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Nonlinear Systems and Exponential Eigenfunctions
Paulo J. S. G. Ferreira,Member, IEEE

Abstract—It has been shown recently that homogeneous time-
invariant systems produce exponential outputs in response to
similar exponential inputs, but that the concepts of “impulse
response” and “frequency response” are of little use for their
analysis. It was also asked whether there exist more general
classes of systems with exponential eigenfunctions. In this letter,
we recall that the concepts of impulse and frequency response
can be useless even for certain linear, time-invariant systems.
We briefly discuss the role of time-invariance, commuting linear
systems, and conditions under which they have common eigen-
functions. Then we exhibit a class of nonlinear, nonhomogeneous,
time-varying systems that still have exponential eigenfunctions.
This class contains homogeneous time-invariant systems, finite
impulse response (FIR) filters and generalized feedforward filters
as special cases, and it shows that the exponential eigenfunc-
tion property does not imply linearity, homogeneity, or time-
invariance.

Index Terms—Commutativity, exponentials, fading memory,
homogeneous time-invariant systems, linear time-invariant sys-
tems, nonhomogeneous systems, nonlinear systems.

I. INTRODUCTION

L INEAR time-invariant (LTI) systems have a well-known
property: exponential inputs lead to similar exponential

outputs. It has been pointed out [1] that homogeneous time-
invariant (HTI) systems share the same property, but that the
concepts of “impulse response” and “frequency response” are
of little use for the analysis of such systems. It is also asked
in [1] whether there exist nonhomogeneous systems with the
exponential eigenfunction property.

It is the aim of this letter to further discuss these points. In
the next section, we mention the apparently not well-known
fact that the concepts of impulse and frequency response can
be useless even for certain LTI systems, mentioning past works
that address this and other related issues.

By definition, LTI systems commute with delays (delaying
the input merely delays the output by the same amount). The
system that delays a signal by a constant amount is a simple ex-
ample of a linear system with exponential eigenfunctions, and,
roughly speaking, commuting linear systems generally have
common eigenvectors or invariant subspaces. We comment on
this fact, and we give a sufficient condition for the existence
of a common eigenvector for commuting linear operators.

Can a system have exponential eigenfunctions without nec-
essarily commuting with the delay operator? This brings us
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back to the question made in [1] concerning the existence
of nonhomogeneous time-invariant systems with exponential
eigenfunctions. The question has an affirmative answer, and it
turns out that time-invariance is also not necessary.

Since a system is an arbitrary map between functions,
even artificial input/output rules such as the following can
be considered: the response to an exponential is the same
exponential, the response to any other signal is a fixed nonex-
ponential signal (for example, a step). This system is nonlinear,
nonhomogeneous, and time-varying, and has the exponen-
tial eigenfunction property (by construction). The example is
clearly devoid of any real interest. Note that, contrary to the
one given in [1], it is not realizable. However, it raises another
question: Are there interesting, potentially useful classes of
systems that meaningfully generalize LTI systems and still
possess exponential eigenfunctions? We will show that the
answer is affirmative. The class of systems that we construct
has the required properties and it contains some commonly
used filter structures as special cases.

II. RESULTS

A system is a map between signals (an operator). A func-
tional is a map from a set of signals into the complex numbers.
The arguments of nonlinear functionals or systems are written
inside square brackets, but the brackets are dropped if the
mapping is linear (round brackets are used if necessary). The
operator that translates or delays the signal byis denoted by

, or simply , if the value of is unimportant. A functional
is time- or translation-invariant if for all

, and a (linear or nonlinear) system is time-invariant if
, for all .

Borrowing an idea from [2] and [3], consider the LTI system
that maps the input signal into the constant signal ,
where is the average functional

The impulse response of this system is the zero signal, but this
fact is of little use because the system cannot be represented
as a convolution. In fact, the system maps a nonzero constant
signal into itself.

The existence of LTI systems that cannot be represented
by convolutions has been noted by several authors, including
[4], which draws on material found in [2]. The very simple
example appears in the more recent work [3].
Another recent reference is [5].

It is well known that any pair of commuting matrices
has a common eigenvector [6]. By definition, an LTI sys-
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tem commutes with the delay , and the exponentials are
eigenfunctions of . It is natural to ask if time-invariant sys-
tems have exponential eigenfunctions because they commute
with delays, which have exponentials eigenfunctions. In other
words, is time-invariance necessary? If it is not, it would be
interesting to state conditions that guarantee that a commuting
family of linear systems has common eigenfunctions.

