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Abstract

We overview and discuss several methods for the Fourier analysis of symbolic data, such a
sequences, emphasizing their mutual connections. We consider the indicator sequence appr
vector and the symbolic autocorrelation methods, and methods such as the spectral envelope
each frequency optimize the symbolic-no-numeric mapping to emphasize any periodic data featur
We discuss the equivalence or connections between these methods. We show that it is po
define the autocorrelation function of symbolic data, assuming only that we can compare a
symbols and decide if they are equal or distinct. The autocorrelation is a numeric sequence,
Fourier transform can also be obtained by summing the squares of the Fourier transform of in
sequences (zero/one sequences indicating the position of the symbols). Another interpretatio
spectrum is given, borrowing from the spectral envelope concept: among all symbolic-to-nu
mappings there is one that maximizes the spectral energy at each frequency, and leads to t
trum.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Protein and DNA data can be written as strings of symbolss = (sk)0�k<n taken from a
finite alphabet. For simplicity, we will tacitly consider the alphabet{A,C,G,T }, although
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the results can also be applied to other finite alphabets. The wide availability of such
their volume and the interest of the applications have lead to a great deal of inte
methods for detecting and revealing structure such as short and long range corre
periodicities, and so on.

Fourier or linear transform analysis are among the natural tools for this task, b
symbolic nature of the data poses new challenges. It is true that Fourier analysis is p
and quite useful in finite fields and even in groups, Abelian or noncommutative. But
in these cases, the group structure provides an underlying algebraic framework that
totally absent in the case of symbolic data.

The computation of Fourier and other linear transforms of symbolic data, withou
suming any underlyingalgebraic structure, is a problemthat has already been faced in t
context of DNA data, and several apparently distinct and unrelated approaches exis

The simplest solution is to map each symbolto a number. The difficulty with this ap-
proach is the dependence on the particular labeling adopted. Consider, for examp
following symbolic periodic sequence:

s = (AT AGACAT AGAC . . .).

The mapping

A �→ 1, T �→ 0, G �→ 0, C �→ 0,

leads to a numeric sequence of period two, whereas the mapping

A �→ 1, T �→ 2, G �→ 3, C �→ 4,

yields period six. This clearly shows that some of the relevant harmonic structure c
hidden (or exposed) by the symbolic-to-numeric labelling.

To achieve the required label invariance, each symbolsk can be assigned a vectorvk

pointing in one of four different directions [7]. Each vector can be expressed usin
orthonormal basis in three-dimensional space. For each frequency, the sum of the squa
modulus of the three corresponding Fourier coefficients provides a measure of s
content with the required invariance properties [7]. It turns out that this can also be reg
as the Fourier transform of the inner-product autocorrelation of the vectorsvk .

Another approach is based on the symbolic autocorrelation concept. It can be d
in a very natural way and leads to a numerical sequence, the Fourier transform of
is the spectrum of the symbolic data. No hypothesis are necessary regarding the symb
No algebraic structure or ordering needs to be imposed. Given two symbols, all
necessary to know is whether they are equal or distinct.

A symbolic sequence can also be represented using indicator sequences, that is
(zero/one) sequences that indicate the positions of the symbols in the symbolic seq
The Fourier spectrum of each indicator sequence can be numerically computed, and the
tal Fourier spectrum of the symbolic sequence is defined as the sum of the squared m
of the individual indicator sequence spectra [9].

The concept of spectral envelope [8] provides yet another approach to the Fourier
sis of symbolic data. It is a symbolic to numeric mapping, optimized to emphasiz
periodic feature present in the data. A modification of this concept to nonstationar
can be found in [10].
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The purpose of this paper is to give an overview of methods for the Fourier analy
symbolic data, such as DNA sequences, emphasizing their mutual connections. We
for example, that the spectrum obtained using the symbolic autocorrelation is the s
the squared Fourier transforms of the binary indicator sequences, which is computat
easier to obtain. We also show that preciselythe same spectrum is obtained by adjustin
symbolic-to-numeric mapping, in such a way that the spectral energy at each frequ
maximized. This gives a unifying perspective on these Fourier analysis tools.

