, and several apparently distinct and unrelated approaches exist.

The simplest solution is to map each symtmh number. The diffiglty with this ap-
proach is the dependence on the particular labeling adopted. Consider, for example, the
following symbolic periodic sequence:

s =(ATAGACATAGAC...).

The mapping
A—~1, 70, G—0, Cr0,

leads to a numeric sequence of period two, whereas the mapping
A—1, T—2 G—3, C(C+—4,

yields period six. This clearly shows that some of the relevant harmonic structure can be
hidden (or exposed) by the symlic-to-numeric labelling.

To achieve the required label invariance, each sympalan be assigned a vector
pointing in one of four different directions [7]. Each vector can be expressed using an
orthonormal basis in three-dimensionaasp. For each frequency, the sum of the squared
modulus of the three corresponding Fourier coefficients provides a measure of spectral
content with the required invariance properties [7]. It turns out that this can also be regarded
as the Fourier transform of the inner-product autocorrelation of the vegtors

Another approach is based on the symbolic autocorrelation concept. It can be defined
in a very natural way and leads to a numerical sequence, the Fourier transform of which
is the spectrum of the symbolic data. No hypegis are necessary regarding the symbols.

No algebraic structure or ordering needs to be imposed. Given two symbols, all that is
necessary to know is whether they are equal or distinct.

A symbolic sequence can also be represented using indicator sequences, that is, binary
(zero/one) sequences that indicate the positions of the symbols in the symbolic sequence.
The Fourier spectrum of each indicator sequecen be numerically computed, and the to-
tal Fourier spectrum of the symbolic sequence is defined as the sum of the squared modulus
of the individual indicator sequence spectra [9].

The concept of spectral envelope [8] provides yet another approach to the Fourier analy-
sis of symbolic data. It is a symbolic to humeric mapping, optimized to emphasize any
periodic feature present in the data. A modification of this concept to nonstationary data
can be found in [10].



V. Afreixo et al. / Digital Sgnal Processing 14 (2004) 523-530 525

The purpose of this paper is to give an overview of methods for the Fourier analysis of
symbolic data, such as DNA sequences, emphasizing their mutual connections. We show,
for example, that the spectrum obtained using the symbolic autocorrelation is the sum of
the squared Fourier transforms of the binary indicator sequences, which is computationally
easier to obtain. We also show that precigbly same spectrum is obtained by adjusting a
symbolic-to-numeric mapping, in such a way that the spectral energy at each frequency is
maximized. This gives a unifying perspective on these Fourier analysis tools.

2. Methodologies

We begin by introducing the notation and terminology used.sLt(sy)ogk<n bE @
symbolic sequence over the alphabdt C, G, 7}. Extension modula is implied when-
ever necessary (hencg,., = s¢). All sequences of length, symbolic or numeric, are
identified with column vectors of dimension The discrete Fourier transform (DFT)
X = (Xi)ogi<n Of the numeric sequenae= (xi)ogk<x IS denoted by

X =Fx,
whereF is then x n Fourier matrix with elements

o
Fp=e /% 4b=01,...n-1

One has
1
(x,x) = ||Ix]|*> = ;nxnz, 1)
where
n—1
(x,y)=) Xxyk=x"y.

w-
Il

0

Here, x; is the conjugate of; andx’ the conjugate transpose of With any symbolic
sequencesy)ogk<n Over the alphabetA, C, G, T} we associate four numeric (binary)
indicator sequences;, uj, uf, andu;, where 0< k < n. These sequences identify the
positions of each symbol, that is
ua _ 15 Sk = Al

k=10, si#A
and similarly in the remaining three cases. We now turn to specific methods that have been
used to perform Fourier analysis of symbolic data.

2.1. Indicator sequences

The total spectrum of a symbolic sequence is often defined as the squared modulus of
the DFTs of the indicator sequences, that is

R =|ug P | P g P o P @
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with i € Zy. In the literature, the spectrum is sometimes identified, with little or no expla-
nation, with this sum. Intuitively, the solution seems reasonable. No algebraic operations
need to be defined on the symbols, and no symbolic-to-numeric mapping is needed. How-
ever, the theoretical interpretation anceaming of this solutio seems, at first glance,
obscure.

