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Sampling and Generalized Almost
Periodic Extension of Functions

Paulo J. S. G. Ferreira

Abstract—This brief explores the connections between nonuniform
sampling of a certain function and the almost periodic extension of its
Fourier transform. It is shown that the Fourier transform of a band-
limited function can be extended (as a weighted sum of translates) as
a Stepanoff almost periodic function, to the whole frequency axis. This
result leads to a generalized nonuniform sampling theorem which, unlike
previous results, does not require the continuity of the Fourier transform
of the sampled function, and is valid for finite-energy band-limited
functions.

Index Terms—Almost periodic extension, almost periodic functions,
nonuniform sampling, Stepanoff almost periodic functions.

I. INTRODUCTION

We use the standard notationLp for the spaces of complex
functions of one real variable such that+1

�1

jf(x)jp dx exists as
a Lebesgue integral. A functionf 2 Lp (1 � p � 2) is bandlimited
to � if its Fourier transform

f̂(!) =
1p
2�

+1

�1

f(t) e�j!t dt

vanishes almost everywhere forj!j > �.
The reconstruction of such functions from a knowledge off(tn)

(n 2 ) is the subject of sampling theory. For an introduction to
the topic, see [1]. The historical development of sampling theory
is partially discussed in [2] and [3], which also review a number of
interesting related results. The review paper by Jerri [4] is an account
of the state of the art in sampling as of 1977, whereas Butzer’s
review [5] concentrates on the results obtained at the Lehrstuhl A f¨ur
Mathematik, Aachen, Germany. A number of more recent reviews
and books are available, such as [6] or [7], the latter which contains
an extensive bibliography with more than 1000 entries. Several other
developments are discussed in the books by Zayed [8] and Higgins
[9], including an expository account of the Feichtinger–Gröchenig
theory [10], [11], sampling results associated with Sturm–Liouville
problems, the Landau minimum sampling density theorem [12], and
much more.

Since this brief addresses the nonuniform or irregular sampling
problem, a few words regarding the motivation for the study of such a
sampling methodology, along with some of the possible applications,
are not devoid of interest. First, nonuniform or irregular sampling
measurements do occur naturally in several applications, including
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optics [13], tomography [14], [15], frequency modulation (FM), and
phase, delta, or pulse position demodulation [16], [17]. Second, it is
often impossible to uniformly sample certain types of data, such as
astronomical or geophysical data, because the signal might not be
available for measurement at certain points of the domain. Third,
there are several factors that may accidentally lead to irregularly
distributed sets of samples: jitter, incorrect samples due to noise
or clipping, lost or delayed packets in packet-oriented telecommu-
nication systems, data losses due to channel erasures, and others.
Fourth, deliberately randomized sampling might have advantages for
some specific applications, including signal analysis at low sampling
rates [19]. The proceedings of two recently held workshops [20],
[21] mention many theoretical results and engineering applications in
reference to nonuniform sampling.

This brief explores the connections between the theory of almost
periodic functions and nonuniform sampling. The classical theory
of uniform almost periodic functions is due to H. Bohr, and was
soon generalized by a number of other mathematicians, including
Stepanoff, Wiener, Weyl, Besicovitch, and Schwarz. The reader
interested in the theory of almost periodic functions is referred to
[22]–[25]. The generalization due to Stepanoff will be especially
useful in the context of this brief.

Sampling results have been derived using a diversity of mathemat-
ical techniques, including distribution theory, eigenfunction expan-
sions, complex variable methods, reproducing kernel Hilbert spaces,
special function theory, abstract harmonic analysis, and more. Given
the connections between harmonic analysis and sampling theory, the
absence of the theory of almost periodic functions from this list is
surprising. It is true that frames [26] and nonharmonic Fourier series
are often useful in the context of nonuniform sampling [9], [27].
However, the potential offered by almost periodic function theory
seems to have gone unused or unnoticed by many researchers.

The paper by Davis [28] is the only work in the engineering
literature of which we are aware that relates or applies the theory
of almost periodic functions to sampling. It introduces the idea of
an almost periodic extension of a compactly supported function, and
cleverly uses it to formulate a nonuniform sampling theorem that
contains, as a special case, a previously known result on multichannel
sampling. More recently, the mean-periodic continuation method of
Katsnelson [29], [30] has lead to new insights regarding sampling
for functions with a multiband spectrum with supportE, and Riesz
bases forL2(E).

However, the interesting results given in [28] apply only to
functions with a continuous Fourier transform. This restriction leaves
out band-limitedL2 functions such assin(at)=t, which play a funda-
mental role in sampling. Given the importance of finite-energy band-
limited functions this is a considerable drawback, already pointed out
in [28] as one of the issues worth of further investigation.