2. Methodologies

We begin by introducing the notation and terminology used. Lets = (sk)0�k<n be a
symbolic sequence over the alphabet{A,C,G,T }. Extension modulon is implied when-
ever necessary (hence,sk+n ≡ sk). All sequences of lengthn, symbolic or numeric, are
identified with column vectors of dimensionn. The discrete Fourier transform (DFT
X = (Xi)0�i<n of the numeric sequencex = (xk)0�k<n is denoted by

X = Fx,

whereF is then × n Fourier matrix with elements

Fab = e−j 2π
n

ab, a, b = 0,1, . . . , n − 1.

One has

〈x, x〉 = ‖x‖2 = 1

n
‖X‖2, (1)

where

〈x, y〉 =
n−1∑
k=0

x̄kyk = x ′y.

Here, x̄k is the conjugate ofxk andx ′ the conjugate transpose ofx. With any symbolic
sequence(sk)0�k<n over the alphabet{A,C,G,T } we associate four numeric (binar
indicator sequencesua

k , uc
k , u

g
k , andut

k, where 0� k < n. These sequences identify t
positions of each symbol, that is

ua
k =

{
1, sk =A,
0, sk 	=A

and similarly in the remaining three cases. We now turn to specific methods that hav
used to perform Fourier analysis of symbolic data.

2.1. Indicator sequences

The total spectrum of a symbolic sequence is often defined as the squared mod
the DFTs of the indicator sequences, that is

Ri = ∣∣Ua
∣∣2 + ∣∣Uc

∣∣2 + ∣∣Ug∣∣2 + ∣∣Ut
∣∣2 (2)
i i i i
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with i ∈ ZN . In the literature, the spectrum is sometimes identified, with little or no ex
nation, with this sum. Intuitively, the solution seems reasonable. No algebraic oper
need to be defined on the symbols, and no symbolic-to-numeric mapping is needed
ever, the theoretical interpretation and meaning of this solution seems, at first glance
obscure.

We now turn to the symbolic autocorrelation method, which allows a more sat
tory view of the indicator sequence approach. As we will see, under that formulatio
spectrum (2) emerges as the Fourier transform of the symbolic autocorrelation.

2.2. Symbolic autocorrelation

The simplest way of performing Fourier or any other transform analysis on a sym
sequence is to map the symbols to numbers, and then process the sequence obta
example, one could start by finding the autocorrelation of the numeric sequence,
Fourier transform [3,5]. This has disadvantages, as mentioned above. The mappin
either expose or hide some of the frequency information. Furthermore, there might
biochemical meaning for the ordering and arithmetic structure that result from the sym
to numeric mapping.

A better approach is to derive the autocorrelation function directly from the sym
By autocorrelation of the symbolic sequence(sk)0�k<n we mean the numeric sequence

rk =
n−1∑
i=0

d(si, si+k),

where for any two symbolsx andy

d(x, y) =
{

1, x = y,
0, x 	= y.

(3)

This is related to the equal-symbol correlation measure introduced in [9]. The autoco
tion rk is a numeric sequence that can be rewritten in terms of the four indicator sequ
sinceua

k = d(sk,A), uc
k = d(sk,C), and so on. Hence,

rk = 〈ua,Sk ua〉 + 〈uc, Sk uc〉 + 〈ug,Sk ug〉 + 〈ut , Sk ut 〉,
where the operatorSk denotes a cyclic shift byk, that is,Sku

a = (ua
m+k)0�m<n, and simi-

larly in the remaining three cases. By (1), we have

〈ua,Sk ua〉 = 1

n

n−1∑
i=0

∣∣Ua
i

∣∣2e−j 2π
n ki

and so

rk = 1

n

n−1∑
i=0

(∣∣Ua
i

∣∣2 + ∣∣Uc
i

∣∣2 + ∣∣Ug

i

∣∣2 + ∣∣Ut
i

∣∣2)e−j 2π
n

ki .

