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[3] A. Erdelyi, Ed., Higher Transcendental Functionsol. IIl. - Melbourne, optics [13], tomography [14], [15], frequency modulation (FM), and
FL: Krieger, 1981. phase, delta, or pulse position demodulation [16], [17]. Second, it is

[4] D. J. Schmidlin,The Simple Polynomial Set: A Mathematical Tool for : ; ; ;
Representing and Generating Discrete-Time Signelisiy. of Massa- often impossible to uniformly sample certain types of data, such as

chusetts Dartmouth, Tech. Rep. UMD-ECE-TR98-100, Sept. 1998. astronomical or geophysical data, because the signal might not be
available for measurement at certain points of the domain. Third,

there are several factors that may accidentally lead to irregularly
distributed sets of samples: jitter, incorrect samples due to noise
or clipping, lost or delayed packets in packet-oriented telecommu-
nication systems, data losses due to channel erasures, and others.
Fourth, deliberately randomized sampling might have advantages for
some specific applications, including signal analysis at low sampling
rates [19]. The proceedings of two recently held workshops [20],
[21] mention many theoretical results and engineering applications in
reference to nonuniform sampling.

Abstract—This brief explores the connections between nonuniform  This brief explores the connections between the theory of almost
sampling of a certain function and the almost periodic extension of its periodic functions and nonuniform sampling. The classical theory
Fourier transform. It is shown that the Fourier transform of a band-  of uniform almost periodic functions is due to H. Bohr, and was
limited function can be extended (as a weighted sum of translates) as g4 generalized by a number of other mathematicians, including
a Stepanoff almost periodic function, to the whole frequency axis. This ) . .
result leads to a generalized nonuniform sampling theorem which, unlike Steépanoff, Wiener, Weyl, Besicovitch, and Schwarz. The reader
previous results, does not require the continuity of the Fourier transform  interested in the theory of almost periodic functions is referred to
of the sampled function, and is valid for finite-energy band-limited [22]-[25]. The generalization due to Stepanoff will be especially
functions. useful in the context of this brief.

Index Terms—Almost periodic extension, almost periodic functions, Sampling results have been derived using a diversity of mathemat-
nonuniform sampling, Stepanoff almost periodic functions. ical techniques, including distribution theory, eigenfunction expan-
sions, complex variable methods, reproducing kernel Hilbert spaces,
special function theory, abstract harmonic analysis, and more. Given
the connections between harmonic analysis and sampling theory, the
absence of the theory of almost periodic functions from this list is
surprising. It is true that frames [26] and nonharmonic Fourier series
are often useful in the context of nonuniform sampling [9], [27].
However, the potential offered by almost periodic function theory
;o1 /‘J“>o jwt seems to have gone unused or unnoticed by many researchers.
fw)= — f(t)e dt : . ) ) .

Vor J_oo The paper by Davis [28] is the only work in the engineering
. literature of which we are aware that relates or applies the theory
vanishes almost e_verywhere fo| > g of almost periodic functions to sampling. It introduces the idea of

The reconstruction of such functions from a knowledgef (f) an almost periodic extension of a compactly supported function, and

(n € 7) is the subject of sampling theory. For an introduction WQieverly uses it to formulate a nonuniform sampling theorem that

_the toplc, see [1]. Th_e historical deve_lopment of_sampllng theort%f)ntains, as a special case, a previously known result on multichannel
is partially discussed in [2] and [3], which also review a humber o

. . . o mpling. More recently, the mean-periodi ntinuation meth f
interesting related results. The review paper by Jerri [4] is an acco sat pling. More recently, the mean-periodic continuation method o

of the state of the art in sampling as of 1977, whereas Butze?,étsnelson [29], [30] has lead to new insights regarding sampling

review [5] concentrates on the results obtained at the Lehrstubl A or functlons’wnh a multiband spectrum with suppdft and Riesz
. . bases forL,(E).
Mathematik, Aachen, Germany. A number of more recent reviews . . . .
However, the interesting results given in [28] apply only to

and books are available, such as [6] or [7], the latter which contaips : ! . . . 7
- . . - unctions with a continuous Fourier transform. This restriction leaves
an extensive bibliography with more than 1000 entries. Several other

developments are discussed in the books by Zayed [8] and Higgffi Ealnd':'m_'tEdLZ fllj_nctuz;n_s Su?: a_sin(att)/t, Wh'fcfh ptlay afundg— d
[9], including an expository account of the Feichtingeré@Grenig mental role in sampling. iven e Importance ot finite-energy band-

theory [10], [11], sampling results associated with Sturm—LiouviIIgm'ted functions this is a considerable drawback, already pointed out

problems, the Landau minimum sampling density theorem [12], afly [2_8] as oné of the issues worth of further_lnve_stlga_ttlon.