We now turn to the symbolic autocorrelation method, which allows a more satisfac-
tory view of the indicator sequence approach. As we will see, under that formulation the
spectrum (2) emerges as the Fourier transform of the symbolic autocorrelation.

2.2. Symbolic autocorrelation

The simplest way of performing Fourier or any other transform analysis on a symbolic
sequence is to map the symbols to numbers, and then process the sequence obtained. For
example, one could start by finding the autocorrelation of the numeric sequence, and its
Fourier transform [3,5]. This has disadvantages, as mentioned above. The mapping may
either expose or hide some of the frequency information. Furthermore, there might be no
biochemical meaning for the ordering and arithmetic structure that result from the symbolic
to numeric mapping.

A better approach is to derive the autocorrelation function directly from the symbols.

By autocorrelation of the symbolic sequenegoci<, we mean the numeric sequence

n—1
rk = Zd(Si, Si+k)s
i=0
where for any two symbolg andy

1, x=y,
awn={g 127 ©)

This is related to the equal-symbol correlation measure introduced in [9]. The autocorrela-
tion ry is @ numeric sequence that can be rewritten in terms of the four indicator sequences,
sinceu§ = d(sx, A), ui = d(sx,C), and so on. Hence,

rie=(u®, Su) + (uC, Spu) + (us, Spus) + ', Spu'),
where the operatd§; denotes a cyclic shift by, that is,Sxu = (u;, ;)o<m<n, and simi-
larly in the remaining three cases. By (1), we have

111—1 5 5
L2,
<ua1Skua)=_Z‘Uﬂ e*]Tkl
n
i=0

and so
LR 1 012 s rrel2 o 10812 o |1t 12y 25k
Vk:;Z(|Ui| +|UF |7+ |UF |7+ |Uf[)e 7t
i—0

We conclude that the DFT of the symbolic autocorrelation is the sum of the squared modu-
lus of the DFTs of the indicator sequences. In other words, we obtain (2), the total spectrum
using the indicator sequences.
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2.3. Spectral envelope

The concept of spectral envelope was introduced in [8], and a variant for nonstationary
data was discussed in [10]. For simplicity the presentation that follows is closer to [10],
but considers the stationary case. The retaibetween the two approaches (and the sta-
tionary/nonstationary case) will be discussed later.

Consider the: x 4 matrix

w=[u® u ué u'
and the vector of real weights

w:[acgt]T.

The sequence = uw then corresponds to the mappigg— a, C — ¢, and so on. The
DFT of z is

Z=Fz=Fuw=Uw,
whereU is the 4x n matrix obtained by concatenating the DFTs of the indicator sequences,

U=Fu=[Fu® Fu® Fu$ Fu'l=[U" U° U8 U'].
Denoting byU; theith line of U, we may writeZ; = U; w, and so
K

|Zil? = w'UjUiw = |aUf' + cUf + gU +1Uj (4)

The idea underlying [8] and [10] is to adjust the symbolic-to-numeric mapping in such a
way that theZ; become in some sense extremal. For each frequerseject the vectow
of unit norm that maximizegz;|2. That is, consider the problem

max |Z;|? = max w'U}U;w.

lwi=1 lwll=1
The maximum of this Rayleigh quotient isnax(U;/U;), the maximum eigenvalue of the
Hermitian matrixUlfUi. Furthermore, the weights for which the maximum is achieved
are given by

U/

w = .
1U; |l
As aresult,

max |U;w|? = max w'U/Uiw = |U¢ >+ |U P + |US P + U/ P = R;
lwl=1 lw=1

and so we obtain
aman(UjUs) = |Uf [+ |Ug P+ |0F P+ |0 P = R,

This reveals yet another way of looking at the total spectrum (2). We have seen that the
sum of the squares of the DFTs of the four indicator sequences, at frequeaaaqual

to the DFT of the symbolic autocorrelation, at frequencjNow we see that it is also
related to the value of the DFT of a certain numerical sequence, again at frequéhey
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particular numerical sequence that leads to this spectrum corresponds to a symbolic-to-
numeric mapping optimized to achieve the maximum squared magnitude for frequency

One should note that in the nonstationary case, considered in [10], the @ialfixs
averaged over several data segments, and the solution to the eigenproblem cannot be found
as easily. On the other hand, if the averaging is not performed or if the data are stationary,
the approach should lead to results close to (2), which might be easier to compute.