We conclude that the DFT of the symbolic autocorrelation is the sum of the squared
lus of the DFTs of the indicator sequences. In other words, we obtain (2), the total spe
using the indicator sequences.
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2.3. Spectral envelope

The concept of spectral envelope was introduced in [8], and a variant for nonstat
data was discussed in [10]. For simplicity the presentation that follows is closer to
but considers the stationary case. The relations between the two approaches (and the
tionary/nonstationary case) will be discussed later.

Consider then × 4 matrix

u = [ua uc ug ut ]
and the vector of real weights

w = [a c g t]T .

The sequencez = uw then corresponds to the mappingA �→ a, C �→ c, and so on. The
DFT of z is

Z = Fz = Fuw = Uw,

whereU is the 4×n matrix obtained by concatenating the DFTs of the indicator seque

U = Fu = [Fua Fuc Fug Fut ] = [Ua Uc Ug Ut ].
Denoting byUi theith line ofU , we may writeZi = Uiw, and so

|Zi |2 = w′U ′
iUiw = ∣∣aUa

i + cUc
i + gU

g

i + tU t
i

∣∣2. (4)

The idea underlying [8] and [10] is to adjust the symbolic-to-numeric mapping in su
way that theZi become in some sense extremal. For each frequencyi, select the vectorw
of unit norm that maximizes|Zi |2. That is, consider the problem

max‖w‖=1
|Zi|2 = max‖w‖=1

w′U ′
iUiw.

The maximum of this Rayleigh quotient isλmax(U
′
iUi), the maximum eigenvalue of th

Hermitian matrixU ′
iUi . Furthermore, the weightsw for which the maximum is achieve

are given by

w = U ′
i

‖Ui‖ .

As a result,

max
‖w‖=1

|Uiw|2 = max
‖w‖=1

w′U ′
iUiw = ∣∣Ua

i

∣∣2 + ∣∣Uc
i

∣∣2 + ∣∣Ug
i

∣∣2 + ∣∣Ut
i

∣∣2 = Ri

and so we obtain

λmax
(
U ′

iUi

) = ∣∣Ua
i

∣∣2 + ∣∣Uc
i

∣∣2 + ∣∣Ug
i

∣∣2 + ∣∣Ut
i

∣∣2 = Ri.

This reveals yet another way of looking at the total spectrum (2). We have seen th
sum of the squares of the DFTs of the four indicator sequences, at frequencyi, is equal
to the DFT of the symbolic autocorrelation, at frequencyi. Now we see that it is als
related to the value of the DFT of a certain numerical sequence, again at frequencyi. The
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particular numerical sequence that leads to this spectrum corresponds to a symb
numeric mapping optimized to achieve the maximum squared magnitude for frequei.

One should note that in the nonstationary case, considered in [10], the matrixU ′
iUi is

averaged over several data segments, and the solution to the eigenproblem cannot b
as easily. On the other hand, if the averaging is not performed or if the data are stat
the approach should lead to results close to (2), which might be easier to compute.

We considered the Rayleigh quotient and the corresponding eigenvalue problem
for ease of comparison with the general approaches in [8,10]. Such an approach
strictly necessary in the case discussed. To see this, apply the Cauchy inequality to

|Zi |2 = ∣∣aUa
i + cUc

i + gU
g
i + tU t

i

∣∣2
�

(|a|2 + |c|2 + |g|2 + |t|2)(∣∣Ua
i

∣∣2 + ∣∣Uc
i

∣∣2 + ∣∣Ug
i

∣∣2 + ∣∣Ut
i

∣∣2)
and then note that the condition for equality readily leads to the results.