It is precisely this matter that we address in this brief. Our results
hold true for functions whose Fourier transform is not necessarily
continuous, as is the case withL2 band-limited functions. The
sampling theorem and the actual construction of the almost periodic
extension upon which it rests remain essentially unchanged. As in
[28], the extension method is based on a weighted sum of translates.
This brief extends the previously known results to a broader class
of functions, and shows that Davis’ construction remains valid under
less stringent constraints.

Technically, we deal with almost periodic extension of bounded
measurable functions, instead of continuous functions as in [28]. This
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leads in a natural way to continuations that are almost periodic in the
sense of Stepanoff. This class of functions contains the (continuous)
uniformly almost periodic functions used in [28] as a special case.
As a consequence of the generalization, we will be able to establish a
nonuniform sampling theorem for functions whose Fourier transform
is not necessarily continuous, as is the case withL2 band-limited
functions.

II. GENERALIZED ALMOST PERIODIC EXTENSION

A function f : IR ! C is uniformly almost periodic (u.a.p.) if
given � > 0 there is a realL > 0, such that each interval of length
L contains at least one� such that

supx2IR jf(x+ �)� f(x)j < �:

The numbers� are called�-almost periods off . A subset ofIR is
relatively dense with inclusion lengthL if any interval of lengthL
contains at least one element from the set. Therefore,f is u.a.p. if
and only if it is continuous and has a relatively dense set of�-almost
periods (for arbitrary� > 0).

Almost periodic sequences (functions from into C) are also
useful. A sequencefi is u.a.p. if, for any� > 0, there is an integer
M > 0 such that each interval of lengthM contains at least one
integerm such that

supi2 jfi+m � fij < �:

It is known [23] thatfi is u.a.p. if, and only if, there exists a u.a.p.
function g such thatfi = g(i).

The StepanoffSp norm is defined by

kfkS := supx2IR
1

`

x+`

x

jf(x)jp dx

1=p

for an arbitrary` > 0. A function is almost periodic in the sense of
Stepanoff (Sp a.p.) if it belongs to the closure in theSp norm of
the set of u.a.p. functions. A study ofSp a.p. functions, which were
originally introduced by Stepanoff [31], may be found in [24].

It can be shown that if a function isSp a.p. for a certain positivè,
it is alsoSp a.p. for every other̀ > 0. If follows from the definition
that the set ofSp a.p. functions strictly contains the u.a.p. functions.
Every uniformly continuousSp a.p. function is also a u.a.p. function.

The original idea [28] behind almost periodic extension of a Fourier
transform functionx̂ with support in [��; �] can be explained as
follows. Consider

ŷ(!) :=

+1

i=�1

aix̂(! � !i) (1)

and choose the!i and theai in such a way that̂y is uniformly
almost periodic. The following sufficient condition for uniform almost
periodicity of ŷ is stated without proof in [28].

Theorem 1: Let x̂ be a continuous function with support[��; �].
If ai is u.a.p.,!i is uniformly almost linear, and no two translates of
x̂ overlap, then̂y as defined by (1) is a u.a.p. function.

In the terminology of [28], a sequence�n of real numbers is
uniformly almost linear (u.a.l.) if, and only if, there exists a real
constant
, such thatn
 � �n is a u.a.p. sequence.

The continuity ofx̂ is unnecessary if̂y is required to be almost
periodic in the Stepanoff sense, as we show with the following
theorem, which generalizes Theorem 1.

Theorem 2: Let x̂ be a bounded measurable function with support
contained in[��; �]. If ai is u.a.p.,!i is u.a.l., and no two translates
of x̂ overlap, then̂y defined by (1) is anSp a.p. function(p � 1).

We have to show that, for any� > 0, there is a relatively dense
set of �-almost periods of̂y(!) in the Sp (p � 1) norm, that is, a
set of numbers� such that

sup�2IR
1

`

�+`

�

jŷ(! + �)� ŷ(!)jp d!

1=p

< �: (2)

Since!i is u.a.l., there exists
 > 0 such that!n = n
 +�n, �n

being a u.a.p. sequence. Bothai and�i are u.a.p. and, therefore, for
any given� > 0, there exists a relatively dense setP� of �-almost
periods of bothai and�i. The existence ofP� is not immediately
obvious, and is equivalent to the addition theorem for u.a.p. sequences
or functions. A clear proof can be found in [22, p. 36], for example.

We will now show that (2) holds for any� = m
, wherem 2 P�,
if � is sufficiently small.