We considered the Rayleigh quotient and the corresponding eigenvalue problem mainly
for ease of comparison with the general approaches in [8,10]. Such an approach is not
strictly necessary in the case discussed. To see this, apply the Cauchy inequality to (4),

1Zi2 = |aU¢ + cUf + gUF +1U![?
2 2 2 2
<(lal®+1el?+ 181 + 112 (U7 + [UF 7+ [UF [P+ U )
and then note that the condition for equality readily leads to the results.

The spectral envelope was introduced by Stoffer [8] but depends on the concept of gen-
eralized eigenvalue. To continue the discussion we need the following notatinB)
denotes a generalized eigenvalue for the probdem= A Bx. We continue to usg&(A) in
reference to the eigenprobleAx = Ax. Of courser(A, I) = A(A). The idea in [8] is to
find the weightaw that maximize the power or variance for each frequency, relative to the
total varianceV (w). This leads to a generalized eigenproblem, since the maximum is of
the form

w A'U/U; Aw
Xi

w' A’V Aw
where, for alphabets of size 4,is 4 x 3 and can be taken as

I3
+=(5)
and I3 is the 3x 3 identity matrix. We thus seekmax(A'U/U; A, A’V A). For a given
frequencyi, the spectral envelope represents the largest proportion of the total power that
can be attributed to that frequency, among all possible symbolic-to-numeric mappings.
Itis helpful to compar@max(A'U/U; A, A’V A), which appearsin [8], Withmax(U;U;),
which is related to the total spectrum (2). To do that observe thBtjsfa positive definite
symmetric matrix, theD =SS’ with S non-singular, and

Mm(C, D) =n(S7esT D =n(s7es™T).
It readily follows from Ostrowski's theorem [4] that
Amax(C)Amin(D™") < Amax(C. D) < Amax(C)Amax(D ™).
SettingC = A'U/U; A andD = A’V A, and noting thakmax(A'U/U; A) = Amax(U;U;) —

|Uf|2, we obtain upper and lower bounds for the required generalized eigenvalue, in terms
of AmaX(Ui’Ui) and consequently the total spectrum.

9

2.4. Reduction of the dimensionality

The four indicator sequences are of course redundant, since
u +u+udb+u' =1



V. Afreixo et al. / Digital Sgnal Processing 14 (2004) 523-530 529

and so

N, i=0,

0, i#0.

The total spectrum can therefore be obtdiméth three DFTSs, rather than four. In fact,

it is possible to work with thre€x, y, z) nonredundant sequences, rather than with four
redundant ones [1,6,7]. The assignments used in [1] are

ae 003, e (I o (B Yy

Uf +Uf + Ul.g + Ul? = {

3 3 3 3 3 3
2
ro (2201
3 3
The connection with the indicator sequences is
2 6 1
xzé(Zu’—uc—ug), Y=?(uc—ug), z=:—3(3u“—ut—uc—ug)-

The equivalence between the method that relies on the indicator sequences, and those of re-
duced dimensionality was shown in [2], for an arbitrary number of symbols. In the present
case, we have

41X 12+ 1Yi > +1Z:1?), i #0,

2 2 2 2
(o P+ o+ 0+ o) = { e L s e =1 2o

3. Conclusion

We have discussed several methods for the Fourier analysis of symbolic data, empha-
sizing the case of DNA sequences (four-symbol alphabets). We considered the indicator
sequence approach, the vector and the symbolic autocorrelation methods, and methods
similar to the spectral envelope, that for ei@guency optimize the symbolic-no-numeric
mapping to emphasize any periodic data features.

We discussed the equivalence or connections between these methods. We have shown
that it is possible to define the autocorrelation function of symbolic data, under weak as-
sumptions: basically we need to be able to tell if two symbols are equal or distinct. The
autocorrelation is a numeric sequence, andatsrfer transform leads to the spectrum of the
symbolic data. But we have shown that this spectrum can also be obtained by summing the
squares of the Fourier transform of indicator sequences (zero/one sequences indicating the
position of the symbols). We also examined the spectral envelope concept, which provides
yet another interpretation of the spectrum. Among all symbolic-to-numeric mappings there
is one that maximizes the spectral energgach frequency, and leads to the spectrum.
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