The spectral envelope was introduced by Stoffer [8] but depends on the concept o
eralized eigenvalue. To continue the discussion we need the following notation:λ(A,B)

denotes a generalized eigenvalue for the problemAx = λBx. We continue to useλ(A) in
reference to the eigenproblemAx = λx. Of courseλ(A, I) = λ(A). The idea in [8] is to
find the weightsw that maximize the power or variance for each frequency, relative to
total varianceV (w). This leads to a generalized eigenproblem, since the maximum
the form

max
w′A′U ′

iUiAw

w′A′V Aw
,

where, for alphabets of size 4,A is 4× 3 and can be taken as

A =
(

I3
0

)

and I3 is the 3× 3 identity matrix. We thus seekλmax(A
′U ′

iUiA,A′V A). For a given
frequencyi, the spectral envelope represents the largest proportion of the total pow
can be attributed to that frequency, among all possible symbolic-to-numeric mappin

It is helpful to compareλmax(A
′U ′

iUiA,A′V A), which appears in [8], withλmax(U
′
iUi),

which is related to the total spectrum (2). To do that observe that, ifD is a positive definite
symmetric matrix, thenD = SS′ with S non-singular, and

λk(C,D) = λk(S
−1CS−T , I ) = λk(S

−1CS−T ).

It readily follows from Ostrowski’s theorem [4] that

λmax(C)λmin(D
−T ) � λmax(C,D) � λmax(C)λmax(D

−T ).

SettingC = A′U ′
iUiA andD = A′V A, and noting thatλmax(A

′U ′
iUiA) = λmax(U

′
iUi) −

|Ut
i |2, we obtain upper and lower bounds for the required generalized eigenvalue, in

of λmax(U
′
iUi) and consequently the total spectrum.

2.4. Reduction of the dimensionality

The four indicator sequences are of course redundant, since

ua + uc + ug + ut = 1
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Ua
i + Uc

i + U
g
i + Ut

i =
{

N, i = 0,
0, i 	= 0.

The total spectrum can therefore be obtained with three DFTs, rather than four. In fac
it is possible to work with three(x, y, z) nonredundant sequences, rather than with
redundant ones [1,6,7]. The assignments used in [1] are

A �→ (
0 0 1

)
, C �→

(
−

√
2

3

√
6

3
−1

3

)
, G �→

(
−

√
2

3
−

√
6

3
−1

3

)
,

T �→
(

2
√

2

3
0 −1

3

)
.

The connection with the indicator sequences is

x =
√

2

3
(2ut − uc − ug), y =

√
6

3
(uc − ug), z = 1

3
(3ua − ut − uc − ug).

The equivalence between the method that relies on the indicator sequences, and tho
duced dimensionality was shown in [2], for an arbitrary number of symbols. In the pr
case, we have

3
(∣∣Ua

i

∣∣2 + ∣∣Uc
i

∣∣2 + ∣∣Ug
i

∣∣2 + ∣∣Ut
i

∣∣2) =
{

4
(|Xi |2 + |Yi |2 + |Zi |2

)
, i 	= 0,

4
(|Xi |2 + |Yi |2 + |Zi |2

) − 1, i = 0.

3. Conclusion

We have discussed several methods for the Fourier analysis of symbolic data, e
sizing the case of DNA sequences (four-symbol alphabets). We considered the in
sequence approach, the vector and the symbolic autocorrelation methods, and m
similar to the spectral envelope, that for eachfrequency optimize the symbolic-no-nume
mapping to emphasize any periodic data features.

We discussed the equivalence or connections between these methods. We hav
that it is possible to define the autocorrelation function of symbolic data, under we
sumptions: basically we need to be able to tell if two symbols are equal or distinct
autocorrelation is a numeric sequence, and its Fourier transform leads to the spectrum of t
symbolic data. But we have shown that this spectrum can also be obtained by summ
squares of the Fourier transform of indicator sequences (zero/one sequences indica
position of the symbols). We also examined the spectral envelope concept, which pr
yet another interpretation of the spectrum. Among all symbolic-to-numeric mappings
is one that maximizes the spectral energy at each frequency, and leads to the spectrum
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