The precise value of̀ in (3) is unimportant, and so we may assume
without loss of generality that̀< 2�. This implies that every interval
I = [�; �+`] can be expressed as union of at most three disjoint sets
S1, S2, andS3 defined as follows.S1 is the set of all! 2 I such that

j! � !nj < � � � (3)

for some integern. S2 andS3 are defined similarly, but substituting

j! � !nj >� + � (4)

and

� � � � j! � !nj � � + � (5)

for (3), respectively. The integral (2) can be expressed as the sum
of integrals taken overS1, S2, andS3, which we will now examine
separately.

The first case occurs when! 2 S1. We then have

ŷ(!) = anx̂(! � !n): (6)

Since, for anym 2 P

j! +m
� !n+mj = j! � !n +�n ��n+mj

� j! � !nj+ j�n ��n+mj < �

it follows that

ŷ(! +m
) = an+mx̂(! +m
� !n+m)

= an+mx̂(! � !n + ��) (7)

for some real� such thatj�j � 1. Using (6) and (7), we may write

jŷ(! +m
)� ŷ(!)jp

= jan+mx̂(! � !n + ��)� an+mx̂(! � !n)

+ an+mx̂(! � !n)� anx̂(! � !n)j
p

= jan+m[x̂(! � !n + ��)� x̂(! � !n)]

+ x̂(! � !n)[an+m � an]j
p
:

Minkowski’s inequality leads to

S

jŷ(! +m
)� ŷ(!)jp d!
1=p

� jan+mj
S

jx̂(! � !n + ��)� x̂(! � !n)j
p
d!

1=p

+ jan+m � anj
S

jx̂(! � !n)j
p
d!

1=p

� A
S

jx̂(! � !n + ��)� x̂(! � !n)j
p
d!

1=p

+ �kx̂kp

(8)
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where

A = supkjakj:

The second case occurs when! 2 S2, and we then havêy(!) = 0.
It is easy to see that̂y(! + m
) = 0 as well, since in any�-
neighborhood of! 2 S2 we haveŷ(!) = 0, andm is a �-almost
period of �n. Thus

S

jŷ(! +m
)� ŷ(!)jp d! = 0: (9)

To deal with the third and last case, let! 2 S3. Since` < 2�, the
measure ofS3 does not exceed4�. Thus

S

jŷ(! +m
)� ŷ(!)jp d! � 4�2pB (10)

where

B = kx̂k1 = sup!jx̂(!)j
p:

Using (8)–(10), we have

1

`

�+`

�

jŷ(! +m
)� ŷ(!)jp d!

=
S

+
S

+
S

jŷ(! +m
)� ŷ(!)jp d!

� A
S

jx̂(! � !n + ��)� x̂(! � !n)j
p d!

1=p

+ �kx̂kp + 4�2pB

which tends to zero when� ! 0. This means that� can always be
chosen so small that (2) holds, thus completing the proof.

Note that Theorem 2 reduces to Theorem 1 whenx̂(!) is contin-
uous, since aSp a.p. function is u.a.p. if, and only if, it is uniformly
continuous [23], [24].

The following sampling theorem is a consequence of Theorem 2,
and removes the continuity restriction found in [28].

Theorem 3: Let !n andan be u.a.l. and u.a.p. sequences, respec-
tively, and letx be anL2 signal with Fourier transform supported in
[��; +�]. If the conditionsa0 = 1, !0 = 0, a�n = an, !�n = !n,
and!n � !n�1 > 2� hold, then:

1) s(t) = limn!1 (1=n) n�1
k=0 ake

jw t is nonzero at a count-
able setftng of points only;

2) if tn ! 1 at least as rapidly asn, thenx can be recovered
from s(tn)x(tn) using

x(t) = limn!1

n

k=�n

s(tk)x(tk)h(t� tk)

whereh(t) = 2 sin(�t)=
t, and
 is the constant associated
with the u.a.l. sequence!n.

The proof can be carried out following [28], noting that Parseval’s
equation also holds forS2 a.p. functions [24]. Therefore, the Fourier
coefficientsbk of the extension function̂y do satisfy

+1

k=�1

jbkj
2 <1

just as in the u.a.p. case.
This shows that the essential of the construction proposed in [28]

remains valid under less stringent constraints and completes our initial
goal: to extend the previously known results to a broader class of
functions, with possibly discontinuous Fourier transforms, exploring
the concept of Stepanoff almost periodicity.
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Synchronizing Hyperchaotic Systems by Observer Design

Giuseppe Grassi and Saverio Mascolo

Abstract—In this brief, a technique for synchronizing hyperchaotic
systems is presented. The basic idea is to make the driven system a linear
observer for the state of the drive system. By developing this approach, a
linear time-invariant synchronization error system is obtained, for which
a necessary and sufficient condition is given in order to asymptotically
stabilize its dynamics at the origin. The suggested tool proves to be
effective and systematic in achieving global synchronization. It does
not require either the computation of the Lyapunov exponents, or the
initial conditions belonging to the same basin of attraction. Moreover, it
guarantees synchronization of a wide class of hyperchaotic systems via
a scalar signal. Finally, the proposed tool is utilized to design a secure
communications scheme, which combines conventional cryptographic
methods and synchronization of hyperchaotic systems. The utilization of
both cryptographyand hyperchaos seems to make a contribution to the
development of communication systems with higher security.

