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Concerning the Nyquist Plots of
Rational Functions of Nonzero Type

Paulo J. S. G. Ferreira

Abstract—The Nyquist plots of rational functions of type one or
higher are often represented with branches that tend to infinity while
approaching either the real or imaginary axis. It is shown that this fails
to be true in general, a fact that appears to have little, if any, impact on the
usual analysis. However, it has pedagogical interest since it explains the
discrepancy between the shape of the Nyquist plots obtained analytically,
or with the help of computer programs in the classroom, and the plots
found in many standard textbooks. The discrepancy is most clear when
the system type is at least two, in which case the branches may move
infinitely further from both axes.

Index Terms—Control engineering education, control systems, Nyquist
plots.

I. INTRODUCTION

The Nyquist plot ofH(s) is the locus, in the complex plane, of
the points1

fReH(j!); ImH(j!)g (1)

as a function of!. The traditional Nyquist plot of a rational function
H(s) of type one or higher often shows branches which tend to
infinity while approaching either the real or imaginary axis. This
is, in general, incorrect. The purpose of this note is to discuss and
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1The real and imaginary parts of a complexs are denoted byRes andIms,

respectively. The imaginary unit is denoted byj.

Fig. 1. Nyquist plot ofH(s) = (1 + s)=s: (a) the expected plot and (b)
the correct plot.

clarify this issue, since some standard textbooks on control theory
do not address it.

A rational function of typen 2 IN can be written as

H(s) =
P (s)

snQ(s)
(2)

whereP (s) and Q(s) are polynomials. When the type is one or
higher, H(s) has poles ats = 0, and the Nyquist plot branches
approach the point at infinity ass = j! ! 0. The phase angle
subtended by a point on the branches then converges to a multiple
of �=2. However, this does not mean that the branches approach one
of the axes. As the following counterexamples show, for systems of
type two the branches may even move further and further away from
both axes as! ! 0.

II. EXAMPLES

Example 1: The Nyquist plot of

H(s) =
s+ 1

s
: (3)

In this case

H(j!) =
j! + 1

j!
= 1� j

1

!
(4)

and consequently

ReH(j!) = 1;

ImH(j!) = �
1

!
:

(5)

The Nyquist plot corresponding to! 2 IR+ is clearly a vertical half-
line ending in (1, 0) [see Fig. 1(b)]. Usually, the student expects a
plot similar to the one depicted in Fig. 1(a).

Example 2: The Nyquist plot of

H(s) =
s+ 1

s2
: (6)

In this case

H(j!) =
j! + 1

�!2
(7)

and thus

ReH(j!) =
1

!2

ImH(j!) = �
1

!
.

(8)
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Fig. 2. Nyquist plot ofH(s) = (1 + s)=s2: (a) the expected plot and (b)
the correct plot, a parabola (there is no asymptote, the distance to both axes
increases as the distance to the origin increases).

Letting x = ReH(j!) andy = ImH(j!) we see, upon eliminating
!, that

x = �y2: (9)

This parabola is sketched in Fig. 2(b), whereas Fig. 2(a) depicts the
expected plot.

These discrepancies can be explained easily. IfH(s) is of nonzero
type

H(s) =
P (s)

snQ(s)
(10)

with n 2 IN. Consequently,

lim
!!0

P (j!)

(j!)nQ(j!)
= lim

!!0
M(!)ej�(!) (11)

where

M(!) =
P (j!)

(j!)nQ(j!)
(12)

and �(!) is the phase angle of

P (j!)

(j!)nQ(j!)
: (13)

If P (s) andQ(s) have real coefficients we may assume without loss
of generality thatP (0) andQ(0) are nonzero reals, meaning that

lim
!!0

�(!) = integer�
�

2
: (14)

The functionM(!) clearly increases without bound as! ! 0.
However,M(!) ! 1 and (14) together do not necessarily mean
that the Nyquist plot ofH(s) approaches the real or imaginary axis
as! ! 0. The phase angle of a complex points which approaches
the point at infinity may converge to a multiple of�=2 without its
real or imaginary parts converging to zero.

The converse proposition is obviously true: if the limit point is
a point belonging to one of the axes, then the phase angle must
converge to a multiple of�=2. Thus, when the limit point is not the
point at infinity, the branches will indeed end on one of the axes.

III. REMARKS

Nyquist plots found in textbooks depict in a clear way the global
behavior of the functionH(s) infinitely far from the origin, in terms
of its magnitude and phase.

For systems of nonzero type, the branches of the plot do not
necessarily have to approach an axis, and for systems of type two and

higher the branches may even deviate infinitely from both of them.
This behavior is not readily apparent analytically to the student, but
becomes so with the help of computer software.
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Using Contests to Teach Design to EE Juniors

Peter H. Gregson,Member, IEEE,and Timothy A. Little

Abstract—Most electrical engineering programs have a capstone design
course, but lack a suitable design experience in the junior year. This
makes the capstone course very difficult for students and compromises
its pedagogical aims. A good design experience offers opportunities for
learning to identify key operational concepts, to identify and remedy
procedural and factual knowledge deficits, and to exercise judgment.
Design problem should be open-ended, moderately difficult, and common
to all groups. We use a design contest as a vehicle for teaching design
in the junior-year analog electronics course, in lieu of conventional
laboratories. Students design and build analog circuitry to autonomously
control a small robotic vehicle. The contest culminates in a competitive
tournament. Students’ questionnaire responses indicate that the contest
is a useful learning tool, increasing interest in electrical engineering and
well worth the time spent. They indicate that contests are preferable to
conventional labs for learning and understanding course material, for
motivating them, and for providing an engineering experience.

Index Terms—Capstone course, design contest, design course, inte-
grated design, juniors.

I. INTRODUCTION

TO GAIN mastery of the discipline, an electrical engineer (indeed
any engineer) requires:

1) factual knowledge;
2) knowledge of engineering procedures;
3) the ability to identify key concepts;
4) the ability to acquire new knowledge;
5) judgment to use incomplete/contradictory information.

The normal engineering curriculum addresses items 1) and 2) through
didactic learning. Items 3)–5) are developed largely through design
experience gained on-the-job during co-op and internship placements
or after graduation, not in the classroom. This is in part because
it is difficult to teach concept identification, knowledge acquisition,
and judgment other than through practice. It is also very difficult
to assess students’ performance in these areas principally because
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