The finite-dimensional problem is simple yet interesting.
Consider periodic discrete signals of period, and let
denote the cyclic shift by samples. Any linear system
acting on a th-dimensional space can be represented by a
matrix, and if the system commutes with for every
the matrix is circulant. Every time-invariant system on the
finite-dimensional space of periodic discrete signals can be
represented as a circular convolution.

The eigenvectors of the cyclic shift matrix are exponential
signals, and the eigenvectors of circulants are the same expo-
nential signals. Circulant matrices can be simultaneously di-
agonalizable (by the unitary Fourier matrix or discrete Fourier
transform), and in general any commuting family of matrices
is a simultaneously diagonalizable family [6]. Do similar
conclusions hold for infinite-dimensional spaces?

The answer is in general negative. Characterizing time-
invariant linear bounded operators from to is not
trivial, and the general case is still not completely understood.
See [7] for a recent treatment and a characterization for

and . The following remark might
be useful: if two linear systems and commute, they will
have a common eigenvector if at least one of the two systems
has an eigenvalue of finite multiplicity. To see why note that
the set of eigenvectors of corresponding to the eigenvalue
is in the null space of . Because commutes with

, its null space is invariant under. If the dimension of this
invariant space of is finite it must contain an eigenvector
of , and this will be a common eigenvector of and ,
because it satisfies both and .

We now consider the question raised in [1], and show
that there exist interesting systems that are neither linear nor
time-invariant and that have exponential eigenfunctions. It is
helpful to consider first the following very simple case, upon
which more complex classes of systems will be built. Let

be a nonlinear and nonhomogeneous functional, anda
LTI system. Consider the nonlinear, nonhomogeneous system
defined by

(1)

The term can be considered as a signal-dependent gain,
which affects the output of the LTI system. Consequently,
the system defined by (1) maps an exponential function into
the same exponential, up to a complex factor.

For example, the output that corresponds to the exponential
is (using a suggestive but rather loose notation)

, the same exponential up to a complex
factor (note that is a complex number, the image
under the functional of the signal , and
is proportional to because of the constraints imposed
upon ).

It should be clear now that need not be LTI. The
exponential invariance subsists if is a system that has the
exponential eigenfunction property but is not necessarily linear
(in particular, can be HTI).

We are now ready to discuss the following proposition.
Proposition 1: Consider the system

(2)

where is a finite index set, the are functionals (not
necessarily linear, nor time-invariant) and the are LTI
systems. The response of the systemto an exponential
signal is the same exponential, up to a complex factor.

Proof: Assume that is exponential, say, .
Since, by hypothesis, is proportional to [say,

], the th sample of the output of the system
will be

which shows that is the exponential up to the factor inside
parentheses.

Again, the hypotheses concerning and the systems
could be weakened, but for brevity we refrain from doing so.
As a simple example, we might have imposed uponthe
weaker condition of homogeneity, and extending the results to
continuous-time systems is straightforward.

Proposition 2: If all the functionals in (2) are time-
invariant, the system will be time invariant.

Proof: Since all the and are time-invariant, the
response to , being an arbitrary delay, is

But and , by definition, and it
follows that

which means that is time-invariant.
The following examples show that the class of systems

expressed by (2) is not empty, and contains as special cases
filter structures commonly met in signal processing.

Example 1: Let (complex constants), and
(delay by units). The responseof the system (2) to the

input will then be given by

Thus, the class of systems considered contains the finite
impulse response (FIR) filters as special cases.

Example 2: Let (complex constants), and
(composition of a fixed system , times). The response

of the system (2) to the input will then be given by

The systems considered thus contain the generalized feedfor-
ward filters [8] as particular cases.
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Example 3: Take the sum in (2) to consist of only one term,
or, equivalently, go back to (1). Let be an arbitrary LTI
system and let

The functional is clearly time-varying, and so is the
system . The system is in addition nonlinear
and nonhomogeneous, yet when the input is an exponential

one has and the output becomes

which is proportional to the exponentialbecause is LTI.
Many other similar examples can be given. It is easy

to obtain, for example, homogeneous systems of degree,
, with exponential eigenfunctions.
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