much more. It is precisely this matter that we address in this brief. Our results
Since this brief addresses the nonuniform or irregular sampliltl]éfld_true for fun_ctlons whose Fourler traqsfprm IS no_t necessarily

problem, a few words regarding the motivation for the study of suchc@ntinuous, as is the case with, band-limited functions. The

sampling methodology, along with some of the possible applicatior‘?'?j‘mpli.r‘g theorem gnd Fhe actual copstructioq of the almost period.ic
tension upon which it rests remain essentially unchanged. As in

are not devoid of interest. First, nonuniform or irregular samplin X ) ) '
measurements do occur naturally in several applications, includiif]: the extension method is based on a weighted sum of translates.
This brief extends the previously known results to a broader class

Manuscript received March 9, 1998; revised September 4, 1998. This brigffunctions, and shows that Davis’ construction remains valid under
was recommended by Associate Editor N. R. Shanbhag. less stringent constraints
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INESCA, Universidade de Aveiro, 3810 Aveiro, Portugal. Technically, we deal with almost periodic extension of bounded
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I. INTRODUCTION

We use the standard notatioh, for the spaces of complex
functions of one real variable such thﬁf;o |/ (2)]? dz exists as
a Lebesgue integral. A functiofie L, (1 < p < 2) is bandlimited
to o if its Fourier transform
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leads in a natural way to continuations that are almost periodic in theWe have to show that, for any > 0, there is a relatively dense
sense of Stepanoff. This class of functions contains the (continuoss} of e-almost periods ofj(w) in the S (p > 1) norm, that is, a
uniformly almost periodic functions used in [28] as a special casget of nhumbers such that
As a consequence of the generalization, we will be able to establish a | et 1/p
nonuniform sampling theorem for functions whose Fourier transform SUD, e {Z / li(w+7) — §(w)|” dw <e )
is not necessarily continuous, as is the case uithband-limited : ¢
functions. Sincew; is u.a.l.,, there exist® > 0 such thatv, = nQ + A,,, A,
being a u.a.p. sequence. BathandA; are u.a.p. and, therefore, for
Il. GENERALIZED ALMOST PERIODIC EXTENSION any givené > 0, there exists a relatively dense g8t of 6-almost
if periods of bothz; and A;. The existence ofs is not immediately
obvious, and is equivalent to the addition theorem for u.a.p. sequences
or functions. A clear proof can be found in [22, p. 36], for example.
We will now show that (2) holds for any = m£2, wherem € Ps,
sup, eg |fx +7) = f(z)] < e if 6 is sufficiently small.
The precise value dfin (3) is unimportant, and so we may assume
The numbers are callede-almost periods off. A subset oflR is  without loss of generality that < 20. This implies that every interval
relatively dense with inclusion length if any interval of lengthL I = [, a+(] can be expressed as union of at most three disjoint sets
contains at least one element from the set. Therefpris, u.a.p. if S1, .52, andS; defined as followsS; is the set of allu € I such that
and only if it is continuous and has a relatively dense setalfnost
periods (for arbitrarye > 0).
Almost periodic sequences (functions frozh into q:) are also  ¢or some integen.
useful. A sequencg; is u.a.p. if, for anye > 0, there is an integer
M > 0 such that each interval of length/ contains at least one |w —wn| >0 +6 4
integer m such that and

A function f: I’ — C is uniformly almost periodic (u.a.p.)
givene > 0 there is a reall > 0, such that each interval of length
L contains at least one such that

|w—wn| <o =46 3)

S2 and Ss are defined similarly, but substituting

sup;cz | fiem — fil <e. c—b0<|w—wn|<o+6 ©)

It is known [23] thatf; is u.a.p. if, and only if, there exists a u.a.p.for (3), respectively. The integral (2) can be expressed as the sum
function ¢ such thatf; = g(i). of integrals taken ove§,, Sz, and Ss, which we will now examine
The StepanoffS” norm is defined by separately.
The first case occurs when € S,. We then have
.

1
Il = swp.cu |7
Since, for anym € P

for an arbitrary¢ > 0. A function is almost periodic in the sense of
Stepanoff 67 a.p.) if it belongs to the closure in th&” norm of |w 4+ mQ — wngm| = |w —wn + Ay — A
the set of u.a.p. functions. A study 6f a.p. functions, which were

¢ 1/p
o) d} §(w) = ani(w — wn). (6)

originally introduced by Stepanoff [31], may be found in [24]. S | wnl+]An = Anim| <o
It can be shown that if a function i8” a.p. for a certain positivé, it follows that
it is also.S* a.p. for every othet > 0. If follows from the definition
that the set of5” a.p. functions strictly contains the u.a.p. functions. Jlw+mQ) = anpmd(w +mQ — wnim)
Every uniformly continuous” a.p. function is also a u.a.p. function. = Apgpm@(w — w, + 66) @)