Index Terms—Chaotic encryption, hyperchaotic circuits and systems,
synchronization theory.

I. INTRODUCTION

At first thought, chaotic phenomena generated by nonlinear systems
would seem singularly unsuited for engineering applications. In
reality, the broad-band frequency spectrum makes chaotic signals a
natural way of sending and receiving private communications. For
this reason, chaotic dynamics, synchronization of coupled dynamic
systems, and secure communications have been the topics of many
papers over the last few years [1]–[7].

Referring to synchronization, Carroll and Pecora [2] have theoret-
ically and experimentally shown that the dynamics of a drive system
and of a driven subsystem (response system) become synchronized
if the Lyapunov exponents of the response system are less then
zero, assuming that both the systems start in the same basin of
attraction. However, most of the methods concern the synchronization
of low dimensional systems, characterized by only one positive
Lyapunov exponent [2]–[4]. Since this feature limits the complexity
of the chaotic dynamics, it is believed that the adoption of higher
dimensional chaotic systems, with more than one positive Lyapunov
exponent, enhances the security of the communication scheme. There-
fore, hyperchaotic systems and hyperchaos synchronization have
recently become fields of active research [5]–[7]. In particular, in
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[5] the synchronization between hyperchaotic systems is achieved
by exploiting linear and nonlinear feedback functions, although the
attention is not focused on the number of the synchronizing signals.
In [6], a linear combination of the original state variables (i.e.,
a scalar signal) is used to synchronize hyperchaos in R¨ossler’s
systems. However, the approach in [6] cannot be considered a
systematic technique for synchronization, since the coefficients of
the linear combination are somewhat arbitrary. An interesting result
has been recently reported in [7], where a parameter control method
is proposed to achieve hyperchaos synchronization. In any case, the
computation of the Lyapunov exponents is still required in order to
verify the synchronization.

This brief makes a contribution in the context of hyperchaos
synchronization. Furthermore, an application to hyperchaos-based
cryptography is presented. The key idea is to make the response
system a linear observer for the state of the drive system. This
approach guarantees synchronization, because an observer has the
property that its state converges to the state of the plant; that
is, the state of the driven system converges to the state of the
drive one. The proposed technique has several advantages over the
existing methods. It proves to be simple and rigorous. It does not
require either the computation of the Lyapunov exponents or initial
conditions belonging to the same basin of attraction. Moreover,
global synchronization is achievable in a systematic way for several
examples of hyperchaotic systems reported in literature.

The paper is organized as follows. In Section II, a general class
of hyperchaotic systems is defined and the well-known concept
of linear observer is introduced to formalize the problem of hy-
perchaos synchronization. Following this approach, a linear time-
invariant synchronization error system is derived, along with a
necessary and sufficient condition for its asymptotic stabilization.
This technique guarantees synchronization of Rössler’s system [6],
the Matsumoto–Chua–Kobayashi (MCK) circuit [8] and its modified
version [9], two oscillators recently reported in literature [10], [11],
and a circuit with hysteretic nonlinearity [12]. A major advantage
is that all of these systems are synchronized using ascalar signal.
In order to show the effectiveness of the developed technique,
numerical simulations are carried out in Section III, whereas in
Section IV, a secure communications scheme is designed, which
combines conventionalcryptographicmethods and synchronization
of hyperchaotic systems. In Section V, some concluding remarks are
given.

II. HYPERCHAOSSYNCHRONIZATION USING LINEAR OBSERVER

The goal of synchronization is to design a coupling between two
chaotic systems, called drive system and response system, so that
their dynamics become identical after a transient time. The coupling
is implemented via a synchronizing signal, which is generated by the
drive system. In this brief, the attention is focused on the following
class of dynamic systems.

Definition 1: A hyperchaotic system belongs to the classCm if
its state and output equations can be written, respectively, as

_x(t) =Ax(t) +Bf(x(t)) + c (1)

y(t) =h(x(t)) (2)

whereA 2 <n�n, B 2 <n�m, f = (f1(x); f2(x); � � � ; fm(x))
T 2

<m�1 with fi 6= fj for i 6= j, m � n, c 2 <n�1 and
y = (h1(x); h2(x); � � � ; hm(x))

T 2 <m�1.
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