The original idea [28] behind almost periodic extension of a Fourier . ]
transform functioni: with support in[—c, ¢] can be explained as for some reab such thatf| < 1. Using (6) and (7), we may write

follows. Consider A <
|7(w + m) — g(w)|”

+oo 5 7
) X = |tntm@(w — wpn +08) — apntm(w — w,
§(w) = E a;t(w — wi) 1) s (A . +md )
i —oo +afn+m-7/'(w_Wn)_anm(w_w"”p

i H P = |tntm [P (w — wp 06) — 2w — wy
and choose they; and thea; in such a way thatj is uniformly [ [ +06) —#w —wn)]

almost periodic. The following sufficient condition for uniform almost + &(w = wn)[antm — an]l’.
periodicity of § is stated without proof in [28].

Theorem 1: Let & be a continuous function with suppdrto, o].
If a; is u.a.p.w; is uniformly almost linear, and no two translates of . . p
& overlap, thenj as defined by (1) is a u.a.p. function. U@ [9(w +m) = g(w)[® dw}

In the terminology of [28], a sequence, of real numbers is ! i
uniformly almost linear (u.a.l.) if, and only if, there exists a real < g [/
constant(?, such that{2 — «,, is a u.a.p. sequence.

The continuity of# is unnecessary i is required to be almost - 1/p
periodic in the Stepanoff sense, as we show with the following +lantm — anl [/ |2(w — wp)[P dw‘}
theorem, which generalizes Theorem 1. i ! 1/p

The_orerr_1 2:Letz be a pounded m_easurable function with support < A [/ |i(w = wn + 88) — #(w — wn)|? dw} + 8|2,
contained iN—a, o). If a; is u.a.p..v; is u.a.l., and no two translates Sy
of & overlap, thery defined by (1) is ar? a.p. function(p > 1). (8)

Minkowski's inequality leads to

1/p
|2(w — wn +88) — 2w — wn)|” dw:|

Sq
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where
A = supy |ax]|. [1]
[2]

(3]

The second case occurs where Sz, and we then havg(w) = 0.
It is easy to see thaf(w + mf2) = 0 as well, since in any-
neighborhood ofv € S; we haveg(w) = 0, andm is a 6-almost
period of A,,. Thus

[4]

/ 19+ mQ) = §(w)]P dw = 0. ©)
Sg

[5]
To deal with the third and last case, lete S;. Sincel < 20, the

measure ofS; does not exceeds. Thus -
6

/, [§(w + mQ) — §{w)|P dw < 4627 B (10)

(7]
(8]
El

where
B = [|2|oe = sup,|2(w)]".

Using (8)—(10), we have

1 fott [10]
7 / [§(w + mQ) — §(w)|F dw
- U +/ +/ }Igtw +mQ) — ()] de (]
St Sa S3
. 1/p
<A {/ |#(w — wn +86) — 2(w — wy)|P dw (12]
S
+ 6|| ]|, + 462" B [13]
which tends to zero whef — 0. This means that can always be
chosen so small that (2) holds, thus completing the proof. [14]

Note that Theorem 2 reduces to Theorem 1 whén) is contin-
uous, since &% a.p. function is u.a.p. if, and only if, it is uniformly [15]
continuous [23], [24].

The following sampling theorem is a consequence of Theorem 2,
and removes the continuity restriction found in [28].

Theorem 3: Let w,, anda,, be u.a.l. and u.a.p. sequences, respeél-G]
tively, and letz be anL» signal with Fourier transform supported in
[—0o. +0a]. If the conditionsey = 1, wo =0, a_p, = @y, W—p = Wy,
andw, — wn—1 > 20 hold, then:

1) s(t) = lim,—o (1/n) 3724 are’“*" is nonzero at a count- (18]

able set{t, } of points only;

2) if t, — oo at least as rapidly as, thenx can be recovered

[17]

from s(t,,)x(t.) using [19]
- 20

o(t) =limy—oo Y s(te)a(tr)h(t — tr) [20]

k=—n [21]

whereh(t) = 2sin(ot)/t, and2 is the constant associated

with the u.a.l. sequence,,. [22]
The proof can be carried out following [28], noting that Parseval’gi]
equation also holds fa$? a.p. functions [24]. Therefore, the Fourier

coefficientsb; of the extension functio do satisfy [25]
+oo0 .
> bl <o [26]
k=—oc0
[27]

just as in the u.a.p. case.

This shows that the essential of the construction proposed in [28B]
remains valid under less stringent constraints and completes our initial
goal: to extend the previously known results to a broader class 5]
functions, with possibly discontinuous Fourier transforms, exploring
the concept of Stepanoff almost periodicity.
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on Sampling Theory Applications (SampTA-9%eiro, Portugal, June " [6], @ linear combination of the original state variables (i.e.,
1997, pp. 457-462. a scalar signal) is used to synchronize hyperchaos assRi’s
[31] V\!._St_epanoff, “Sur quequeseg?raliz’ations des fonctions presquesystems. However, the approach in [6] cannot be considered a
periodiques,”C. R. Acad. Sci., Paris €8f. |, vol. 181, pp. 90-94, 1925. gystematic technique for synchronization, since the coefficients of
the linear combination are somewhat arbitrary. An interesting result
has been recently reported in [7], where a parameter control method
is proposed to achieve hyperchaos synchronization. In any case, the
computation of the Lyapunov exponents is still required in order to
Synchronizing Hyperchaotic Systems by Observer Design Verify the synchronization.
This brief makes a contribution in the context of hyperchaos
Giuseppe Grassi and Saverio Mascolo synchronization. Furthermore, an application to hyperchaos-based
cryptography is presented. The key idea is to make the response
o _ . ~ system a linear observer for the state of the drive system. This
Abstract—In this brief, a technique for synchronizing hyperchaotic approach guarantees synchronization, because an observer has the
systems is presented. The basic idea is to make the driven systemalinearproperty that its state converges to the state of the plant; that
observer for the state of the drive system. By developing this approach, a . '
linear time-invariant synchronization error system is obtained, for which ~ 1S: the state of the driven system converges to the state of the
a necessary and sufficient condition is given in order to asymptotically drive one. The proposed technique has several advantages over the
stabilize its dynamics at the origin. The suggested tool proves to be existing methods. It proves to be simple and rigorous. It does not
effective and systematic in achieving global synchronization. It does require either the computation of the Lyapunov exponents or initial

not require either the computation of the Lyapunov exponents, or the conditions belonaing to the same basin of attraction. Moreover
initial conditions belonging to the same basin of attraction. Moreover, it ging : ’

guarantees synchronization of a wide class of hyperchaotic systems viaglobal synchronization is achievable in a systematic way for several
a scalar signal Finally, the proposed tool is utilized to design a secure examples of hyperchaotic systems reported in literature.
communications scheme, which combines conventional cryptographic  The paper is organized as follows. In Section I, a general class
methods and synchronization of hyperchaotic systems. Thg utl_llzatlon of of hyperchaotic systems is defined and the well-known concept
both cryptographyand hyperchaos seems to make a contribution to the . S .
development of communication systems with higher security. of linear observer is introduced to formalize the problem of hy-
perchaos synchronization. Following this approach, a linear time-
invariant synchronization error system is derived, along with a
necessary and sufficient condition for its asymptotic stabilization.
This technique guarantees synchronization o&$ter's system [6],
|. INTRODUCTION the Matsumoto—Chua—Kobayashi (MCK) circuit [8] and its modified

At first thought, chaotic phenomena generated by nonlinear syste¥F&sion [8], two oscillators recently reported in literature [10], [11],
would seem singularly unsuited for engineering applications. _ﬁpd a circuit with hysteretic nonlinearity [12]. A_major a(_jvantage
reality, the broad-band frequency spectrum makes chaotic signal$ 4@t all of these systems are synchronized usirsgadar signal.
natural way of sending and receiving private communications. FB} Order to show the effectiveness of the developed technique,
this reason, chaotic dynamics, synchronization of coupled dynarfidmerical simulations are carried out in Section Ill, whereas in
systems, and secure communications have been the topics of mafgtion V. a secure communications scheme is designed, which
papers over the last few years [1]-[7]. combines conventionatryptographicmethods and synchronization

Referring to synchronization, Carroll and Pecora [2] have theoréjt_t hyperchaotic systems. In Section V, some concluding remarks are

ically and experimentally shown that the dynamics of a drive syste#/®"-
and of a driven subsystem (response system) become synchronized
if the Lyapunov exponents of the response system are less ther|. HyPERCHAOSSYNCHRONIZATION USING LINEAR OBSERVER

Z€ro, assuming that both the systems start in the same bz.ism. the goal of synchronization is to design a coupling between two
attraction. However, most of the methods concern the synchronlzat%

of low dimensional systems,

Index Terms—Chaotic encryption, hyperchaotic circuits and systems,
synchronization theory.

, Which is generated by the

O.f the c_:haotlc dyn_amlcs, Itis b_elleved that the adOF’F'_O” of hlgh‘?irrive system. In this brief, the attention is focused on the following
dimensional chaotic systems, with more than one positive Lyapun(cl)l\élss of dynamic systems
exponent, enhances the security of the communication scheme. Therebefinition 1 A hyperch;'aotic system belongs to the clags if

fore, hyperchaotic systems and hyperchaos synchronization hﬂ\éestate and output equations can be written, respectively, as
recently become fields of active research [5]-[7]. In particular, in
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